钢牛腿设计
- 格式:doc
- 大小:19.50 KB
- 文档页数:1
钢牛腿设计及工程实例1.概述钢牛腿作为工业建筑中常见的受力构件,具有施工简单、理论计算可靠、截面小承载力高等优点,同时较之钢筋混凝土牛腿更容易应用于改造工程中。
从受力特点上分析,钢牛腿整体以受弯为主。
作用是传递构件外部竖向荷载,同时在牛腿根部产生较小的附加弯矩。
常见有以下几种型式,见图1:其中第一种型式轻便易于施工,常用于支托电缆或小型钢梁;第二种型式普遍为截面较小的钢牛腿,常见于单层厂房的排架柱上;第三种型式施工相对复杂,牛腿根部截面一般较大,承载力高,常用于支托钢吊车梁等重要构件。
本文下面将计算对比“工”形及“π”形的钢牛腿截面特性,并以“工”型截面为例,结合设计中的实际工程对钢牛腿进行受力分析及承载力验算。
2.工程设计实例开滦范各庄选煤厂浮选车间改造工程需在混凝土框架柱外新增钢牛腿,经多种结构方案比较,决定采用柱外粘贴钢板箍、牛腿刚接于钢板箍的结构形式。
同时沿层高方向以四角包角钢配合窄钢板带加固框架柱,详见图2。
牛腿荷载由上部钢梁传来,经计算梁端剪力设计值为V=520kN,牛腿端部产生的弯矩设计值M=V·e=520*0.4=208kN·m。
牛腿端部截面尺寸见图3,其中B f1=400mm,B f2=300mm,t1= t2=24mm,t w=16mm,h w=452mm,截面塑性发展系数γ=1.05。
2.1 端部截面特性比较选取“工”形及“π”形截面作为对比,截面尺寸见图4,截面特性见表1。
从表中数据不难看出,在截面面积相差无几的情况下,“工”形截面抗弯能力为“π”形截面的198%,抗剪能力为“π”形截面的61%。
可见,下翼缘的存在提高了“工”形截面的抗弯性能,而双腹板的存在使得“π”形截面的抗剪性能突出。
本工程竖向荷载偏离牛腿根部较远,为0.4m,牛腿受弯作用显著,故优先选择抗弯承载力较高“工”形截面。
2.2 端部截面验算牛腿端部截面面积A n21122***24032n f f w w A B t B t t h mm =++=钢牛腿为左右对称截面,下翼缘外边缘至截面形心轴处的距离y22211112[*/2**(/2)**(/2)]/273.77f w w w f w n y B t t h h t B t t t h A mm =+++++=形心轴以上面积对形心轴的面积矩S2311212**(/2)()*/22383805f w w w S B t h t t y h t y t mm =++-++-=截面惯性矩I331111212*/12**(/2)*/12**(/2)f f w w w w w w I B t B t h t y t t h t h h t y =++-++++-3422222*/12**()1061976353f f B t B t y t mm ++-=形心轴以上、以下截面模量W n1、W n23121/()4694198n w W I h t y t mm =+-+=32/3879106n W I y mm ==上翼缘外边缘的正应力σ121142.2215/n W N mm σγ=M/=<,上翼缘抗弯满足。
钢牛腿设计一、计算资料牛腿尺寸(单位:mm)上翼缘宽bf1400上翼缘厚t120腹板宽ts14下翼缘宽bf2400下翼缘厚t220腹板高度hw660荷载竖向压力设计值F=950柱边与竖向压力距离e=0.5m材料钢材为Q235-B焊条为E43焊接形式手工焊焊缝质量三级角焊缝焊角尺寸hf(mm)=10连接,腹板和柱的连接采用角焊缝连接。
