08-第八章-长方体的再认识-六年级(下)-知识点汇总-沪教版
- 格式:docx
- 大小:17.28 KB
- 文档页数:1
第八章 长方体的再认识 第二课时一、概念1、 长方体的元素:六个面、八个顶点、十二条棱2、 长方体的三元素的特点:(主要是外观特征和数量关系)①长方体的每个面都是长方形;②长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
③长方体的六个面可以分为三组,每组中的两个面形状大小都相同。
3、 正方体是特殊的长方体。
4、 平面是平的,无边无沿,没有厚度和大小,一般用平行四边形来表示。
记作:平面ABCD 或平面α。
5、 将水平放置的平面画成一边是水平位置,另一边与水平线成45度角的平行四边形。
6、 斜二侧画法画长方体时要注意:宽画成标注尺寸的一半;看不到的线画成虚线;要标字母和尺寸,要写结论。
长方体ABCD-EFGH 、平面ABCD 、棱AB 、顶点A 。
7、 空间中两直线的位置关系有三种:相交、平行、异面① 如果两条直线在同一平面内,有唯一公共点,称这两条直线的位置关系是相交; ② 如果两条直线在同一平面内,没有唯一公共点,称这两条直线的位置关系是平行; ③ 如果两条直线既不平行也不相交,称这两条直线的位置关系是异面。
8、 直线垂直于平面记作:直线PQ ⊥平面ABCD ;直线平行于平面记作:直线PQ ∥平面ABCD 。
9、 计算公式之一:(三条棱长分别是a 、b 、c 的长方体)① 棱长和 = 4()a b c ++ ; ② 体积 = abc ;③ 表面积 = 2()ab bc ac ++ ; ④ 无盖表面积 = S ab -、S bc -、S bc - 10、计算公式之二:(边长是a 正方体)① 棱长和= 12a ;②体积= 3a ;③表面积= 26a ;④无盖表面积 =25a 。
11、长方体不一定是正方体;正方体一定是长方体。
12、长方体中棱与棱的位置关系有3种,分别是平行、相交、异面。
13、长方体中棱与面的位置关系有2种,分别是:平行、垂直。
14、长方体中面与面的位置关系有2种,分别是:平行、垂直。
长方体的再认识知识精要一、长方体的再认识1、长方体的特征。
(1)长方体有6个面,8个顶点,12条棱。
(2)长方体的每个面都是长方形。
(3)长方体的12条棱可以分为三组,每组中四条棱的长度都相等。
(4)长方体的6个面可分为3组,每组中相对的两个面的形状和大小均相同。
2、长方体的直观图画法长方体的直观图有多种画法,通常我们采用斜二侧画法: 水平放置的长方体直观图通常的画法的基本步骤:(4)(3)(2)(1)GHFCGHFCGHFCCDDDEEE3、长方体棱与棱的位置关系二、长方体中棱与平面的位置关系1、直线PQ 垂直于平面ABCD ,记作:直线ABCD PQ 平面⊥,读作:直线PQ 垂直于平面ABCD 。
2、检验直线与平面垂直的方法:(1)铅垂线法:只能用于检验直线与水平面是否垂直; (2)三角尺法:可以检验一般的直线与平面是否垂直; (3)合页型法:可以检验一般的直线与平面是否垂直;3、直线PQ 平行于平面ABCD ,记作:直线ABCD PQ 平面//,读作:直线PQ 平行于平面ABCD 。
4、检验直线与平面平行的方法:(1) 铅垂线法:从被测直线的两个不同的点放下铅垂线,使铅垂线的下端刚好接触地面。
如果从这两个不同点到铅垂线的下端的线段的长度相等,那么说明被测直线平行于水平面。
(2) 长方形纸片法:将长方形纸片的一边贴合于已知平面,另一边靠近被测直线,如果另一边能够紧贴被测直线,则说明被测直线平行于已知平面。
三、长方体中平面与平面的位置关系1、平面α垂直于平面β,记作:βα平面平面⊥,读作:平面α垂直于平面β。
2、检验平面与平面垂直的方法:(1)铅垂线法,(2)三角尺法;(3) 合页型折纸法。
3、平面α平行于平面β,记作:βα平面平面//,读作:平面α平行于平面β。
4、检验平面与平面平行的方法:长方形纸片法:将长方形纸片的一边贴合于已知平面,按交叉的方向分两次放在两个平面之中,如果另一边能够紧贴被测平面,则说明被测平面平行于已知平面。
六年级数学第二学期第八章长方体的再认识必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、防控疫情必须勤洗手、戴口罩,讲究个人卫生.如图是一个正方体展开图,现将其围成一个正方体后,则与“手”相对的是()A.勤B.口C.戴D.罩2、如图,是一个正方体纸盒的平面展开图,则写有“为”字的面所对的面上的是()A.汉B.!C.武D.加3、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“中”字所在面相对的面上的汉字是()A.梦B.聚C.力D.凝4、若要使图中的平面展开图折叠成正方体后,相对面上两个数之和为6,则y x ()A.625 B.64 C.125 D.2435、如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为( )A.