初一不等式经典易错题解析
- 格式:doc
- 大小:7.33 KB
- 文档页数:5
不等式易错点分析易错点一:忽视字母之间的联系性,使字母范围扩大例1.已知函数c ax x f -=2)(满足1)1(4-≤≤-f ,5)2(1≤≤-f ,求)3(f 的最大值与最小值.典型错解:由题意得⎩⎨⎧≤-≤--≤-≤-54114c a c a ⎩⎨⎧≤-≤-≤-≤=54141c a a c ,同向不等式相加可得 930≤≤a ,即30≤≤a ,又由41≤-≤a c ,可得71≤≤c .∴2790≤≤a ,17-≤-≤-c ,即2697≤-≤-c a ,而c a f -=9)3(, ∴)3(f 的最大值是26,最小值是 —7.错因分析:在26)3(7≤≤-f 中,当且仅当1,3==c a 时,右等号成立;当且仅当7,0==c a 时,左等号成立,这两组字值均不满足⎩⎨⎧≤-≤--≤-≤-54114c a c a ,因此26)3(7≤≤-f 中的左右等号均不能成立,故26、-7不是要求的最值.究其原因,是将a 、c 的范围扩大了.正确解答:由c a f -=)1(,c a f -=4)2(,c a f -=9)3(, 可设)2()1()3(nf mf f +=,则c a c a n c a m -=-+-9)4()(,∴⎪⎪⎩⎪⎪⎨⎧=-=⇒⎩⎨⎧-=--=+3835194n m n m n m ,∴)2(38)1(35)3(f f f +-=,而1)1(4-≤≤-f ,5)2(1≤≤-f , ∴320)1(3535≤-≤f ,340)2(3838≤≤-f ,∴20)2(38)1(351≤+-≤-f f , 即20)3(1≤≤-f ,当⎩⎨⎧=--=-544c a c a ,即⎩⎨⎧==73c a 时,右边等号成立;当⎩⎨⎧-=--=-141c a c a ,即⎩⎨⎧==10c a 时,左边等号成立;两组值均满足⎩⎨⎧≤-≤--≤-≤-54114c a c a ,故)3(f 的最大值是20,最小值是1-.易错点二:忽视一元二次不等式中二次项系数的符号 例 1.已知不等式02≥++c bx ax 的解集为⎭⎬⎫⎩⎨⎧≤≤-231|x x ,则不等式02<++a bx cx 的解集为( )A .⎭⎬⎫⎩⎨⎧<<-312|x x B .⎭⎬⎫⎩⎨⎧>-<312|x x x 或 C .⎭⎬⎫⎩⎨⎧<<-213|x x D .⎭⎬⎫⎩⎨⎧>-<213|x x x 或 典型错解:由题意知,31-,2是方程)0(02≠=++a c bx ax 的两根,因此由根与系数的关系得a b -=+-231,a c =⨯-2)31(,∴a b 35-=,a c 32-=.∴不等式02<++a bx cx 可化为035322<+--a ax ax ,即0135322>-+x x ,解得213>-<x x 或,故选D . 错因分析:由于对一元二次不等式解集的意义理解不够,故忽视了对a 、b 、c 符号的判断.根据给出的解集,除知道31-和2是方程)0(02≠=++a c bx ax 的两根外,还应知道0<a ,然后通过根与系数的关系进一步求解.正确解答:由于不等式02≥++c bx ax 的解集为⎭⎬⎫⎩⎨⎧≤≤-231|x x ,可知0<a ,且31-,2是方程)0(02≠=++a c bx ax 的两根, ∴a b -=+-231,a c =⨯-2)31(,∴a b 35-=,a c 32-=.∴不等式02<++a bx cx 可化为035322<+--a ax ax ,由于0<a∴0135322<-+x x ,即03522<-+x x ,解得213<<-x . ∴所求解集为⎭⎬⎫⎩⎨⎧<<-213|x x ,选C . 易错点三:忽视基本不等式中定值的条件例2.已知正数a ,b 满足3222=+b a ,求12+b a 的最大值.典型错解:∵)1(211222++≤+b a b a ,等号成立的条件是12+=b a ,122+=b a ,又3222=+b a ,∴342=a ,312=b ,∴12+b a 的最大值为34. 错因分析:)1(2122++b a 并不是定植,利用基本不等式求定值时,定值是前提,先有定值后相等,并不是先相等后求值.正确解答:)12(2122122212222++⨯≤+⨯=+b a b a b a 2)13(42=+⨯=,当且仅当122+=b a ,且3222=+b a 时,等号成立. 解得12=a ,12=b ,即1==b a 时,12+b a 有最大值2.易错点四:忽视基本不等式中等号成立的一致性 例3. 已知0,0x y >>,且12=+y x ,求yx 11+的最小值. 典型错解:∵0,0x y >>,且12=+y x ,∴)2)(1111y x yx y x ++=+( 2422112=⋅⋅≥xy yx ,∴y x 11+的最小值为24.错因分析:错解的原因是连续两次使用基本不等式时,忽视了等号成立的一致性.实际上,第一个取“=”的条件为yx 11=,即y x =,而第二个取“=”的条件为y x 2=,这样前后就矛盾了.正确解答:∵0,0x y >>,且12=+y x ,∴)2)(1111y x yx y x ++=+( 22322323+=⋅+≥++=yxx y y x x y ,当且仅当y x x y =2,且12=+y x , 即12-=x ,221-=y 时,等号成立,yx 11+的最小值为223+. 易错点五:该分类讨论的不分类讨论,或能分类讨论但不能做到“不重不漏”例4.已知关于x 的不等式01)2()4(22≥-++-x a x a 的解集是空集,求实数a 的取值范围.典型错解:根据“三个二次”之间的关系,结合题意得⎪⎩⎪⎨⎧<-++=∆<-0)4(4)2(04222a a a解得562<<-a ,∴所求的实数a 的取值范围是562<<-a . 错因分析:只把不等式当做x 的一元二次不等式,而忽视其它情形,也就是对2x 的系数该分类的不分类,也就使得解法有漏洞.正确解答:当2=a 时,不等式为014≥-x ,解集非空; 当2-=a 时,不等式为01≥-,解集为空集;当2±≠a 时,根据“三个二次”之间的关系,结合题意得⎪⎩⎪⎨⎧<-++=∆<-0)4(4)2(04222a a a ,解得562<<-a . 综上可得,所求的实数a 的取值范围是562<≤-a . 不等式问题常见思维误区的归纳与总结:在解决不等式的问题时,易错点还是比较多的,除了上述五个易错点外,易错点还有:不能正确运用不等式的性质;在解不等式或证明不等式时不能对不等式进行等价转化;线性规划中不能正确画图、识图,找不准最优解;利用基本不等式时忽视应用的三个条件缺一不可,等等.了解这些易错点可以帮助我们引以为戒、拨乱反正、健步前冲.。
9.1 不等式及其解集经典题1.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克分析:我们把这样一个问题如果抽象成数学问题,实际上就是妈妈和小明的体重之和比爸爸的体重轻.设小明的体重为x千克,则x+50<70,在A、B、C、D四个选项中,能使不等式成立的答案只有A项.答案:A2. 用数轴表示不等式34x<的解集正确的是()01010101A B C D分析:根据利用数轴来表示解集的方法可知,当34x<时,用空心圈,所以答案在B和C中,又因为是小于,所以向左画线,即正确的答案是C. 答案:C3.若32是方程23x=的唯一解,则x=12是不等式2x<3的()A.唯一解B.一个根C.一个解D.解集分析:不等式的解集包含着无数个能使不等式左右两边相等的未知数的值,所以x=12是不等式2x<3的一个解.答案:C4.不等式2x-6<0的解集在数轴上表示正确的是().A. B. C. D.分析:根据不等式确定它的解集是x<3,在根据利用数轴来表示不等式的解集的方法确定正确的答案是B.答案:B5. 不等式x≤5的正整数解有()个.A.3B.4C.5D.6分析:根据正整数的概念及不等式解集的概念可知,满足要求的数有1,2,3,4,5共5个,所以答案为C.答案:B6. 在数值-3,-2.5,0,1,123,2,4,5,8中,____________能使不等式3x<12成立.分析:把数值代入不等式,只要能够使不等式成立就可以,-3,-2.5,0,1,123,2这些数代入不等式,都能吏3x<12成立.解答:-3,-2.5,0,1,123,27. 如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a b,的不等式表示为.分析:从图形的叠放位置可以看出a与b的大小关系是a>b.解答:a>b8. 同桌的甲、乙两名同学,争论着一个问题:甲同学说:“5a>4a”,乙同学说:“这不可能”,请你评说一下两名同学的观点究竟哪个正确?为什么?举例说明.分析: 在题目中a是一个字母,它可以代替任意一个有理数,当a是负数时,5a<4a,当a=0时,5a=4a,当a是正数时,5a>4a.解答:当a是负数时,5a<4a,当a=0时,5a=4a,当当a是负数时,5a<4a,当a=0时,5a=4a,当是正数时,5a>4a.9. 在数轴上表示下列不等式的解集:(1)x≥-3.5 (2)x<-1.52-11-2-3-432-11-2-3-43(3)x≥2 (4)-1≤x<22-11-2-3-432-11-2-3-43分析: 掌握利用数轴来表示不等式的解集的方法,空心点与实心圈的区别与联系,大于与小于画线方向, x≥2根据绝对值的意义可以分为x≥2或x≤-2.解答:(1)(2)2-11-2-3-43(3)(4).10.已知x的12与3的差小于x的-12与-6的和,根据这个条件列出不等式。
七年级数学下册一元一次不等式(组)易错例题解析一元一次不等式是初中新学习的内容,不像学习的二元一次方程组,还有点基础,一元一次不等式(组)可以说是全新的开始。
在学习一元一次不等式(组)时,这七类易错点,你还再犯错吗?类型一:忽视第一个0(系数不等于0)一元一次不等式需要满足的条件:(1)只含有一个未知数;(2)未知数的最高次数等于1;(3)为不等式,即含有不等号;(4)未知数的系数不能等于0.本题中,需要再满足两个条件:|m|=1且m+1≠0,解得:m=1.这是从不等式的基本定义出发,与一元一次方程类似,一定要注意一次项前面的系数不等于0.类型二:忽视第二个0(因式不等于0)不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变。
但是在做题目时,还要注意不等式左右两边乘以(或除以)的式子能不能等于0.本题中,一个数的平方为非负数,即c^2≥0,那么左右两边同乘以的数可以等于0,因此填写的应该为“≥”。
那么第2小问与第1小问有什么区别呢?区别就在于第2小问左右两边同时除以c^2,由题意可知,既然这个不等式能够成立,那么应该默认c≠0,即此时左右两边同时除以的为正数,那么不等号方向不改变,即a>b。
类型三:去括号时符号问题去括号时,括号前如果是负号,要记得变号,这与一元一次方程中去括号一样,一定要特别注意。
比如本题,2x-3x-1>2,即-x>3,解得x<-3.类型四:去括号时系数问题去括号时,除了要注意符号问题,还需要注意系数问题,括号外面的系数要与括号里面的每一项都相乘,不能漏乘。
如果既有系数问题,又有符号问题,为了避免出错,我们可以先处理系数问题,再处理符号问题。
解:2x-(6x+2)>2,即2x-6x-2>2,化简得:-4x>4,解得:x<-1.类型五:移项时符号问题移项时也要注意符号问题,移项不会影响不等号的方向,只会改变所移项的符号,因此要注意只有在系数化为1时,才能决定改不改变不等号的方向,在移项时不能随意改变不等号方向。
第8章《一元一次不等式》易错点解析【知识导航】1、理解不等式的解,一元一次不等式的概念,学会解一元一次不等式。
2、解一元一次不等式的过程与解一元一次方程类似,不等式的变形要注意与方程的变形相对照,特别是注意不等式的性质3:当不等式两边都乘以同一个负数时,不等号要改变方向。
3、会解一元一次不等式组。
4、能根据简单的实际问题中的数量关系,列出一元一次不等式组并求解,并能根据实际意义检验解的合理性。
【易错点归纳】1、去括号时,错用乘法分配律 【例1】 解不等式()194223 x x -+错解:去括号,得:19443 x x -+,解得15- x诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项。
正解: 去括号,得:19843 x x -+,155 x -,解得3- x 2、去括号时,忽视括号前的负号 【例2】 解不等式:()61235--- x x错解:去括号,得:6365--- x x ,解得3 x诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号。
正解: 去括号,得:6365-+- x x ,9-- x ,解得:9 x 3、移项时,不改变符号【例3】 解不等式:9254--x x错解:移项,得:5925--+ x x ,即146- x ,解得37-x 诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点。
正解: 移项,得:5924+-- x x ,42- x ,所以2- x 4、去分母时,忽视分数线的括号作用 【例4】 解不等式72523 --x x 错解:去分母,得:15526 --x x , 解得:419x 诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来。
错解在去掉分母时,忽视了分数线的括号作用。
正解: 去分母,得:()14526 --x x去括号,得:14526 +-x x 解得:49x 5、不等式两边同除以负数,不改变方向 【例5】解不等式:x x 7163+-错解:移项,得:6173+- x x ,即74 x -,解得:47-x 诊断:将不等式74 x -的系数化为1时,不等式两边同除以-4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解。