二、牛腿强度的计算作用于牛腿根部的弯炬M和剪力VM=F*e=475.00kN.mV=950kN牛腿根部的净截面积AnAn=bf1*t1+bf2*t2+ts*hw=25240mm2上翼缘板中心至截面形心轴处的距离yy=(ts*hw*0.5*(hw+t1)+bf2*tf2*(hw+0.5*tf1))/An=336.83mm形心轴以上面积对形心轴的面积矩SS=(y-0.5*t1)*ts*0.5*(y-0.5*t1)+t1*bf1*y=3442370.323mm3净截面的惯性矩In腹板中心距与y的距离a=(0.5*hw+0.5*t1-y)In=t1*bf1*y*y+t2*bf2*y*y+ts*hw*hw*hw/12+ts*hw*a*a=2150780621mm4净截面的上、下抵抗矩Wn1、Wn2Wn1=In/(y+0.5*t1)=6201245.5mm3Wn2=In/(hw+t1+0.5*t2-y)=6089938mm3下翼缘外边的正应力σσ=M/ Wn2=78.00N/mm2<215 N/mm2 ,满足要求截面形心轴处的剪应力ττ=VS/(Itw)=108.61N/mm2<215 N/mm2 ,满足要求截面腹板下端抵抗矩W’n2W’n2=In/(hw+0.5*t1-y)=6455513.4mm3下翼缘对形心轴的面积矩S1S1=t2*bf2*(hw+0.5*t1+0.5*t2-y)=2745357mm3腹板下端的正应力σ1σ1= M/W’n2=73.58 N/mm2腹板下端的剪应力τ1τ=VS1/(It w)=86.62 N/mm2腹板下端的折算应力√(σ12+3τ12)=167.10N/mm2<1.1*215 N/mm2 ,满足要求三、 牛腿与柱的连接焊缝计算:由于牛腿翼缘竖向刚度较差,一般不考虑承担剪力。
钢牛腿设计一、计算资料牛腿尺寸(单位:mm)荷载竖向压力设计值F=80kN柱边与竖向压力距离e=0.5m 材料钢材为Q345-B焊条为E50焊接形式手工焊焊缝质量三级角焊缝焊角尺寸hf(mm)=6牛腿翼缘和柱的连接采用对接焊缝(坡口焊)连接,腹板和柱的连接采用角焊缝连接。
二、牛腿强度的计算作用于牛腿根部的弯炬M和剪力VM=F*e=40.00kN.mV=F=80kN牛腿根部的净截面积AnAn=bf1*t1+bf2*t2+tw*hw=6208mm2上翼缘板中心至截面形心轴处的距离yy=(tw*hw*0.5*(hw+t1)+bf2*tf2*(hw+0.5*t1+0.5*t2))/An=143.00mm 形心轴以上面积对形心轴的面积矩SS=(y-0.5*t1)*tw*0.5*(y-0.5*t1)+t1*bf1*y=362176mm3净截面的惯性矩In腹板中心距与y的距离a=(0.5*hw+0.5*t1-y)=0mmIn=(bf1*t1^3)/12+t1*bf1*y^2+(bf2*t2^3)/12+t2*bf2*(hw+0.5*t1+0.5*t2)^2+(tw*hw^3)/12+tw*hw*a^2=95845717.33mm4净截面的上、下抵抗矩Wn1、Wn2Wn1=In/(y+0.5*t1)=647606.1982mm3Wn2=In/(hw+0.5*t1-y+t2)=647606.1982mm3上翼缘外边的正应力σσ=M/ Wn1=61.77N/mm2<310N/mm2,满足要求下翼缘外边的正应力σσ=M/ Wn2=61.77N/mm2<310N/mm2,满足要求截面形心轴处的剪应力ττ=V*S/(I*tw)=37.79N/mm2<310N/mm2,满足要求截面腹板下端抵抗矩W’n2W'n2=In/(hw+0.5*t1-y)=694534.1836mm3下翼缘对形心轴的面积矩S1S1=t2*bf2*(hw+0.5*t1+0.5*t2-y)=286000mm3腹板下端的正应力σ1σ1= M/W'n2=57.59 N/mm2腹板下端的剪应力τ1τ=V*S1/(I*t w)=29.84 N/mm2腹板下端的折算应力√(σ12+3τ12)=77.38N/mm2<1.1*310 N/mm2,满足要求腿与柱的连接焊缝计算:由于牛腿翼缘竖向刚度较差,一般不考虑承担剪力。