圆锥,正方体,三棱锥,圆柱B.正方体,圆锥,四棱锥,圆柱C.正方体,圆锥,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱6、在“爱国、爱党”主题班会上,小颖特别制作了一个正方体玩具,其表面展开图如图所示,则原正方体中与“有”字相对的字是()A.少B.年C.强D.国7、如图所示的几何体的主视图为()A.B.C.D.8、下列几何体的俯视图中,其中一个与其他三个不同,该几何体是()A.B.C.D.9、如图,一个圆柱体被截去一部分,则该几何体的主视图是()A.B.C.D.10、下面图形是由4个完全相同的小立方体组成的,它的左视图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示是一个正方体的展开图,在原正方体中与平面1平行的面是______,与平面5垂直的平面是_______.2、如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为2cm.3、把一个长方体截成两个长方体后,棱的数量增加了__________条.4、将图沿线折成一个立方体,它的共顶点的三个面上的数字之积的最大值是__.5、观察一个长方体最多能看到它的________个面.三、解答题(5小题,每小题10分,共计50分)1、如图,是由五个相同的小正方体搭成的几何体,分别画出从正面、左面、上面看到的形状图.2、如图所示,在长方体ABCD EFGH中,写出所有互相平行的平面.3、如图是由9个相同的小立方体组成的一个几何体.(1)画出从正面看、左面看、上面看的形状图;(2)现量得小立方体的棱长为2cm,现要给该几何体表面涂色(不含底面),则涂上颜色部分的总面积是.4、如图所示的平面图形绕轴旋转一周,可以得出下面相对应的立体图形,把有对应关系的平面图形与立体图形连接起来.5、十九世纪中叶,诞生了一个新的几何学分支⋯“拓扑学(又称‘位置解析’)”.它所研究的是几何图形这样一些最基本的、最深刻的性质:图形经受剧烈的变形,以致所有度量性质和射影性质都失去之后,这些性质仍然存在.数学家们找到若干个令人叹为观止的实例,例如著名的Mobius带、Klein瓶⋯⋯请看如图,你能否将正方形图中上方的小方块与下方的对应的小方块用平面内不相交的实线连起来,且要求连线只能在该正方形内部的空白处.-参考答案-一、单选题1、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:勤的对面是戴;洗的对面是口;手的对面是罩;故选:D.【点睛】本题考查正方体相对两面上的字,掌握正方体的表面展开图的特征是正确判断的前提.2、B【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到写有“为”字的对面是什么字.【详解】解:结合展开图可知,“武”和“加”相对,“汉”和“油”相对,“为” 和“!”相对.故选:B.【点睛】本题考查灵活运用正方体的相对面解答问题,知道相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,是解题关键.3、D【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体的表面展开图的特点可知,“中”与“凝”是对面,“国”与“聚”是对面,“梦”与“力”是对面,故选:D.【点睛】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的前提.4、C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点可得答案.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,1与x 是相对面, 3与y 是相对面,∵相对面上两个数之和为6,∴x=5,y=3,∴35125,y x ==故选:.C【点睛】本题主要考查了正方体相对两个面上的文字或数字,注意正方体是空间图形,掌握“正方体的表面展开图,相对的面之间一定相隔一个正方形.”是解题的关键.5、D【分析】根据常见几何体的平面展开图判断即可.【详解】解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D .【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.6、B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“有”与“年”相对,“强”与“少”相对,“我”与“国”相对,故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7、A【分析】根据主视图是从物体的正面看得到的视图即可求解.