错题剖析:不等式与不等式组一、去括号时,错用乘法分配律【例1】解不等式3x+2(2-4x)<19.错解: 去括号,得3x+4-4x<19,解得x>-15.诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项.正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3.二、去括号时,忽视括号前的负号【例2】解不等式5x-3(2x-1)>-6.错解: 去括号,得5x-6x-3>-6,解得x<3.诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.三、移项时,不改变符号【例3】解不等式4x-5<2x-9.错解: 移项,得4x+2x<-9-5,即6x<-14,所以诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.四、去分母时,忽视分数线的括号作用【例4】解不等式错解: 去分母,得6x-2x-5>14,解得诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,解得五、不等式两边同除以负数,不改变方向【例5】解不等式3x-6<1+7x.错解:移项,得3x-7x<1+6,即-4x<7,所以诊断:将不等式-4x<7的系数化为1时,不等式两边同除以-4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以x>【例6】 x2与a的和不是正数用不等式表示.错解及分析: x2+a<0. 对“不是正数”理解不清.x2与a的和是0或负数.正解: x2+a≤0.【例7】求不等式的非负整数解.错解及分析:整理得,3x≤16,所以故其非负整数解是1,2,3,4,5.本例的解题过程没有错误,错在对“非负整数”的理解.正解:整理得,3x≤16,所以故其非负整数解是0,1,2,3,4,5. 【例8】解不等式3-5(x-2)-4(-1+5x)<0.错解及分析:去括号,得3-x-2-4+5x<0,即4x<3,所以本题一是去括号后各项没有改变符号;二是一个数乘以一个多项式时应该把这个数和多项式的每一项相乘.正解:去括号得3-x+10+4-20x<0,即-21x<-17,所以【例9】解不等式7x-6<4x-9.错解及分析:移项,得7x+4x<-9-6,即11x<-15,所以一元一次不等式中移项和一元一次方程中的移项一样,都要改变符号.正解:移项,得7x-4x<-9+6,即3x<-3,所以x<-1.【例10】解不等式错解及分析:去分母,得3+2(2-3x)≤5(1+x).即11x≥2,所以错误的原因是在去分母时漏乘了不含分母的一项“3”.正解:去分母,得30+2(2-3x)≤5(1+x).即11x≥29,所以【例11】解不等式6x-6≤1+7x.错解及分析:移项,得6x-7x≤1+6.即-x≤7,所以x<-7.将不等式-x≤7的系数化为1时,不等式两边同除以-1,不等号没有改变方向,因此造成了错解.正解:移项,得6x-7x<1+6.即-x≤7,所以x≥-7.【例12】解关于x的不等式m(x-2)>x-2.错解: 化简,得(m-1)x>2(m-1),所以x>2.诊断: 错解默认为m-1>0,实际上m-1还可能小于或等于0.正解: 化简,得(m-1)x>2(m-1),①当m-1>0时,x>2;②当m-1<0时,x<2;③当m-1=0时,无解.【例13】解不等式(a-1)x>3.错解:系数化为1,得x>.诊断:此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该分类讨论.正解:①当a-1>0时,x>;②当a=1时,0×x>3,不等式无解;③当a-1<0时,x<.【例14】不等式组的解集为 .错解:两个不等式相加,得 x-1<0,所以x<1.诊断:这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分就是不等式组的解集,而不能用解方程组的方法来求解正解:解不等式组,得.在同一条数轴上表示出它们的解集,如图,所以不等式组的解集为:0<x<【例15】解不等式组错解:因为5x-3>4x+2,且4x+2>3x-2,所以 5x-3>3x-2.移项,得5x-3x>-2+3.解得 x>.诊断:上面的解法套用了解方程组的方法,是否正确,我们可以在x>的条件下,任取一个x的值,看是否满足不等式组.如取x=1,将它代入5x-3>4x+2,得2>6(不成立).可知x>不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集.正解:由5x-3>4x+2,得x>5.由4x+2>3x-2,得x>-4.综合x>5和x>-4,得原不等式组的解集为x>5.【例16】解不等式组错解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组的解集为2>x>3.诊断:由不等式性质可得,2>3,这是不可能的.正解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组无解.【例17】解不等式错解:去分母,得3-4x-1>9x.移项,得-4x-9x>1-3合并,得-13x>-2系数化为1,得诊断:本题忽视了分数线的双重作用,去分母时,若分子为多项式,应对其加上括号.正解:去分母,得3-(4x-1)>9x去括号,得3-4x+1>9x.移项,得-4x-9x>-1-3合并,得-13x>-4系数化为1,得【例18】若不等式组的解集为x>2,则a的取值范围是().A. a<2B. a≤2C. a>2D. a≥2错解及分析:原不等式组可分为得a<2,故选A.当a=2时,原不等式组变为解集也为x>2.正解:应为a≤2 ,故选B.【例19】解不等式组错解:②-①,得不等式组的解集为x<-13.诊断:错解中把方程组的解法套用到不等式组中.正解:由不等式2x<7+x得到x<7.由不等式3x<x-6得到x<-3.所以原不等式组的解集为x<-3.。
(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)一、选择题1.a 的一半与b 的差是负数,用不等式表示为( )A .102a b -< B .102a b -≤ C .()102a b -< D .102a b -< 【答案】D【解析】【分析】列代数式表示a 的一半与b 的差,是负数即小于0. 【详解】解:根据题意得102a b -< 故选D .【点睛】 本题考查了列不等式,首先要列出表示题中数量关系的代数式,再由不等关系列不等式.2.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.3.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.4.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有五个整数解,那么m 的取值范围为( ) A .21m -≤<-B .21m -<<C .1m <-D .2m ≥-【答案】A【解析】【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出m 的取值范围.【详解】 解:()02332x m x x ->⎧⎨-≥-⎩解不等式①,得:x m >,解不等式②,得:3x ≤,∴不等式组的解集为:3m x <≤,∵不等式组恰有五个整数解,∴整数解分别为:3、2、1、0、1-;∴m 的取值范围为21m -≤<-;【点睛】本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求出不等式组的解集,从而求出m 的取值范围.5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a 的取值范围是a <1.【详解】 解:0122x a x x -≥⎧⎨->-⎩①②, 由①得:x≥a ,由②得:x <1,∵不等式组有解,∴a <1,故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.6.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 【答案】A【解析】【分析】 根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立;D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.8.不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可. 详解:解不等式①,得:x 1<;解不等式②,得:x 3≥-;∴原不等式组的解集为:3x 1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.9.若a b <,则下列变形错误的是( )A .22a b <B .22a b +<+C .1122a b <D .22a b -<- 【答案】D【解析】【分析】根据不等式的性质解答.【详解】∵a b <,∴22a b <,故A 正确;∵a b <,∴22a b +<+,故B 正确;∵a b <,∴1122a b <,故C 正确; ∵a b <,∴2-a>2-b ,故D 错误,故选:D.【点睛】此题考查不等式的性质,熟记性质定理并运用解题是关键.10.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x >11,所以,x 的取值范围是11<x≤23.故选:C .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.若关于x 的不等式组0521x a x -⎧⎨-<⎩…的整数解只有3个,则a 的取值范围是( ) A .6≤a <7B .5≤a <6C .4<a ≤5D .5<a ≤6【答案】B【解析】【分析】根据解不等式可得,2<x ≤a ,然后根据题意只有3个整数解,可得a 的范围.【详解】解不等式x ﹣a ≤0,得:x ≤a ,解不等式5﹣2x <1,得:x >2,则不等式组的解集为2<x ≤a .∵不等式组的整数解只有3个,∴5≤a <6.故选:B .【点睛】本题主要考查不等式的解法,根据题意得出a 的取值范围是解题的关键.13.若不等式组236x x x m -<-⎧⎨<⎩无解,那么m 的取值范围是( ) A .m >2B .m <2C .m ≥2D .m ≤2 【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】解:236x x x m -<-⎧⎨<⎩②①由①得,x >2,由②得,x <m ,又因为不等式组无解,所以根据“大大小小解不了”原则,m ≤2.故选:D .【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.14.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4, 因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.15.已知关于x 的不等式4x a 3+>1的解都是不等式2x 13+>0的解,则a 的范围是( ) A .a 5=B .a 5≥C .a 5≤D .a 5< 【答案】C【解析】【分析】先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】 由413x a +>得,34a x ->, 由210,3x +> 得,1,2x >- ∵关于x 的不等式413x a +>的解都是不等式2103x +>的解, ∴3142a -≥-, 解得 5.a ≤即a 的取值范围是: 5.a ≤故选:C.【点睛】考查不等式的解析,掌握一元一次不等式的求法是解题的关键.16.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B .m ≥4C .m ≤4D .无法确定 【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可.【详解】解不等式﹣x+2<x ﹣6得:x >4,由不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,得到m≤4, 故选:C .【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误. 故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.18.如图,不等式组315215x x --⎧⎨-<⎩…的解集在数轴上表示为( ) A . B .C .D .【答案】C【解析】【分析】根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上表示出两个解集找公共部分即可.【详解】由题意可知:不等式组315215xx①②--⎧⎨-<⎩…,不等式①的解集为2x≥-,不等式②的解集为3x<,不等式组的解集为23x-≤<,在数轴上表示应为.故选C.【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.下列命题中逆命题是真命题的是()A.若a > 0,b > 0,则a·b > 0 B.对顶角相等C.内错角相等,两直线平行D.所有的直角都相等【答案】C【解析】【分析】先写出各命题的逆命题,再分别根据不等式的性质、对顶角、平行线的性质、角的概念逐项判断即可.【详解】A 、逆命题:若0a b ->,则0,0a b >>反例:2,1a b ==-时,2(1)0a b -=-->即此逆命题是假命题,此项不符题意B 、逆命题:如果两个角相等,那么这两个角是对顶角相等的角不一定是对顶角即此逆命题是假命题,此项不符题意C 、逆命题:两直线平行,内错角相等此逆命题是真命题,此项符合题意D 、逆命题:相等的角都是直角此逆命题是假命题,此项不符题意故选:C .【点睛】本题考查了不等式的性质、对顶角、平行线的性质、角的概念,熟记各性质与定义是解题关键.。