钢牛腿设计一、计算资料牛腿尺寸(单位:mm)上翼缘宽bf1350上翼缘厚t112腹板宽ts10下翼缘宽bf2350下翼缘厚t212腹板高度hw172荷载竖向压力设计值F=80kN柱边与竖向压力距离e=0.5m材料钢材为Q235-B焊条为E43焊接形式手工焊焊缝质量三级角焊缝焊角尺寸hf(mm)=10牛腿翼缘和柱的连接采用对接焊缝(坡口焊)连接,腹板和柱的连接采用角焊缝连接。
二、牛腿强度的计算作用于牛腿根部的弯炬M和剪力VM=F*e=40.00kN.mV=80kN牛腿根部的净截面积AnAn=bf1*t1+bf2*t2+ts*hw=10120mm2上翼缘板中心至截面形心轴处的距离yy=(ts*hw*0.5*(hw+t1)+bf2*tf2*(hw+0.5*tf1))/An=89.51mm形心轴以上面积对形心轴的面积矩SS=(y-0.5*t1)*ts*0.5*(y-0.5*t1)+t1*bf1*y=410811.0035mm3净截面的惯性矩In腹板中心距与y的距离a=(0.5*hw+0.5*t1-y)In=t1*bf1*y*y+t2*bf2*y*y+ts*hw*hw*hw/12+ts*hw*a*a=71551997mm4净截面的上、下抵抗矩Wn1、Wn2Wn1=In/(y+0.5*t1)=749158.06mm3Wn2=In/(hw+t1+0.5*t2-y)=712030mm3下翼缘外边的正应力σσ=M/ Wn2=56.18N/mm2<215 N/mm2 ,满足要求截面形心轴处的剪应力ττ=VS/(Itw)=45.93N/mm2<215 N/mm2 ,满足要求截面腹板下端抵抗矩W’n2W’n2=In/(hw+0.5*t1-y)=808587.42mm3下翼缘对形心轴的面积矩S1S1=t2*bf2*(hw+0.5*t1+0.5*t2-y)=396858.5mm3腹板下端的正应力σ1σ1= M/W’n2=49.47 N/mm2腹板下端的剪应力τ1τ=VS1/(It w)=44.37 N/mm2腹板下端的折算应力√(σ12+3τ12)=91.40N/mm2<1.1*215 N/mm2 ,满足要求三、 牛腿与柱的连接焊缝计算:由于牛腿翼缘竖向刚度较差,一般不考虑承担剪力。
钢牛腿设计一、计算资料牛腿尺寸(单位:mm)上翼缘宽bf1400上翼缘厚t120腹板宽ts14下翼缘宽bf2400下翼缘厚t220腹板高度hw660荷载竖向压力设计值F=950柱边与竖向压力距离e=0.5m 材料钢材为Q235-B焊条为E43焊接形式手工焊焊缝质量三级角焊缝焊角尺寸hf(mm)=10牛腿翼缘和柱的连接采用对接焊缝(坡口焊)连接,腹板和柱的连接采用角焊缝连接。
二、牛腿强度的计算作用于牛腿根部的弯炬M和剪力VM=F*e=475.00kN.mV=950kN的净截面积An An=bf1*t1+bf2*t2+ts*hw=25240mm2上翼缘板中心至截面形心轴处的距离y y=(ts*hw*0.5*(hw+t1)+bf2*tf2*(hw+0.5*tf1))/An=336.83mm 形心轴以上面积对形心轴的面积矩SS=(y-0.5*t1)*ts*0.5*(y-0.5*t1)+t1*bf1*y=3442370.323mm3净截面的惯性矩In腹板中心距与y的距离a=(0.5*hw+0 .5*t1-y)In=t1*bf1*y*y+t2*bf2*y*y+ts*hw*hw*hw/12+ts*hw*a*a=2150780621mm4净截面的上、下抵抗矩Wn1、Wn2Wn1=In/(y+0.5*t1)=6201245.5mm3Wn2=In/(hw+t1+0.5*t2-y)=6089938mm3边的正应力σσ=M/ Wn2=78.00N/mm2<215 N/mm2,满足要求截面形心轴处的剪应力ττ=VS/(Itw)=108.61N/mm2<215 N/mm2,满足要求截面腹板下端抵抗矩W’n2W’n2=In/(hw+0.5*t1-y)=6455513.4mm3下翼缘对形心轴的面积矩S1S1=t2*bf2*(hw+0.5*t1+0.5*t2-y)=2745357mm3腹板下端的正应力σ1σ1= M/W’n2=73.58 N/mm2腹板下端的剪应力τ1τ=VS1/(It w)=86.62 N/mm2腹板下端的折算应力√(σ12+3τ12)=167.10N/mm2<1.1*215N/mm2,满足要求三、 牛腿与柱的连接焊缝计算:于牛腿翼缘竖向刚度较差,一般不考虑承担剪力。