【详解】解:主视图如下故选:A.【点睛】本题考查简单组合体的三视图,掌握三视图的画法是正确判断的前提.8、C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:选项A、B、D的俯视图是不带圆心的圆,选项C的俯视图是带圆心的圆,故选:C.【点睛】此题主要考查三视图,解题的关键是熟知俯视图的定义.9、C【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是一个的矩形少了一个角,如图所示:,故选:C.【点睛】本题考查了三视图,解题关键是树立空间观念,准确识图,注意:看见的棱是实线.10、A【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【详解】解:从左面看得到的图形是:.故选:A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解题关键是明确左视图的意义,树立空间观念,准确识图.二、填空题1、平面3 平面1、2、3、4【分析】根据正方体中与平面1平行的面是与平面1相对的面,和平面5相交的面与平面5垂直.根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与平面1平行的面是与平面1相对的面,所以与平面1平行的面是:平面3在正方体中和平面5相交的面与平面5垂直所以与平面5垂直的平面是:平面1、2、3、4故答案为:平面3,平面1、2、3、4,【点睛】本题主要考查了正方体的展开图认识立体图形的知识,属于基础题,解答本题的关键是掌握长方体的特点,从相对面和邻面入手,分析及解答问题.2、36【分析】正六角螺母侧面为6个相同的长方形,求出每个长方形的面积,即可得出它的侧面积.【详解】2×3=6cm2,6×6=36cm2.故答案为:36.【点睛】本题主要考查正六棱柱的三视图,将三视图上边的长度转化为正六棱柱对应边的长度是解题关键.3、12【分析】把一个长方体截成两个长方体之后,棱长个数从一个长方体的棱长个数变成两个长方体的棱长个数.【详解】一个长方体棱长个数是12,截成两个之后棱长个数变成24,所以增加了12条.故答案是:12.【点睛】本题考查长方体棱的性质,解题的关键是熟悉长方体棱的个数.4、90【分析】由题意可得,共顶点的三个数字的积最大时,为6×3×5,本题得以解决.【详解】由题意可得,6×3×5=90,故答案为:90.【点睛】本题考查展开图折叠成几何体、有理数的乘法,解答本题的关键是明确题意,找出所求问题需要的条件.5、3【分析】根据从不同方向看物体进行判断即可;【详解】由分析可知,从一个位置观察长方体最多能看到它3个面;故答案是3.【点睛】本题主要考查了从不同方向观察物体和几何体,准确判断是解题的关键.三、解答题1、见解析【分析】根据三视图的定义及其分布情况作图可得.【详解】从正面看:从左面看:从上面看:【点睛】本题主要考查作图-三视图,解题的关键是熟练掌握三视图的定义.2、互相平行的平面有:面ABCD与面EFCH、面ADHE与面BCGF、面ABFE与面DCGH【分析】根据长方体的特征相对面平行,进行解答即可.【详解】面ABCD与面EFCH、面ADHE与面BCGF、面ABFE与面DCGH【点睛】本题主要考查长方体的特征,熟练掌握棱与面的位置关系:12条棱分为互相平行的3组,每组4条棱的长度相等,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等.3、 (1) 见解析;(2) 120cm2【分析】(1) 根据三视图的概念作图可得;(2)数出每个小正方体所需要涂色的面的个数,再求和即需要涂颜色的面的总数,然后计算出总面积即可.【详解】解:(1)该几何体的三视图如下从正面看从左面看从上面看(2) 涂上颜色部分的总面积:2×2×(6×2+6×2+5+1)=120(cm2).【点睛】此题主要考查了作图,以及求几何体的表面积,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.4、见解析【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.【详解】解:连线如下:【点睛】本题考查了“面动成体”的原理,注意培养自己的空间想象能力.5、见解析【分析】根据题意用平面内不相交的实线连起来,且要求连线只能在该正方形内部的空白处即可求解.【详解】解:如图所示:或【点睛】本题考查了数学常识,关键是根据题意要求连线.。