不等式(组)常见错解剖析一、易错点分析1 忽视因式为0例1 若,则.错解 因为,且,所以,故填>.剖析 上面的解法错在忽视了.当时,.正解 因为,且,所以,故应填.2 忽视系数例2 若是关于的一元一次不等式,则的取值是 .错解 由题意,得,∴. 故填.剖析 当时,,此时得到不等式2>0. 一元一次不等式应满足的条件是:1 只含有一个未知数;②未知数的最高次数是1;③是不等式.一元一次不等式的一般形式是:,在解题时切不可忽视的条件.正解 由题意,得,且,即且,∴.故应填.3 忽视移项要变号例3 解不等式.错解 移项,得,合并同类项,得 ,系数化为1,得 .剖析 移项是解不等式时的常用步骤,可以说它是不等式性质1的直接推论.但要注意移项必须变号,而上面的解法就错在移项时忘记了变号.正解 移项,得,合并同类项,得 ,系数化为1,得 .4 忽视括号前的负号例4 解不等式.错解 去括号,得,解得.剖析 错解在去括号时,没有将括号内的项全改变符号,忽视了括号前的负号.去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.正解 去括号,得,解得.5 忽视分数线的括号作用例5 解不等式.错解 去分母,得,移项,得,合并同类项,得,系数化为1,得 .剖析 分数线具有“括号”的作用,故在去分母时,分数线上面的多项式应作为一个整体,加上括号.上面的解法就错在忽视分数线的括号作用.正解 去分母,得,去括号,得,移项,得 ,合并同类项,得,系数化为1,得.6 忽视分类讨论例6 代数式与的值符号相同,则的取值范围________.错解 由题意,得,解之,得,故填.剖析 上面的解法错在忽视了对符号相同的分类讨论.由题意知,符号相同,两代数式可以均是正数,也可以均是负数,应分大于0和小于0进行探究.正解 由题意,得,解之,得,故应填.7 忽视隐含条件例7 关于的不等式组有四个整数解,求的取值范围.错解 由(1)得,由(2)得,因不等式组有四个整数解,故中的整数解有4个,即9、10、11、12,故,解得.剖析 上面的解法错在忽视隐含条件而致错,当有多个限制条件时,对不等式关系的发掘不全面,会导致未知数范围扩大,因此解决这方面的问题时一定要细心留意隐含条件.正解 由(1)得,由(2)得,因不等式组有四个整数解,故中的整数解有4个,即9、10、11、12,故,解得.8 用数轴表示解集时,忽视虚、实点例8 不等式组,并把它的解集在数轴表示出来.错解 解不等式(1),得,解不等式(2),得,原不等式组的解集 如图剖析 本题的解集没有错,错在用数轴表示解集时,忽视了虚、实点.不等式的解集在数轴上表示时,没有等号的要画虚点,有等号的要画实点.正解 解不等式(1),得,解不等式(2),得,在同一条数轴上表示不等式(1)、(2)的解集,如图2,原不等式组的解集是:图29忽视题中条件例9 有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数是多少?错解 设宿舍间数为,学生人数为,由题意,得,解得,∵是正整数 ∴ = 6,7,8……答:至少有6间宿舍.剖析错解的原因在于对题意不够理解,忽视题中的“一间宿舍不满也不空”这一条件.审清题意是解决这类问题的关键.正解 设宿舍间数为,学生人数为,由题意,得,解得,∵是正整数 ∴.答:有6间宿舍.。
初一数学下册:不等式5大易错题型答案解析一、不等式的概念,性质及解集表示1.不等式一般地,用符号'<'(或'≤')、'>'(或'≥')连接的式子叫做不等式。
能使不等式成立的未知数的值,叫做不等式的解。
2.不等式的基本性质温馨提示:不等式的性质是解不等式的重要依据,在解不等式时,应注意:在不等式的两边同时乘以(或除以)一个负数时,不等号的方向一定要改变。
3.不等式的解集及表示方法【1】不等式的解集:一般地,一个含有未知数的不等式有无数个解,其解是一个范围,这个范围就是不等式的解。
【2】不等式的解集的表示方法:①用不等式表示;②用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解。
例题解析一、今年我区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设购买甲种树苗x棵,有关甲、乙两种树苗的信息如图所示.(1)当n=500时,①根据信息填表(用含x的式子表示);树苗类型甲种树苗乙种树苗购买树苗数量(单位:棵) x购买树苗的总费用(单位:元)②如果购买甲、乙两种树苗共用去25 600元,那么甲、乙两种树苗各购买了多少棵?(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26 000元,求n的最大值.二、某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只够维持居民15年的用水量.w(1)年降水量为多少万立方米?每人年平均用水量为多少立方米?(2)政府号召节约用水,希望将水库的使用年限提高到25年,则该镇居民人均每年需节约多少立方米水才能实现目标?(3)某企业投入1 000万元设备,每天能淡化5 000 m3海水,淡化率为70%.每淡化1 m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?来源:本相关素材来源于网络,如有侵权,请联系后台删除。
七年级数学试卷一元一次不等式易错压轴解答题训练经典题目(及答案)一、一元一次不等式易错压轴解答题1.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:;等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:若,,则;若,,则;若,,则;若,,则 .(1)反之:若,则或;若,则________或________.(2)根据上述规律,求不等式的解集.(3)直接写出分式不等式的解集________.2.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)3.光华机械厂为英洁公司生产 A、B 两种产品,该机械厂由甲车间生产 A 种产品,乙车间生产 B 种产品,两车间同时生产.甲车间每天生产的 A 种产品比乙车间每天生产的 B 种产品多 2 件,甲车间 3 天生产的 A 种产品与乙车间 4 天生产的 B 种产品数量相同.(1)求甲车间每天生产多少件 A 种产品?乙车间每天生产多少件 B 种产品?(2)光华机械厂生产的A 种产品的出厂价为每件200 元,B 种产品的出厂价为每件180 元.现英洁公司需一次性购买A、B 两种产品共80 件且按出厂价购买A、B 两种产品的费用不超过 15080 元.问英洁公司购进 B 种产品至少多少件?4.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2m nx张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= ________,n= ________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q 最小,此时按三种裁法各裁标准板材多少张?5.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.6.有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.7.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?8.为了响应“绿水青山就是金山银山”的环保建设,提高企业的治污能力某大型企业准备购买A,B两种型号的污水处理设备共8台,若购买A型设备2台,B型设备3台需34万元;购买A型设备4台,B型设备2台需44万元.(1)求A,B两种型号的污水处理设备的单价各是多少?(2)已知一台A型设备一个月可处理污水220吨,B型设备一个月可处理污水190吨,若该企业每月处理的污水不低于1700吨,请你为该企业设计一种最省钱的购买方案.9.有一个边长为m+3的正方形,先将这个正方形两邻边长分别增加1和减少1,得到的长方形①的面积为S1.(1)试探究该正方形的面积S与S1的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由;(2)再将这个正方形两邻边长分别增加4和减少2,得到的长方形②的面积为S2.①试比较S1, S2的大小;②当m为正整数时,若某个图形的面积介于S1, S2之间(不包括S1, S2)且面积为整数,这样的整数值有且只有16个,求m的值.10.今年入夏以来,由于持续暴雨,某县遭受严重洪涝灾害,群众顿失家园。
(易错题精选)初中数学方程与不等式之不等式与不等式组技巧及练习题附答案解析(1)一、选择题1.不等式组14112x x -≤⎧⎪⎨+<⎪⎩解集在数轴上表示正确的是( )A .B .C .D .【答案】C 【解析】 【分析】分别解出两个一元一次不等式,再把得到的解根据原则(大于向右,小于向左,包括端点用实心,不包括端点用空心)分别在数轴上表示出来,再取两个解相交部分即可得到这个不等式组的解集. 【详解】解:对不等式14x -≤移项,即可得到不等式14x -≤的解集为3x ≥-,对不等式112x +<,先去分母得到12x +<,即解集为1x <, 把这两个解集在数轴上画出来,再取公共部分,即:31x -≤<, 解集在数轴上表示应为C. 故选C. 【点睛】本题主要考查了数轴和一元一次不等组及其解法,先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较即得到答案.2.若关于x 的不等式mx ﹣n >0的解集是x <13,则关于x 的不等式(m+n )x >n ﹣m 的解集是( )A .x <﹣12B .x >﹣12C .x <12D .x >12【答案】A【分析】根据不等式mx ﹣n >0的解集是x <13,则0m <,0n <,3m n =,即可求出不等式的解集. 【详解】解:∵关于x 的不等式mx ﹣n >0的解集是x <13, ∴0m <,0n <,3m n =, ∴0m n +<,解不等式()m n x n m >-+, ∴n mx m n-<+, ∴3132n m n n x m n n n --<==-++; 故选:A. 【点睛】本题考查了解一元一次不等式,以及不等式的性质,解题的关键是熟练掌握解不等式的方法和步骤.3.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .【答案】D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.4.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( )A .B .C .D .【答案】B 【解析】 【分析】分别解不等式组中的每一个不等式,再求解集的公共部分. 【详解】 由-x≤1,得x≥-1,则不等式组的解集为-1≤x <3. 故选:B . 【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.5.若x y >,则下列各式正确的是( ) A .0x y -< B .11x y -<- C .34x y +>+ D .xm ym >【答案】B 【解析】 【分析】根据不等式的基本性质解答即可. 【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3, 故选:B . 【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.6.不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可.详解:解不等式①,得:x1<;解不等式②,得:x3≥-;∴原不等式组的解集为:3x1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.7.不等式组213,1510 520x xx x-<⎧⎪++⎨-≥⎪⎩的解集在数轴上表示为()A.B.C.D.【答案】D【解析】【分析】分别解不等式求出不等式组的解集,由此得到答案.【详解】解213x x-<得x>-1,解151520x x++-≥得3x≤,∴不等式组的解集是13x -<≤, 故选:D. 【点睛】此题考查解不等式组,在数轴上表示不等式组的解集,正确解每个不等式是解题的关键.8.不等式组222x x >⎧⎨-≥-⎩的解集在数轴上表示为( )A .B .C .D .【答案】C 【解析】 【分析】先解不等式组,然后根据不等式组的解集判断即可. 【详解】222x x ①②>⎧⎨-≥-⎩由①,得x >1, 由②,得x ≤2,∴不等式组的解集为1<x ≤2, 故选C . 【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.9.如果不等式(2)25a x a ->-的解集是4x <,则不等式251a y ->的解集是( ).A .52y <B .25y <C .52y >D .25y >【答案】B 【解析】 【分析】根据不等式的性质得出20a -<,2542a a -=-,解得32a =,则2a=3,再解不等式251a y ->即可.【详解】解:∵不等式(a-2)x >2a-5的解集是x <4, ∴20a -<, ∴2542a a -=-,解得32a =, ∴2a=3,∴不等式2a-5y >1整理为351y ->, 解得:25y <. 故选:B . 【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.10.根据不等式的性质,下列变形正确的是( ) A .由a >b 得ac 2>bc 2B .由ac 2>bc 2得a >bC .由–12a >2得a<2 D .由2x+1>x 得x<–1【答案】B 【解析】 【分析】根据不等式的性质,逐一判定即可得出答案. 【详解】解:A 、a >b ,c=0时,ac 2=bc 2,故A 错误;B 、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B 正确;C 、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C 错误;D 、不等式两边同时加或减同一个整式,不等号的方向不变,故D 错误. 故选:B. 【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.11.不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( )A .B .C .D .【答案】C 【解析】 【分析】先分别解不等式,得到不等式组的解集,再在数轴上表示解集. 