钢牛腿设计一、计算资料牛腿尺寸(单位:mm)上翼缘宽bf1400上翼缘厚t120腹板宽ts14下翼缘宽bf2400下翼缘厚t220腹板高度hw660荷载竖向压力设计值F=950kN柱边与竖向压力距离e=0.5m材料钢材为Q235-B焊条为E43焊接形式手工焊焊缝质量三级角焊缝焊角尺寸hf(mm)=10牛腿翼缘和柱的连接采用对接焊缝(坡口焊)连接,腹板和柱的连接采用角焊缝连接。
二、牛腿强度的计算作用于牛腿根部的弯炬M和剪力VM=F*e=475.00kN.mV=950kN牛腿根部的净截面积AnAn=bf1*t1+bf2*t2+ts*hw=25240mm2上翼缘板中心至截面形心轴处的距离yy=(ts*hw*0.5*(hw+t1)+bf2*tf2*(hw+0.5*tf1))/An=336.83mm形心轴以上面积对形心轴的面积矩SS=(y-0.5*t1)*ts*0.5*(y-0.5*t1)+t1*bf1*y=3442370.323mm3净截面的惯性矩In腹板中心距与y的距离a=(0.5*hw+0.5*t1-y)In=t1*bf1*y*y+t2*bf2*y*y+ts*hw*hw*hw/12+ts*hw*a*a=2150780621mm4净截面的上、下抵抗矩Wn1、Wn2Wn1=In/(y+0.5*t1)=6201245.47mm3Wn2=In/(hw+t1+0.5*t2-y)=6089938mm3下翼缘外边的正应力σσ=M/ Wn2=78.00N/mm2<215 N/mm2 ,满足要求截面形心轴处的剪应力ττ=VS/(Itw)=108.61N/mm2<215 N/mm2 ,满足要求截面腹板下端抵抗矩W’n2W’n2=In/(hw+0.5*t1-y)=6455513.35mm3下翼缘对形心轴的面积矩S1S1=t2*bf2*(hw+0.5*t1+0.5*t2-y)=2745356.58mm3腹板下端的正应力σ1σ1= M/W’n2=73.58 N/mm2腹板下端的剪应力τ1τ=VS1/(Itw)=86.62 N/mm2腹板下端的折算应力√(σ12+3τ12)=167.10N/mm2<1.1*215 N/mm2 ,满足要求三、 牛腿与柱的连接焊缝计算:由于牛腿翼缘竖向刚度较差,一般不考虑承担剪力。
钢牛腿设计一、计算资料牛腿尺寸(单位:mm)上翼缘宽bf1400上翼缘厚t20腹板宽ts14下翼缘宽bf2400下翼缘厚t20腹板高度hw660荷载竖向压力设计值F=950柱边与竖向压力距离0.5m材料钢材为Q235-B焊条为E43焊接形式手工焊焊缝质量三级角焊缝焊角尺寸hf(m10牛腿翼缘和柱的连接采用对接焊缝(坡口焊)二、牛腿强度的计算作用于牛腿根部的弯炬M和剪力VM=F*e=475.00kN.mV=950kN牛腿根部的净截面积AnAn=bf1*t1+bf2*t2+t25240mm2上翼缘板中心至截面形心轴处的距离yy=(ts*hw*0.5*(hw+t1)+bf2*tf2*(hw+0.5*tf336.83mm形心轴以上面积对形心轴的面积矩SS=(y-0.5*t1)*ts*0.5*(y-0.5*t1)+t1*bf1*y3442370mm3净截面的惯性矩In(0.5*hw+0.5*t1-y)腹板中心距与y的距离In=t1*bf1*y*y+t2*bf2*y*y+ts*hw*hw*hw/12+ts*hw*a*a =2.15E+09mm4净截面的上、下抵抗矩Wn1、Wn2Wn1=In/(y+0.5*t1)=6E+06mm3Wn2=In/(hw+t1+0.5*######mm3下翼缘外边的正应力σσ=M/ Wn2=78.00N/mm2<215 N/mm2 ,满足要求截面形心轴处的剪应力τ108.61N/mm2<215 N/mm2 ,满足要求τ=VS/(Itw)截面腹板下端抵抗矩W’n2W’n2=In/(hw+0.5*t6E+06mm3下翼缘对形心轴的面积矩S1S1=t2*bf2*(hw+0.5*t1+0.5*t2745356.577mm3腹板下端的正应力σ1σ1= M/W’n73.58 N/mm2腹板下端的剪应力τ1τ=VS1/(Itw86.62 N/mm2腹板下端的折算应力√(σ12+3τ12)=######N/mm2<1.1*215 N/mm2 ,满足要求三、 牛腿与柱的连接焊缝计算:由于牛腿翼缘竖向刚度较差,一般不考虑承担剪力。
钢筋混凝土牛腿设计计算首先,进行荷载计算。
荷载计算是确定牛腿所受荷载大小和作用点位置的过程。
牛腿通常承担着墙体及屋面等的重力荷载,并通过基础传递到地基。
荷载计算应按照相关荷载标准进行,根据建筑结构的荷载情况,确定牛腿的设计荷载和荷载作用点位置。
接下来,进行截面计算。
截面计算是根据荷载大小和作用点位置,确定牛腿截面尺寸的过程。
根据截面力学性能,截面计算应满足强度和刚度要求。
强度要求包括抗弯、抗剪和抗压强度。
刚度要求包括挠度和变形限值。
截面计算中需要确定牛腿的宽度、高度和厚度等尺寸参数,并绘制出牛腿的截面示意图。
最后,进行钢筋计算。
钢筋计算是根据截面尺寸和荷载大小,确定牛腿所需的钢筋配筋数量和位置的过程。
钢筋计算主要包括纵向钢筋和箍筋的计算。
纵向钢筋主要用于抵抗牛腿的弯矩荷载,箍筋主要用于抵抗牛腿的剪力和抗压力等。
钢筋计算应依据相关钢筋标准和规范进行,以满足结构的强度和稳定性要求。
在钢筋混凝土牛腿的设计计算中,还需要考虑到施工工艺、整体稳定性和经济性等因素。
例如,为了保证施工质量和方便施工,可能需要采用预制构件或模板,在加固过程中可能需要考虑到整体结构的稳定性,并在设计过程中尽量控制材料和工程造价等。
因此,在钢筋混凝土牛腿的设计计算中,需要充分考虑到各种因素,并进行合理的计算和优化设计。
总而言之,钢筋混凝土牛腿的设计计算是一个综合考虑荷载计算、截面计算和钢筋计算等因素的过程。
设计计算的目标是满足牛腿的强度、刚度和稳定性要求,并在施工过程中确保施工质量和经济效益。
设计者需要根据具体情况和相关规范,进行详细的计算和分析,以保证牛腿结构的安全可靠性。
钢牛腿设计一、计算资料牛腿尺寸(单位:mm)上翼缘宽bf1315上翼缘厚t112腹板宽ts8下翼缘宽bf2315下翼缘厚t212腹板高度hw426荷载竖向压力设计值F=75柱边与竖向压力距离e=0.58m材料钢材为Q235-B焊条为E43焊接形式手工焊焊缝质量三级角焊缝焊角尺寸hf(mm)=10连接,腹板和柱的连接采用角焊缝连接。
二、牛腿强度的计算作用于牛腿根部的弯炬M和剪力VM=F*e=43.50kN.mV=75kN牛腿根部的净截面积AnAn=bf1*t1+bf2*t2+ts*hw=10968mm2上翼缘板中心至截面形心轴处的距离yy=(ts*hw*0.5*(hw+t1)+bf2*tf2*(hw+0.5*tf1))/An=216.93mm形心轴以上面积对形心轴的面积矩SS=(y-0.5*t1)*ts*0.5*(y-0.5*t1)+t1*bf1*y=997973.1037mm3净截面的惯性矩In腹板中心距与y的距离a=(0.5*hw+0.5*t1-y)In=t1*bf1*y*y+t2*bf2*y*y+ts*hw*hw*hw/12+ts*hw*a*a=407324066mm4净截面的上、下抵抗矩Wn1、Wn2Wn1=In/(y+0.5*t1)=1827121.1mm3Wn2=In/(hw+t1+0.5*t2-y)=1793843mm3下翼缘外边的正应力σσ=M/ Wn2=24.25N/mm2<215 N/mm2 ,满足要求截面形心轴处的剪应力ττ=VS/(Itw)=22.97N/mm2<215 N/mm2 ,满足要求截面腹板下端抵抗矩W’n2W’n2=In/(hw+0.5*t1-y)=1893933mm3下翼缘对形心轴的面积矩S1S1=t2*bf2*(hw+0.5*t1+0.5*t2-y)=835636.4mm3腹板下端的正应力σ1σ1= M/W’n2=22.97 N/mm2腹板下端的剪应力τ1τ=VS1/(It w)=19.23 N/mm2腹板下端的折算应力√(σ12+3τ12)=40.46N/mm2<1.1*215 N/mm2 ,满足要求三、 牛腿与柱的连接焊缝计算:由于牛腿翼缘竖向刚度较差,一般不考虑承担剪力。
钢结构牛腿计算公式(钢结构的牛腿是什么意思)范本一:钢结构牛腿计算公式1. 引言钢结构的牛腿是指承受水平荷载的构件,用于稳定结构。
本文档旨在介绍钢结构牛腿的计算公式,工程师准确设计牛腿,确保结构的稳定性和安全性。
2. 牛腿的基本概念牛腿是在钢结构中用于承受水平荷载的构件,通常呈L形或T 形,连接主梁和竖向横梁。
它的主要作用是增强结构的刚度和抗倾覆能力。
3. 牛腿计算公式3.1 配筋计算公式根据结构设计要求和构件受力情况,牛腿的配筋需要满足一定的要求。
通常,牛腿的配筋计算公式可以使用以下公式:- 配筋面积 = ((0.9 * fy * As) / Fc) * (1 + β)- 其中,fy为钢材抗拉强度,As为钢筋截面积,Fc为混凝土抗压强度,β为抗倾覆系数。
3.2 强度计算公式牛腿的强度计算公式通常包括以下几个方面:- 受压钢板强度的计算公式:σ = P / (B * d)- 其中,σ为受压钢板的应力,P为牛腿承受的压力,B为钢板的宽度,d为钢板的厚度。
- 部分压弯区顶部钢板的强度计算公式:σ = (M / As) * (h / 2)- 其中,M为牛腿承受的弯矩,As为钢筋截面积,h为牛腿的高度。
4. 附件本文档附带以下附件供参考:- 钢结构牛腿计算公式示例图纸;- 牛腿配筋计算表格样本。
5. 法律名词及注释5.1 法律名词:- 结构:指建筑物或其他工程的组成部分。
- 钢结构:指由钢材构成的结构。
- 牛腿:指连接主梁和竖向横梁的用来承受水平荷载的钢结构构件。
- 混凝土:指一种由水泥、骨料和水等材料混合而成的石质材料,常用于钢结构的填充和加固。
5.2 注释:- 抗倾覆系数(β):用于考虑牛腿在受力情况下的抗倾覆能力,根据具体情况进行取值。
---------------范本二:钢结构牛腿计算方法1. 简介钢结构的牛腿是指用于承受水平荷载的构件,用于增强结构的稳定性和抗倾覆能力。
本文档旨在介绍钢结构牛腿的计算方法,以工程师准确设计牛腿,确保结构的安全性和稳定性。
钢筋混凝土牛腿的设计关键信息项:1、牛腿的设计荷载及工况2、混凝土强度等级3、钢筋规格与型号4、牛腿的几何尺寸5、设计使用年限6、施工要求与工艺7、质量验收标准1、设计依据11 本协议的设计应遵循国家和行业现行的相关标准、规范及规程,包括但不限于《混凝土结构设计规范》(GB 50010)等。
12 设计应充分考虑工程的实际使用需求、场地条件以及可能面临的环境因素。
2、牛腿的设计荷载及工况21 明确牛腿所承受的竖向荷载、水平荷载以及可能的偏心荷载等。
22 考虑不同的工况组合,如正常使用工况、极限承载工况等。
23 提供详细的荷载计算方法和取值依据。
3、混凝土强度等级31 选用的混凝土强度等级应满足结构的承载能力和耐久性要求。
32 明确混凝土的配合比设计要求,包括水泥品种、骨料类型及粒径等。
4、钢筋规格与型号41 确定牛腿中纵向钢筋和箍筋的规格、型号及布置方式。
42 钢筋的强度等级应符合设计要求,并具备相应的质量证明文件。
5、牛腿的几何尺寸51 精确规定牛腿的长度、宽度、高度等主要尺寸。