【详解】因为,不等式组10235x x +≤⎧⎨+<⎩的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C 【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.12.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C 【解析】 【分析】此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围. 【详解】解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2,由以上可得不等式组的解集为:a ﹣2<x ≤4,因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1, 解得:2≤a <3, 故选C . 【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.13.不等式组2131xx+≥-⎧⎨<⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x<1,不等式组的解集在数轴上表示如图:故选:D.【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.14.不等式组26020xx+>⎧⎨-≥⎩的解集在数轴上表示为()A .B .C .D .【答案】C【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:26020xx+>⎧⎨-≥⎩①②,由①得:3x>-;由②得:2x ≤,∴不等式组的解集为32x -<≤, 表示在数轴上,如图所示:故选:C . 【点睛】考核知识点:解不等式组.解不等式是关键.15.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B 【解析】 【分析】解关于y 的不等式组,结合解集无解,确定a 的范围,再由分式方程有负数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求所有符合条件的值之和即可. 【详解】由关于y 的不等式组,可整理得∵该不等式组解集无解, ∴2a +4≥﹣2 即a ≥﹣3 又∵得x =而关于x 的分式方程有负数解∴a ﹣4<0 ∴a <4于是﹣3≤a <4,且a 为整数 ∴a =﹣3、﹣2、﹣1、0、1、2、3 则符合条件的所有整数a 的和为0. 故选B .【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.16.如果,0a b c ><,那么下列不等式成立的是( ) A .a c b +> B .a c b c +>- C .11ac bc ->- D .()()11a c b c -<-【答案】D 【解析】 【分析】根据不等式的性质即可求出答案. 【详解】 解:∵0c <, ∴11c -<-, ∵a b >,∴()()11a c b c -<-, 故选:D . 【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.17.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( )A .m <4B .m ≥4C .m ≤4D .无法确定【答案】C 【解析】 【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可. 【详解】解不等式﹣x+2<x ﹣6得:x >4, 由不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,得到m≤4,故选:C . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.18.若m >n ,则下列不等式正确的是( ) A .m ﹣2<n ﹣2B .44m n> C .6m <6n D .﹣8m >﹣8n【答案】B【解析】【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A 、将m >n 两边都减2得:m ﹣2>n ﹣2,此选项错误;B 、将m >n 两边都除以4得:m n 44> ,此选项正确; C 、将m >n 两边都乘以6得:6m >6n ,此选项错误; D 、将m >n 两边都乘以﹣8,得:﹣8m <﹣8n ,此选项错误,故选B .【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.19.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.20.a 的一半与b 的差是负数,用不等式表示为( )A .102a b -< B .102a b -≤ C .()102a b -< D .102a b -< 【答案】D【解析】【分析】列代数式表示a 的一半与b 的差,是负数即小于0. 【详解】 解:根据题意得102a b -< 故选D .【点睛】 本题考查了列不等式,首先要列出表示题中数量关系的代数式,再由不等关系列不等式.。
不等式易错题分析(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除不等式易错题分析一、解一元二次不等式的易错题(一)、随意消项致误例题1:解不等式; 22(44)(43)0x x x x -+-+≥错解:原不等式可化为:2(2)(1)(3)0x x x ---≥解得2(2)0,(1)(3)0x x x -≥∴--≥所以31x x ≥≤或原不等式的解集为:{}|31x x x ≥≤或剖析:错误是由于随意消项造成的,事实上,当2(2)0x -=时,原不等式亦成立正解:原不等式可化为:20x -≠且(1)(3)0(2)0x x x --≥-=或解得31x x ≥≤或或x=2所以原不等式的解集为:{}31x x ≥≤x|或或x=2(二)、函数不清致误例题2:已知函数22(45)4(1)3y m m x m x =+-+-+的图像都在x 轴的下方,求实数m 的取值范围。
错解:,依题意,对,0x R y ∈>恒成立,于是函数的图像开口方向向上,且图像与x 轴无交点。
故[]2224504(1)43(45)0m m m m m ⎧+->⎪⎨∆=--+-<⎪⎩ 解得119m <<即所求m 的取值范围为119m <<剖析:题设中的函数未必时二次函数,也就是说缺少对245m m +-是否为0的讨论。
正解:当2450m m +-≠时,同上述解答有119m <<,若2450m m +-=时,则m=1或m=5若m=1,,则已知函数化为3y =,则对,0x R y ∈>恒成立;若m=5,则已知函数化为243y x =+,对,0x R y ∈>不恒成立,故此情形舍去。
所以m 的取值范围为119m ≤<(三)、漏端点致误例题3:已知集合{}{}2|20,|3A x x x B x a a =--≤=<+,且A B φ=,则实数a 的取值范围是____________错解:{}{}2|20|12A x x x x x =--≤=-≤≤若使A B φ=,需满足231a a >+<-或,解得24a a ><-或,所以实数a 的取值范围是24a a ><-或。
(易错题精选)初中数学方程与不等式之不等式与不等式组难题汇编及答案一、选择题1 .若关于x 的不等式组[上2, f 10无解,且关于y 的分式方程=2 -二匕有非正 口 6匕.u y +3 y + 3整数解,则符合条件的所有整数k 的值之和为()A. - 7B. - 12C. - 20D. - 34【答案】B 【解析】 【分析】先根据不等式组无解解出 k 的取值范围,再解分式方程得 y 」^_,根据方程有解和非正fc + 2整数解进行综合考虑 k 的取值,最后把这几个数相加即可. 【详解】• .10+2k>2+k,解得 k> — 8.解分式方程 丝二=2 一 两边同时乘y+3 y+3ky- 6=2 (y+3) - 4y,〃“口12 解得y= ------ .k + 2因为分式方程有斛,. • -------- a 3 ,即k+2w- 4,斛得kw- 6 .fc + 2又•.•分式方程的解是非正整数解,,k+2=- 1, -2, -3, -6, -12.解得 k= — 3, — 4, — 5, —8, — 14. 又「 k> — 8, 「♦k= - 3, —4, —5. 贝[f- 3-4-5= - 12. 故选:B. 【点睛】本题主要考查解不等式组、解分式方程的方法,解决此题的关键是理解不等式组无解的意 义,以及分式方程有解的情况.【答案】D 【解析】•••不等式组x-k<2x - 2k >10 无解,y+3),得2,若旧工在实数范围内有意义,则 x 的取值范围在数轴上表示正确的是(【分析】x+2>0,再解不等式即可.根据二次根式有意义的条件:被开方数为非负数可得【详解】••・二次根式、,x 2在实数范围内有意义,・•・被开方数x+2为非负数,..・x+2 四,解得:x>2.故答案选D. 【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.3.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x分钟,则列出的不等式为()A. 210x 90(18 x) 2100B. 90x 210(18 x) 2100C. 210x 90(18 x) 2.1 D, 210x 90(18 x) 2.1【答案】A【解析】设至少要跑x分钟,根据“1吩钟走的路程》210怵”可得不等式:210x+90(18二) 》2100 故选A.3x 6 04.不等式组的所有整数解的和为()4 2x 0A. 1B. 1C. 2D. 2【答案】D【解析】【分析】求出不等式组的解集,再把所有整数解相加即可. 【详解】3x 6 04 2x 03x 6 0解得x 24 2x 0解得2 x・•.不等式组的解集为2x2・•.不等式组的所有整数解为2, 1,0,1・•.不等式组的所有整数解之和为2 10 1 2故答案为: D .【点睛】本题考查了解不等式组的问题,掌握解不等式组的方法是解题的关键.5. 若 m n ,则下列不等式中成立的是 ( )A . m+a<n+bB . ma>nbC . ma 2>na 2D . a-m<a-n【答案】 D【解析】 【分析】根据不等式的性质判断. 【详解】A. 不等式两边加的数不同,错误;B. 不等式两边乘的数不同,错误;C. 当 a=0 时,错误;D.不等式两边都乘-1,不等号的方向改变,者防口a,不等号的方向不变,正确;故选 D.点睛:不等式的性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘 (或除以)同一个负数,不等号的方向改变.xm06 .关于x 的不等式组恰有五个整数解,那么 m 的取值范围为()2x 3 3 x 2A . 2 m 1B . 2 m 1C . m 1D . m 2【答案】 A【解析】 【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出 m 的取值范围.【详解】解不等式 ① ,得: x m ,解不等式 ② ,得:x 3,・ •.不等式组的解集为:m x 3, ・ . •不等式组恰有五个整数解, ・••整数解分别为:3、2、1、0、1;m 的取值范围为 2 m 1 ;故选: A .解:xm02x 3 3 x 2本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求 出不等式组的解集,从而求出m 的取值范围.x 1人7,不等式组的解集在数轴上可以表不为()x 3A.--- B -^B. I , 1AC.」Hl?-10;0 1【解析】【分析】 分别解不等式组中的每一个不等式,再求解集的公共部分. 【详解】 由-xW I 得x 川, 则不等式组的解集为-KX 3. 故选:B. 【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方 法,注意数轴的空心、实心的区别.8.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为米,列出不等式组,求出 x 的取值范围即可.解:设与墙垂直的一边的长为 x 米,根据题意得:40 3x 25,40 3x 30 …10 解得:一wx^53故选:D.D.30米,要使靠墙的边不小于25米,那么与墙垂直的一边的长度 x 的取值范围为( t*A. 0 米 x 5米B.C. 0米 x —米3D.竺米x3设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于 25U此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列 出不等式组,注意本题要用数形结合思想.2a 5y 1即可.【详解】解:「不等式(a-2). a 2 0, 2a 5 , ---- 4 , a 2.一 3 解得a 一 ,2.•-2a=3,・•.不等式2a-5y >1整理为3 5y 1 , 一 12 斛得:y 一 .5故选:B. 【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以) 同一个负数,不等号的方向改变.10.某种商品的进价为 800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A. 6折B. 7折C. 8折D. 9折【答案】B 【解析】 【详解】9.如果不等式(a2)x 2a 5的解集是 x 4 ,则不等式2a5y 1的解集是()A. yB.C.2D. y 一5根据不等式的性质得出c 2a 0,——4, 解得a2a=3,再解不等式x> 2a-5的解集是xv 4,设可打x 折,则有1200X--800 >800 X 5%10解得x>7.即最多打7 折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.11.已知x=2是不等式x 5 ax 3a 2 0的解,且x=l不是这个不等式的解,则实数a 的取值范围是( )A. a>1B. a<2C. 1<a<2D. 1< a<2【答案】 C【解析】. x=2 是不等式(x-5)(ax-3a+2) ? 0 的解,,(2- 5)(2a- 3a+2)? 0,解得:a? 2,,. x=1不是这个不等式的解,,(1-5)(a-3a+2)>0,解得:a>1,••.1<a?2,故选C.12 .关于x 的不等式4x 12 的正整数解有( )A.0 个B.1 个C.3 个D.4 个【答案】 C【解析】【分析】先解不等式求出解集,根据解集即可确定答案.【详解】解不等式4x 12 得x 3,,该不等式的正整数解有:1、2、3,故选:C.【点睛】此题考查不等式的正整数解,正确解不等式是解题的关键.x5313 .不等式组的整数解的个数是( )x 6 4x 3A.2 B.3 C.4 D.5【答案】 C【解析】先分别求出每一个不等式的解集,然后确定出不等式组的解集,最后确定整数解的个数即可.x 5 3① x 6 4x 3②‘由①得:x>-2, 由②得:x<3,所以不等式组的解集为:-2<x<3, 整数解为-1, 0, 1, 2,共4个, 故选C. 【点睛】本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的 确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大 小小无解了.2的解集在数轴上表示为2先解不等式组,然后根据不等式组的解集判断即可. 【详解】2x 2① x 2②由①,得x> 1, 由②,得x*Z・,.不等式组的解集为 1vxwz 故选C. 【点睛】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.x a, 0 ,15.若关于x 的不等式组的整数解只有3个,则a 的取值范围是()5 2x 1A. 6Qv7B. 5<a<6C. 4<a<5D. 5<a<6【答案】B 【解析】2x 14.不等式组x()根据解不等式可得,2vxQ,然后根据题意只有3个整数解,可得a的范围.【详解】解不等式x- aWQ得:x<a,解不等式5-2xv1,得:x>2,则不等式组的解集为2vxQ.•••不等式组的整数解只有3个,・•.5Qv6.故选:B.【点睛】本题主要考查不等式的解法,根据题意得出 a 的取值范围是解题的关键.16.如果a b , c 0 ,那么下列不等式成立的是()A. a c b B.a c b cC.ac 1 bc 1 D.a c 1 b c 1【答案】 D【解析】【分析】根据不等式的性质即可求出答案.【详解】解:c 0 ,c 1 1 ,. a b,..a c 1 b c 1 ,故选:D.【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.17,已知实数a(a 0), b, c满足a b c 0, 2a b 0,则下列判断正确的是().2A. c a,b24ac B.c a ,b24acC.c a,b24ac D.c a,b24ac【答案】 A【解析】【分析】由2ab 0,可得b 2a,代入a b c 0可得答案,再由b 2a得至Ub2 4a2,禾U 用已证明的基本不等式 c a ,利用不等式的基本性质可得答案.解:Q 2a b 0,b 2a, b 2 4a 2,Q a b c< 0,a 2a c< 0,c< a,Q a> 0, 4a>0,2一4a >4ac,「2、b >4ac.故选A.【点睛】本题考查的是不等式的基本性质,掌握不等式的基本性质是解题关键.6x + 218 .不等式x- 2> ------- 的解集是( )4A. xv - 5B. x>-5C. x> 5D. xv 5 【答案】A【解析】【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得. 【详解】去分母得:4x- 8>6x+2,移项、合并同类项,得:-2x> 10,系数化为1 ,得:x< - 5.故选A.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其 需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 3x 1, 519 .如图,不等式组 2x 1 5根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上 表示出两个解集找公共部分即可 .的解集在数轴上表示为(A.C.【详解】3x 1 5 ①由题意可知:不等式组,…,不等式①的解集为x 2,不等式②的解集为2x 1 5 ②2x3,在数轴上表示应为x 3 ,不等式组的解集为故选C.【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.x a 220.如果关于x的不等式组无解,则a的取值范围是()x 3a 2A. a<2B. a>2C. a>2D. a<2【答案】D【解析】【分析】由不等式组无解,利用不等式组取解集的方法确定出a的范围即可.【详解】一…… x> a 2……,•,不等式组无解,,a+2>a- 2,解得:a<2x< 3a 2故选D.【点睛】本题考查了不等式的解集,熟练掌握不等式组取解集的方法是解答本题的关键.。
(易错题精选)初中数学方程与不等式之不等式与不等式组知识点总复习附解析(1)一、选择题1.在数轴上表示不等式x <2的解集,正确的是( )A .B .C .D .【答案】A【解析】【分析】 把不等式x <2的解集在数轴上表示出来可知答案.【详解】在数轴上表示不等式x <2的解集故选:A .【点睛】本题运用了不等式的解集在数轴上的表示方法,体现了数形结合的数学思想.2.某商品的标价比成本价高%a ,根据市场需要,该商品需降价%b .为了不亏本,b 应满足( )A .b a ≤B .100100a b a ≤+C .100a b a ≤+D .100100a b a ≤- 【答案】B【解析】【分析】根据最大的降价率即是保证售价大于等于成本价,进而得出不等式即可.【详解】解:设成本为x 元,由题意可得:()()1%1%x a b x +-?,整理得:100100b ab a +?, ∴100100a b a≤+, 故选:B .【点睛】 此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.3.关于 x 的不等式组21231xx a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为()A.-2≤a<-1 B.-2<a≤-1 C.-3≤a<-2 D.-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:21231xx a-⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72,解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72,因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a<−1.故选A.【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.不等式的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】【分析】先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.故选C .【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.5.若关于x 的不等式(-1) 1m x m <-的解集为1x >,则m 的取值范围是( ) A .1m >B .1m <C .1m ≠D .1m =【答案】B【解析】【分析】根据不等式的基本性质3,两边都除以m-1后得到x >1,可知m-1<0,解之可得.【详解】∵不等式(m-1)x <m-1的解集为x >1,∴m-1<0,即m <1,故选:B .【点睛】此题考查不等式的解集,熟练掌握不等式的基本性质是解题的关键.6.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( ) A .B .C .D .【答案】B【解析】【分析】分别解不等式组中的每一个不等式,再求解集的公共部分.【详解】由-x≤1,得x≥-1,则不等式组的解集为-1≤x <3.故选:B .【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.7.如图,用长为40米的铁丝一边靠墙围成两个长方形,墙的长度为30米,要使靠墙的一边不小于25米,那么与墙垂直的一边的长度x 的取值范围为( )A .0米5x <≤米B .103x ≥米C .0米103x <≤米 D .103米5x ≤≤米 【答案】D【解析】【分析】 设与墙垂直的一边的长为x 米,根据铁丝长40米,墙的长度30米,靠墙的一边不小于25米,列出不等式组,求出x 的取值范围即可.【详解】解:设与墙垂直的一边的长为x 米,根据题意得:4032540330x x -≥⎧⎨-≤⎩, 解得:103≤x≤5; 故选:D .【点睛】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系,列出不等式组,注意本题要用数形结合思想.8.不等式26x -≥0的解集在数轴上表示正确的是( )A .B .C .D . 【答案】B【解析】【分析】先求解出不等式的解集,再表示在数轴上【详解】解不等式:2x-6≥02x≥6x≥3数轴上表示为:故选:B本题考查不等式的求解,需要注意,若不等式两边同时乘除负数,则不等号需要变号9.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.【详解】∵a﹣2b+c<0,a+2b+c=0,∴a+c=﹣2b,∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,∴b>0,∴b2﹣ac=222222a c a ac cac+++⎛⎫-=⎪⎝⎭=222242a ac c a c-+-⎛⎫= ⎪⎝⎭…,即b>0,b2﹣ac≥0,故选:C.【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac 的正负情况.10.不等式组213,151520x xx x-<⎧⎪++⎨-≥⎪⎩的解集在数轴上表示为()A.B.C.D.【答案】D【分析】分别解不等式求出不等式组的解集,由此得到答案.【详解】解213x x -<得x>-1, 解1510520x x ++-≥得3x ≤, ∴不等式组的解集是13x -<≤,故选:D.【点睛】此题考查解不等式组,在数轴上表示不等式组的解集,正确解每个不等式是解题的关键.11.不等式组10235x x +≤⎧⎨+<⎩的解集在数轴上表示为( ) A . B .C .D .【答案】C【解析】【分析】 先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235x x +≤⎧⎨+<⎩的解集是:x≤-1, 所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.12.根据不等式的性质,下列变形正确的是( )A .由a >b 得ac 2>bc 2B .由ac 2>bc 2得a >bC .由–12a >2得a<2 D .由2x+1>x 得x<–1 【答案】B【分析】根据不等式的性质,逐一判定即可得出答案.【详解】解:A 、a >b ,c=0时,ac 2=bc 2,故A 错误;B 、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B 正确;C 、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C 错误;D 、不等式两边同时加或减同一个整式,不等号的方向不变,故D 错误.故选:B.【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.13.不等式组354x x ≤⎧⎨+>⎩的最小整数解为( ) A .-1B .0C .1D .2 【答案】B【解析】【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解求最小值.【详解】解:354x x ≤⎧⎨+>⎩①② 解①得x≤3,解②得x >-1.则不等式组的解集是-1<x≤3.∴不等式组整数解是0,1,2,3,最小值是0.故选:B.【点睛】本题考查一元一次不等式组的整数解,确定x 的范围是本题的关键.14.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0m n <D .-m >-n【答案】A【解析】∵m -n >0,∴m >n (不等式的基本性质1).故选A.15.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A.﹣2 B.0 C.1 D.3【答案】B【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.16.已知4<m<5,则关于x的不等式组420x mx-<⎧⎨-<⎩的整数解共有()A.1个B.2个C.3个D.4个【答案】B【解析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解.【详解】不等式组0420x m x -<⎧⎨-<⎩①② 由①得x <m ;由②得x >2;∵m 的取值范围是4<m <5,∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个. 故选B .【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.17.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误.故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.18.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n【答案】B【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A 、将m >n 两边都减2得:m ﹣2>n ﹣2,此选项错误;B 、将m >n 两边都除以4得:m n 44> ,此选项正确; C 、将m >n 两边都乘以6得:6m >6n ,此选项错误; D 、将m >n 两边都乘以﹣8,得:﹣8m <﹣8n ,此选项错误,故选B .【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.19.已知不等式组2010x x -⎧⎨+≥⎩<,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别解不等式组中的每一个不等式,确定出各不等式解集的公共部分,进而在数轴上表示出来即可.【详解】2010x x -⎧⎨+≥⎩<①②, 解①得:x<2,解②得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式组,正确掌握解题方法以及解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.20.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ 【答案】D【解析】【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】 ∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a ≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.。