52 确定牛腿与主体结构的连接方式和连接尺寸。
6、设计使用年限61 牛腿的设计使用年限应与整个结构的使用年限相协调。
62 在设计中考虑使用年限内的耐久性问题,采取相应的防护措施。
7、施工要求与工艺71 对施工过程中的模板安装、钢筋绑扎、混凝土浇筑等工序提出具体要求。
72 强调施工质量控制要点,如混凝土振捣密实度、钢筋保护层厚度等。
73 规定施工中应遵循的安全操作规程,确保施工过程的安全。
8、质量验收标准81 明确牛腿施工完成后的质量验收项目和验收标准。
82 验收应包括混凝土强度检测、钢筋位置及数量检查、几何尺寸测量等内容。
83 对验收不合格的情况,应制定相应的整改措施和处理办法。
9、维护与保养91 提供牛腿在使用过程中的维护建议,包括定期检查、表面防护处理等。
92 说明在发现问题时应采取的应急处理措施。
10、责任与义务101 设计方应保证设计方案的合理性和安全性,并对设计质量负责。
探析混凝土结构的钢牛腿设计1 、概述在水电站厂房中,混凝土牛腿是一种传统的支撑结构,具有施工简单、安全可靠等优点。
但也存在一定的缺点,由于牛腿凸出墙体表面,限制了滑模的使用,对墙体施工的进度有一定的影响。
为解决这个问题,考虑在墙体表面预埋钢板,然后再将钢牛腿再与钢板焊接的结构型式(见图1)。
这样,可以在墙体施工完毕以后,再进行钢牛腿的安装,加快了厂房主体工程的施工进度,具有一定的经济效益。
2 、工程设计实例某涉外水电站发电机层板梁采用钢牛腿支撑,牛腿荷载由上部板梁传来,经计算梁端剪力设计值V=500kN,牛腿端部产生的弯矩设计值M=Ve=75kN.m。
初步拟定牛腿端部截面尺寸见图2,其中,,,,,塑形发展系数。
钢板采用Q235级钢材。
根据规范要求,需验算钢牛腿端部截面、连接焊缝以及混凝土预埋件在剪力及弯矩作用下的承载力。
2.1 端部截面承载力验算牛腿端部截面面积24000mm2钢牛腿为左右对称截面,下翼缘外边缘至截面形心轴处的距离y=180mm形心轴以上面积对形心轴的面积距s=1710000mm3截面惯性矩=490897500 mm4形心轴以上、以下截面模量2727208 mm32727208mm3上翼缘外边缘的正应力26.2 <215N/ mm2,上翼缘抗弯满足规范要求。
26.2 <215N/ mm2,下翼缘抗弯满足规范要求。
截面形心轴处的剪应力<120 N/ mm2,截面抗剪满足要求。
以下验算截面腹板计算高度边缘处的折算应力:N/ mm2腹板下端以上截面对形心轴的面积矩:,满足规范要求满足规范要求。
2.2 焊缝承载力验算偏安全考虑,上端部弯矩全部由牛腿翼缘承担,端部剪力全部由牛腿腹板承担。
基于以上考虑,牛腿的上、下翼缘与混凝土表面预埋钢板的连接采用与母材等强的对接透焊,焊缝质量等级为二级,焊缝强度可不必验算。
牛腿腹板与柱连接采用通长双面贴角焊缝,焊脚尺寸腹板双面角焊缝应力:,满足规范要求。
钢牛腿设计
一、钢结构部分设计软件(工字型截面和钢牛腿受力计算)
二、牛腿荷载值计算(竖向压力计算值KN)
1、吊车(大车自重)/2=t
2、吊车(小车自重)x1=t
3、吊车最大起重量x1= t
4、吊车梁及梁上附件:
每延长m重量x最大榀间距=t
5、轨道重量:
每延长m重量x最大榀间距=t
以上5项相加之和x1.4系数/0.098t = (竖向压力值)KN
三、牛腿几何尺寸确定原则:
1、牛腿翼缘板,宽度和厚度:
取相邻两钢柱的翼缘板较小的宽度和厚度数值。
2、牛腿腹板厚度:
取相邻两钢柱的腹板较小的厚度数值。
3、牛腿竖向劲板和柱横向加劲板的厚度和宽度:
厚度取牛腿翼缘板厚,宽度取(牛腿宽-牛腿腹板厚度)/2
四、钢牛腿受力计算界面
1、牛腿信息输入:写入翼缘板宽度,厚度
腹板宽度,厚度
腹板高度可以假定一个数值。
2、荷载:
1)填入计算好的竖向压力设计值()KN
20.65m.
3、
出现判断情况界面
4、调整腹板高度达到经济,安全合理的数值。