(专题精选)初中数学方程与不等式之不等式与不等式组易错题汇编及解析一、选择题1.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.2.关于 x 的不等式组21231x x a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为( )A .-2≤a <-1B .-2<a≤-1C .-3≤a <-2D .-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】 解:21231x x a -⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72, 解不等式组②,得x>a+1, 则不等式组的解集是a+1<x<72, 因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a <−1.故选A .【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.4.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.故选C .【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.5.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.8【答案】C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.6.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A .21090(18)2100x x +-≥B .90210(18)2100x x +-≤C .21090(18) 2.1x x +-≤D .21090(18) 2.1x x +->【答案】A【解析】设至少要跑x 分钟,根据“18分钟走的路程≥2100米”可得不等式:210x+90(18–x )≥2100,故选A .7.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .【答案】D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】 2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.8.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1 【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a 的取值范围是a <1.【详解】解:0122x a x x -≥⎧⎨->-⎩①②, 由①得:x≥a ,由②得:x <1,∵不等式组有解,∴a <1,故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.9.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0 【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.10.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤【答案】A【解析】【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可.【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a ,∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-3 【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P (2x-6,x-5)在第四象限,∴260{50x x ->-<,解得:3<x <5.故选:A .【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.12.在数轴上表示不等式x <2的解集,正确的是( )A .B .C .D .【答案】A【解析】【分析】把不等式x<2的解集在数轴上表示出来可知答案.【详解】在数轴上表示不等式x<2的解集故选:A.【点睛】本题运用了不等式的解集在数轴上的表示方法,体现了数形结合的数学思想.13.不等式组3433122xx x-≥⎧⎪⎨-<+⎪⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】A【解析】【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).【详解】3433122xx x-≥⎧⎪⎨-<+⎪⎩①②解①,得1x≤-解②,得5x>-所以不等式组的解集是51x-<≤-在数轴表示为故选:A【点睛】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.14.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4, 因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.15.已知实数(0)a a >,b ,c 满足0a b c ++<,20a b +=,则下列判断正确的是( ).A .c a <,24b ac >B .c a <,24b ac <C .c a >,24b ac >D .c a >,24b ac <【答案】A【解析】【分析】由20a b +=,可得2,b a =- 代入0a b c ++<可得答案,再由2b a =-得到224,b a =利用已证明的基本不等式c a <,利用不等式的基本性质可得答案.【详解】解:20,a b +=Q2,b a ∴=- 224,b a =0,a b c ++Q <20,a a c ∴-+<,c a ∴<0,a Q > 40,a ∴>244,a ac ∴>24.b ac ∴>故选A .【点睛】本题考查的是不等式的基本性质,掌握不等式的基本性质是解题关键.16.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B .m ≥4C .m ≤4D .无法确定【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可.【详解】解不等式﹣x+2<x ﹣6得:x >4, 由不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,得到m≤4, 故选:C .【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.如图,不等式组315215x x --⎧⎨-<⎩…的解集在数轴上表示为( ) A .B .C .D .【答案】C【解析】【分析】根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上表示出两个解集找公共部分即可.【详解】由题意可知:不等式组315215x x ①②--⎧⎨-<⎩…,不等式①的解集为2x ≥-,不等式②的解集为3x <,不等式组的解集为23x -≤<,在数轴上表示应为. 故选C .【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.18.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.19.已知不等式组2010x x -⎧⎨+≥⎩<,其解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别解不等式组中的每一个不等式,确定出各不等式解集的公共部分,进而在数轴上表示出来即可.【详解】2010x x -⎧⎨+≥⎩<①②, 解①得:x<2,解②得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式组,正确掌握解题方法以及解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.20.解不等式组3422133x x x -≥⎧⎪⎨+>-⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是( )A .B .C .D .【答案】D【解析】【分析】 先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解不等式①得:1x ≤-,解不等式②得:5x <,将两不等式解集表示在数轴上如下:故选:D .【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.。
(易错题精选)初中数学方程与不等式之分式方程专项训练解析附答案(1) 一、选择题1.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣34【答案】B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.2.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.【答案】B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.3.已知关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3B .m <4C .m ≤4且m ≠3D .m >5且m ≠6 【答案】A【解析】【详解】 方程两边同时乘以x -1得,1-m -(x -1)+2=0,解得x =4-m .∵x 为正数,∴4-m >0,解得m <4.∵x ≠1,∴4-m ≠1,即m ≠3.∴m 的取值范围是m <4且m ≠3.故选A .4.把分式方程11122x x x --=--,的两边同时乘以x-2,约去分母,得( ) A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-2 【答案】D【解析】【分析】本题需要注意的有两个方面:①、第二个分式的分母为2-x ,首先要化成x -2;②、等式右边的常数项不要漏乘.【详解】解: 11122x x x--=-- 11+122x x x -=-- 两边同时乘以x-2,约去分母,得1+(1-x)=x-2故选:D【点睛】本题考查解分式方程.5.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5【答案】A【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .6.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .10x -102x=20 B .102x -10x =20 C .10x -102x =13 D .102x -10x =13【答案】C【解析】【分析】 根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10x -102x =13, 故选:C .【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.7.如果关于x 的方程2430ax x +-=有两个实数根,且关于x 的分式方程233x a a x x-+=--有整数解,则 符合条件的整数a 有( )个. A .2 B .3 C .4D .5 【答案】B【解析】【分析】由一元二次方程根的判别式求得a 的取值范围,再解分式方程,利用解为整数分析得出答案.【详解】解:因为:关于x 的方程2430ax x +-=有两个实数根,所以:244(3)0a -⨯-≥,且0a ≠, 解得:43a ≥-且0a ≠, 因为:233x a a x x-+=--,所以:23x a ax a -+=-,所以:(1)22a x a -=+,当1a =时,方程无解,当1a ≠时,方程的解为224211a x a a +==+--, 因为x 为整数且3x ≠,所以1a -是4的约数,所以11,12,14,a a a -=±-=±-=±所以a 的值为:3,1,0,2,3,5--, 又因为:43a ≥-且0a ≠,1,a ≠ 3x ≠, 所以3,0,5a a a =-==不合题意舍掉,所以a 的值为:1,2,3,-.故选B .【点睛】本题考查的是一元二次方程根的判别式,分式方程的解的情况,掌握知识点并能注意到分式方程的增根是解题关键.8.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.9.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( )A .5B .4C .3D .2【答案】D【解析】【分析】 由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可.【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩, 由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2B .2C .4D .-4【答案】D【解析】【详解】 2122m x x x-=--,去分母,方程两边同时乘以(x ﹣2),得: m +2x =x ﹣2,由分母可知,分式方程的增根可能是2.当x =2时,m +4=2﹣2,m =﹣4,故选D .11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 【答案】D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.12.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.13.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a 的范围为﹣6<a <1,且a ≠﹣2,即整数a 的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a 的和是﹣13,故选C .点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( ) A .900900213x x ⨯=+- B .900900213x x =⨯+- C .900900213x x ⨯=-+ D .900900213x x =⨯-+ 【答案】A【解析】【分析】设规定时间为x 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x 天,则慢马需要的时间为(x +1)天,快马的时间为(x -3)天, ∵快马的速度是慢马的2倍 ∴900900213x x ⨯=+- 故选A .【点睛】 本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.15.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( ) A .12B .14C .16D .18【答案】C【解析】【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论.【详解】解分式方程26344axx x-+=---得:x=43a-,因为分式方程的解为正数,所以43a->0且43a-≠4,解得:a<3且a≠2,解不等式1722xa xx>⎧⎪⎨+≥-⎪⎩,得:x≤a+7,∵不等式组有解,∴a+7>1,解得:a>-6,综上,-6<a<3,且a≠2,则满足上述要求的所有整数a的绝对值的和为:|-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16,故选:C.【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a<3且a≠2是解题的关键.16.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.480x+480+20x=4 B.480x-480+4x=20 C.480x-480+20x=4 D.4804x--480x=20【答案】C【解析】【分析】根据题意列出方程即可.【详解】由题意得480 x -480+20x=4故答案为:C.【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.17.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a,若数a使关于x的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.18.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+ D .302510180(%)x x -=+ 【答案】A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .19.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x 个月,则根据题意可列方程中错误的是( )A .3212x x +=- B .32212x x x ++=- C .3+2212x x +=-D .3112()12x x x ++=- 【答案】A【解析】【分析】设甲队单独完成全部工程需x 个月,则乙队单独完成全部工程需要(x -2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x 个月,则乙队单独完成全部工程需要(x -2)个月,根据题意,得:5212x x +=-; A 、3212x x +=-,与上述方程不符,所以本选项符合题意; B 、32212x x x ++=-可变形为5212x x +=-,所以本选项不符合题意; C 、3+2212x x +=-可变形为5212x x +=-,所以本选项不符合题意;D、3112()12x x x++=-的左边化简得5212x x+=-,所以本选项不符合题意.故选:A.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.20.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是()A.405012x x=-B.405012x x=-C.405012x x=+D.405012x x=+【答案】B【解析】试题解析:设乙车的速度为x千米/小时,则甲车的速度为(x-12)千米/小时,由题意得,405012x x=-.故选B.。
2020-2021七年级数学试卷一元一次不等式易错压轴解答题训练经典题目(含答案)一、一元一次不等式易错压轴解答题1.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.2.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:;等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:若,,则;若,,则;若,,则;若,,则 .(1)反之:若,则或;若,则________或________.(2)根据上述规律,求不等式的解集.(3)直接写出分式不等式的解集________.3.先阅读理解下面的例题,再按要求解答:例题:解不等式(x+5)(x-5)>0解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得x>5,解不等式组②得x<-5,所以不等式的解集为x>5或x<-5。
(1)求不等式x²-2x-3<0的解集。
(2)求不等式的解集。
4.某机器人公司为扩大经营,决定购进 6 台机器用于生产某种小机器人.现有甲、乙两种机器供选择,其中每台机器的价格和日生产量如下表所示.经过预算,本次购买机器的费用不能超过 34 万元.甲种机器乙种机器价格/(万元/台)57每台机器的日生产量/个60100(2)若该公司购进的6台机器的日生产量不能少于380个,那么为了节约资金,应选择哪种购买方案?5.某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A种笔记本买20本,8本笔记本买30本,则钱还缺40元;若A种笔记本买30本,B种笔记本买20本,则钱恰好用完.(1)求A,B两种笔记本的单价.(2)由于实际需要,需要增加购买单价为6元的C种笔记本若干本.若购买A,B,C三种笔记本共60本,钱恰好全部用完.任意两种笔记本之间的数量相差小于15本,则C种笔记本购买了________本.(直接写出答案)6.为了让孩子们了解更多的海洋文化知识,市海洋局购买了一批有关海洋文化知识的科普书籍和绘本故事书籍捐赠给市里的几所中小学校.经了解,以两类书的平均单价计算,30本科普书籍和50本绘本故事书籍共需2100元;20本科普书籍比10本绘本故事书籍多100元.(1)求平均每本科普书籍和绘本故事书籍各是多少元.(2)计划每所学校捐赠书籍数目和总费用相同.其中每所学校的科普书籍大于115本,科普书籍比绘本故事书籍多30本,总费用不超过5000元,请求出所有符合条件的购书方案. 7.为响应党中央“下好一盘棋,共护一江水”的号召,某治污公司决定购买甲、乙两种型号的污水处理设备共10台.经调查发现:购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元,且一台甲型设备每月可处理污水240吨,一台乙型设备每月可处理污水200吨.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少万元?(2)若治污公司购买污水处理设备的资金不超过109万元,月处理污水量不低于2080吨.①求该治污公司有几种购买方案;②如果为了节约资金,请为该公司设计一种最省钱的购买方案.8.某风景区票价如下表所示:人数/人1~4041~8080以上价格/元/人150130120有甲、乙两个旅行团队共计100人,计划到该景点游玩.已知乙队多于甲队人数的,但不超过甲队人数的,且甲、乙两队分别购票共需13600元(1)试通过计算判断,甲、乙两队购票的单价分别是多少?(2)求甲、乙两队分别有多少人?(3)暑期将至,该风景区计划对门票价格做如下调整:人数不超过40人时,门票价格不变;人数超过40人但不超过80人时,每张门票降价a元;人数超过80人时,每张门票降价2a元,其中a>0.若甲、乙两队联合购票比分别购票最多可节约2250元,直接写出a 的取值范围9.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备每台的价格;(2)该公司经决定购买甲型设备不少于3台,预算购买节省能源的新设备资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备每月的产量为240吨,乙型设备每月的产量为180吨.若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.10.某商店需要购进甲、乙两种商品共180件其进价和售价如表:(注:获利=售价进价)(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.某工厂计划生产A、B两种产品共10件,其生产成本和利润如下表:(1)若工厂计划获利14万元,问A、B两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)条件下,哪种方案获利最大?并求最大利润.12.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:A型号客车B型号客车载客量(人/辆)4530租金(元/辆)60045010辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.【参考答案】***试卷处理标记,请不要删除一、一元一次不等式易错压轴解答题1.(1)③(2)解:解不等式3x-6>4-x,得: x > 52 ,解不等式x-1≥4x-10,得:x≤3,则不等式组的解集为 52 <x≤3,解:2x-k=2,得:x=解析:(1)③(2)解:解不等式3x-6>4-x,得:>,解不等式x-1≥4x-10,得:x≤3,则不等式组的解集为<x≤3,解:2x-k=2,得:x= ,∴<≤3,<,解得:3<k≤4;(3)解:解方程:2x+4=0得,解方程:得:,解关于x的不等式组当<时,不等式组为:,此时不等式组的解集为:>,不符合题意,所以:>所以得不等式的解集为:m-5≤x<1,∵2x+4=0,都是关于x的不等式组的“子方程”,∴,解得:2<m≤3.【解析】【解答】解:(1)解方程:3x-1=0得:解方程:得:,解方程:得:x=3,解不等式组:得:2<x≤5,所以不等式组的“子方程”是③.故答案为:③;【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其解集,解方程求出x= ,根据“子方城”的定义列出关于k的不等式组,解之可得;(3)先求出方程的解和不等式组的解集,分<与>讨论,即可得出答案. 2.(1){a>0b<0;{a<0b>0(2)解:∵不等式大于0,∴分子分母同号,故有:{x-2>0x+1>0 或 {x-2<0x+1<0解不等式组得到: x>2 或 .故答案为: x解析:(1);(2)解:∵不等式大于0,∴分子分母同号,故有:或解不等式组得到:或 .故答案为:或 .(3)或【解析】【解答】解:(1)若,则分子分母异号,故或故答案为:或;( 3 )由题意知,不等式的分子为是个正数,故比较两个分母大小即可.情况①:时,即时,,解得: .情况②:时,即时,,解得: .情况③:时,此时无解.故答案为:或 .【分析】(1)根据有理数的运算法则,两数相除,同号得正,异号得负即可解答;(2)根据不等式大于0得到分子分母同号,再分类讨论即可;(3)观察不等式后,发现分子相同且为正数,故只需要比较分母,再对分母的正负性进行分类讨论即可.3.(1)解:x2﹣2x﹣3<0,即(x﹣3)(x+1)<0,则 {x-3<0x+1>0 或 {x-3>0x+1<0 ,解得﹣1<x<3或无解故一元二次不等式x2﹣2x﹣3<0的解集为﹣1<x解析:(1)解:x2﹣2x﹣3<0,即(x﹣3)(x+1)<0,则或,解得﹣1<x<3或无解故一元二次不等式x2﹣2x﹣3<0的解集为﹣1<x<3.(2)解:由<0可得:① 或② ,解不等式组①,得不等式组①无解;解不等式组②,得﹣2<x<,所以不等式<0的解集为﹣2<x< .【解析】【分析】(1)首先要理解例题给出的有理数的乘法法则“两数相乘,同号得正”得到两组不同的不等式组,然后再解不等式组得到不等式的解集,所以x²-2x-3对这个式子因式分解即(x﹣3)(x+1),从而得到两个不等式组或,求出不等式组的解集.(2)跟(1)同理可以得到①或②,这两个不等式组,求出这两个不等式组的解集.4.(1)解:设购买甲种机器x台,则购买乙种机器(6-x)台,依题意得5x+7(6-x)≤34,解得x≥4(3分).∵6-x≥0,∴x≤6,∴x取4或5或6,从而该公司有三种购买方案:①甲种机器解析:(1)解:设购买甲种机器x台,则购买乙种机器(6-x)台,依题意得5x+7(6-x)≤34,解得x≥4(3分).∵6-x≥0,∴x≤6,∴x取4或5或6,从而该公司有三种购买方案:①甲种机器4台,乙种机器2台;②甲种机器5台,乙种机器1台;③甲种机器6台(2)解:依题意得:60x+100(6-x)≥380,解得由(1)知∴从而x取4或5当 x=4 时,购买资金为 5×4+7×2=34(万元)当 x=5 时,购买资金为 5×5+7×1=32(万元),所以应选择的购买方案是甲种机器5台,乙种机器1台【解析】【分析】(1)设购买甲种机器x台,则购买乙种机器(6-x)台,根据购买甲种机器的钱数+购买乙种机器的钱数不能超过34 万元列出不等式,求解就可以求出x的范围;(2)根据甲种机器生产的零件数+乙种机器生产的零件数不能少于380个列出不等式,求解得出x的取值范围,结合(1)求出满足条件的x的正整数,分别计算出每种方案的需要资金,从而选择出合适的方案.5.(1)解:设A笔记本的单价为每本x元,B笔记本的单价为每本y元,根据题意得20x+30y=480+4030x+20y=480整理得解之:x=8y=12答:A笔记本的单价为8元,B笔记本解析:(1)解:设A笔记本的单价为每本x元,B笔记本的单价为每本y元,根据题意得整理得解之:答:A笔记本的单价为8元,B笔记本的单价为12元.(2)24本或26本或28本【解析】【解答】解:(2)设购买A笔记本a本,B笔记本b本,则C笔记本(60-a-b)本,8a+12b+6(60-a-b)=480整理得:a+3b=60∴a=60-3b则60-a-b=60-(60-3b)-b=2b,∵任意两种笔记本之间的数量相差小于15本,∴即解之:∵b为整数∴b=12,13,14∴A笔记本24本,B笔记本12本,C笔记本24本;或A笔记本21本,B笔记本13本,C笔记本26本;或A笔记本18本,B笔记本14本,C笔记本28本;∴C种笔记本购买了24本或26本或28本故答案为:24本或26本或28本.【分析】(1)由题意可知等量关系为:20×A笔记本的单价+30×B笔记本的单价=480+40;30×A笔记本的单价+20×B笔记本的单价=480,设未知数,列方程组求解即可。
惠州市七年级数学试卷一元一次不等式易错压轴解答题练习题(含答案)一、一元一次不等式易错压轴解答题1.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元. (1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?2.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.3.宜宾某商店决定购进A.B两种纪念品.购进A种纪念品7件,B种纪念品2件和购进A种纪念品5件,B种纪念品6件均需80元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店共有几种进货方案?(3)已知商家出售一件A种纪念品可获利a元,出售一件B种纪念品可获利(5﹣a)元,试问在(2)的条件下,商家采用哪种方案可获利最多?(商家出售的纪念品均不低于成本价)4.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m= ________,n= ________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q 最小,此时按三种裁法各裁标准板材多少张?5.先阅读理解下面的例题,再按要求解答:例题:解不等式(x+5)(x-5)>0解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得x>5,解不等式组②得x<-5,所以不等式的解集为x>5或x<-5。
大庆市七年级数学试卷一元一次不等式易错压轴解答题精选附答案一、一元一次不等式易错压轴解答题1.自治区发展和改革委员会在2019年11月印发《广西壮族自治区新能源汽车推广应用攻坚行动方案》,力争到2020年底,全区新能源汽车保有量比攻坚行动前增长100%,达到14.6万辆以上.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元. (1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车至少购买1辆,购车费不少于130万元,则有哪几种购车方案?2.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.3.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:;等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:若,,则;若,,则;若,,则;若,,则 .(1)反之:若,则或;若,则________或________.(2)根据上述规律,求不等式的解集.(3)直接写出分式不等式的解集________.4.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元。
(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机? 5.某机器人公司为扩大经营,决定购进 6 台机器用于生产某种小机器人.现有甲、乙两种机器供选择,其中每台机器的价格和日生产量如下表所示.经过预算,本次购买机器的费用不能超过 34 万元.甲种机器乙种机器价格/(万元/台)57每台机器的日生产量/个60100(2)若该公司购进的6台机器的日生产量不能少于380个,那么为了节约资金,应选择哪种购买方案?6.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500部分500以上~15001500以上~2500部分2500以上部分价格补贴零售价的95%零售价的85%零售价的75%零售价的70%(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:①能否举例说明A店买的多反而便宜?②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;注:不同的单价,补贴价格也不同;只需提前算好即可填下表:数量范围(千克)0~500部分500以上~15001500以上~25002500以上部分价格补贴0元300▲▲7.为了让孩子们了解更多的海洋文化知识,市海洋局购买了一批有关海洋文化知识的科普书籍和绘本故事书籍捐赠给市里的几所中小学校.经了解,以两类书的平均单价计算,30本科普书籍和50本绘本故事书籍共需2100元;20本科普书籍比10本绘本故事书籍多100元.(1)求平均每本科普书籍和绘本故事书籍各是多少元.(2)计划每所学校捐赠书籍数目和总费用相同.其中每所学校的科普书籍大于115本,科普书籍比绘本故事书籍多30本,总费用不超过5000元,请求出所有符合条件的购书方案. 8.某小区准备新建60 个停车位,以解决小区停车难的问题。
常州市七年级数学试卷一元一次不等式易错压轴解答题试题(附答案)一、一元一次不等式易错压轴解答题1.已知一件文化衫价格为28元,一个书包的价格比一件文化衫价格的2倍少6元. (1)求一个书包的价格是多少元?(2)“同一蓝天”爱心社出资3000元,拿出不少于400元但不超过500元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?2.某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?3.自治区发展和改革委员会在2019年11月印发《广西壮族自治区新能源汽车推广应用攻坚行动方案》,力争到2020年底,全区新能源汽车保有量比攻坚行动前增长100%,达到14.6万辆以上.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出2辆A型车和1辆B型车,销售额为62万元;本周已售出3辆A型车和2辆B型车,销售额为106万元. (1)求每辆A型车和B型车的售价各为多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车至少购买1辆,购车费不少于130万元,则有哪几种购车方案?4.对非负实数x“四舍五入”到个位的值记作<x>,即:当n为非负整数时,若n-≤x<n+,则<x>=n.如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,….(1)填空:①<π>=________;②如果<2x-1>=3,则实数x的取值范围为________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>= x的所有非负实数x的值.5.先阅读理解下面的例题,再按要求解答:例题:解不等式(x+5)(x-5)>0解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得x>5,解不等式组②得x<-5,所以不等式的解集为x>5或x<-5。
初一不等式经典易错题解析
初一不等式经典易错题解析
初一学生在学习不等式时,难免会遇到一些经典易错题,这在一定程度上也给学习带来了一些困扰。
在本文中,我们将对初一不等式中一些经典易错题进行解析,希望对同学们的学习有所帮助。
一、乘方不等式易错点
在不等式中,乘方往往是初一学生们考试时经常遇到的问题,其中特别容易发生的错误包括:
1. 未进行“正负性”分析
乘方在不等式中的作用是使变量的取值范围变广,但我们必须检查其“正负性”,否则就会出现错误的答案。
比如,当我们遇到以下不等式时:
(1)x^2-6x+5>0
(2)x^2+6x+5>0
根据情况,我们可以把这两个不等式转化为因式分解的形式。
对于第一个式子,我们可以得到x在0到5之外或者在1到正无穷之间;而对于第二个式子,我们可以得到x在正无穷到-1或者在-5到正无穷之外。
在情况(1)中,我们需要特别注意的是,当x在1到5之间时,式子的取值就会变为负数,因此其“正负性”分析对于解题至关重要。
2. 公因数舍去的问题
在乘方问题中,如果变量被约分后就会导致解题出现偏差。
例如:对于以下不等式而言:
(3)2x^2+3x-2<0
当我们对其进行因式分解,会得到2(x+1)(x-2)<0,但我们需要注意,当x=-1时,x+1=0,此时2(x+1)(x-2)的分子是0,不符合数学逻辑规律,我们需要忽略掉这种情况。
因此,正确的解题思路应该是用区间法将不等式的解空间分为三段,分别为x<-1、-1<x<2、2<x。
二、加减不等式易错点
在初一不等式题型中,加减不等式也经常出现。
在处理这类问题中,需要注意以下问题:
1. 未进行化简,直接求解
很多时候,初一学生在解加减不等式时直接将式子简化,导致解题出现了较大偏差。
事实上,在处理不等式问题时,我们需要把含有常数的项先整合。
例如:对于以下不等式而言:
(4)2x+1<3x-4
如果我们直接拆方程,化简后得到x>5,但这种做法是错误的,因为我们在拆方程之前必须将常数加起来,然后再消元,即:
(5)-x<-5
x>5
因此,式子的解空间是x>5。
2. 符号未翻转
在加减不等式中,符号的翻转是容易出错的问题之一。
例如:对于以下不等式而言:
(6)x-4<7-x
如果我们直接计算式子,会得出x<11/2,但实际上,我们需要交换符号,即:
(7)2x<11
x<11/2
因此,式子的解空间是x<11/2。
三、绝对值不等式易错点
在初一不等式中,绝对值问题也是一个常见的题型。
但在处理绝对值问题时,同学们容易犯以下错误:
1. 跳步过程中没有分情况讨论
很多同学在化简绝对值式子后,会忘记进行情况分析。
例如:对于以下不等式而言:
(8)|x-3|<|x+2|
如果我们直接拆绝对值取符号,得到以下结果:
(9) x-3<x+2 且 x-3>-x-2
很多同学容易忘记:当x小于-2时,左侧变量要加绝对值号,即:(x-3)<0 。
因此正确的情况分析应该是:
当x≥3时,式子等价于x-3<x+2 且 x-3<x+2,解得x>3,即解空间为x>3。
当-2<x<3时,式子等价于x-3<-x-2 且 x-3<x+2,解得-2<x<3,即解空间为-2<x<3。
当
x≤-2时,式子等价于x-3<-x-2 且 -(x-3)<x+2,解得
x<-1,即解空间为x<-1。
2. 解答时忽略了取绝对值
不同于一般的加减乘除等基础数学运算,绝对值操作需要在求解前或中进行转换,而不是简单地在最后计算。
其中一个错误的例子是:
(10)|x-3|+5<x+2
很多同学在计算时,因为加号的存在而没有注意到x-3应该被转化成绝对值形式。
正确的解题方法是把x-3变成绝对值,得到:
(11)|x-3|+5<|x|+2
然后,我们把绝对值分为正负两种情况进行讨论:
1. 当x≥0时,式子等价于 x-3+5<x+2,解得x>6,即解空间为x>6;
2. 当x<0时,式子等价于 -x+3+5<-
x+2,解得x<4/3,即解空间为x<4/3。
综合两种情况,得到式子的全部解空间为x<4/3或x>6。
综上所述,初一不等式题目中的经典易错点有很多,但大多都是源于同学们在求解中没有仔细分析,或未注意
特殊符号的转换。
当然,误解或错误也是难免的,只有经过不断复习和实践才能最终掌握和运用好这些知识,在今后的数学学习和生活中都能更好地运用不等式知识。