沪教版六年级教案第八章8.1 长方体的元素 【学习目标/难点重点】1.认识长方体,掌握长方体的特征,初步学会看立体图形,2.认识并理解长方体的各个构成元素及之间的联系. 【学习过程】 一、课前复习1.问题1:下列图形是我们以前学过的哪些几何图形? 二、新课学习1.观察长方体,思考下列问题:1)长方体有几个面?是什么形状?相对的两个面有什么特点?2)数一数长方体有多少条棱.相对的棱长短怎样? 3)3条棱相交的点叫做顶点.数一数长方体有几个顶点. 2.长方体的元素的性质: 1)长方体的每个面都是:;2)长方体的条棱可以分为组,每组中的条棱的长度都; 3)长方体的个面可以分为组,每组中的个面的和都.3.长方体的相关量的计算,设长方体的长、宽、高分别为:a 、b 、h 1)长方体的表面积的计算: 2)长方体的体积的计算: 3)长方体的棱长和:4.初步认识长方体的立体图.1)从不同角度进行观察,最多能看到它的几个面?2)思考:如果长方体摆放的位置不同,画出的立体图一样吗? 5.练习1:判断题(对的打“√”,错的打“×”)1)长方体的每个面都是长方形. ( ) 2)长方体有十二条棱. ( )ab h3)六个面、十二条棱和八个顶点组成的图形都是长方体. ( ) 4)长方体相对的两个面的面积都相等. ( ) 6.练习2:小明想用一根长度为250厘米的塑料管和橡皮泥做一个三条棱分别为10厘米、30厘米、15厘米的长方体架子,应如何裁剪这根塑料管? 三、课堂小结1.长方体的元素及其性质.四、课堂检测:数学习题册 习题8.1 课课精炼 一、填空题:1.如图所示的长方体中,与棱AB 长度相等的棱是.2.如图所示,长方体中,与平面ABEH 相对的面是,它上面的底面用字母表示是.3.如图所示,长方体中被遮住的棱是,从点F 出发的棱是.4.当长方体的所有棱长都相等时,长方体就变成.5.如果正方体的棱长为a ,那么这个正方体的表面积为,体积为. 二、选择题:6.如果一个长方体的长、宽高都扩大到原来的2倍,那么这个长方体的体积就扩大到原来的A.2倍B.4倍C.6倍D.8倍7.下列说法中正确的个数有 ( ) (1)正方体是特殊的长方体 (2)长方体的表面中不可能有正方形(3)棱长为6cm 的正方体的表面积和体积的数值相等 (4)具有6个面,12条棱和8个顶点的图形都是长方体A.1个B.2个C.3个D.4个 三、解答题 8.如图,在长方体中,.求四边形ADHE 、四边形EFGH 、四边形DCGH 的面积,并求出此长方体的体积.9.把一根长36分米的木条截开后刚好能搭成一个正方体架子,求这个正方体的表面积和体积.10.如图,是边长为10厘米的三个小正方体拼成的图形,这个图形共有几个面?求出它的表面积和体积. 11.如图,把一个棱长4厘米的正方体的六个面都涂上红色,再将它的棱四等分,然后从等分点把正方体锯开.AB CDEF GHEABFDCGH1)能得到多少个棱长为1厘米的小正方体? 2)三个面有红色的小正方体有多少个? 3)两个面有红色的小正方体有多少个? 4)一个面有红色的小正方体有多少个?5)有没有各面都没有红色的小正方体?如果有,那么有多少个? 8.2 长方体直观图的画法 【学习目标/难点重点】1.认识长方体,掌握长方体的特征,初步学会看立体图形,2.认识并理解长方体的各个构成元素及之间的联系. 【学习过程】 一、课前复习1.长方体有个面,个顶点,条棱.2.长方体的每个面都是;长方体的条棱可以分为组,每组中的条棱的长度;长方体的个面可以分为组,每组中的个面的和都.3.设长方体的长、宽高分别为a 、b 、h ,则表面积为,体积为. 二、新课学习 1.平面:1)几何表示(即:作图)把水平放置的平面画成一边是水平位置,另一边与水平线所成的角为45度的平行四边形. 2)字母表示:平面ABCD 或平面2.平面的画法——“斜二测”画法: 思考:如何将这个长方体直观地画在纸上? 基本步骤:第一步:画平行四边形ABCD ,使AB 等于长方体的长,AD等于长方体宽的二分之一,∠DAB=450.第二步:过A 、B 分别画AB 的垂线AE 、BF ,过C 、D 分别画CD 的垂线CG 、DH ,使它们的长度都等于长方体的高. 第三步:顺次连接EFGH.第四步:将被遮住的线段改用虚线表示. 这样,长方体的直观图就画成了. 分步图解:A CDαGH EFABCD3.一块橡皮的形状是长方体,小杰量得其长、宽、高分别为4厘米、2厘米和1厘米,请你画出该橡皮的直观图.4.补全下面的图形,使之成为长方体(虚线表示被遮住的部分) 三、课堂小结:1.“斜二测”画法.四、课堂检测:数学习题册 习题8.2 课课精炼 一、填空题:1.长方体的直观图的画法有很多种,通常我们采用画法.通常在画图时,所画的长方体的宽是实际宽的(填分数),长与宽的夹角为.2.如图所示的长方体中, 1)从正面看,看不见的棱有, 2)与棱EH 相等的棱有, 3)与平面ABEH 相对的平面有, 4)位于水平位置的平面有. 二、选择题:3.在①平整的镜面;②平整的地面;③平整的斜面;④平放的桌面;⑤平静的湖面;⑥光滑的墙面中,通常情况下可以看成水平面的有 ( )A.①③⑥B.②④⑤C. ①③⑤D.②④⑥ 4.用斜二测画法画长方体的直观图中,表示看不到的面有 ( ) A.1个 B.2个 C.3个 D.4个 三、解答题8.补全下面各图,使之成为长方体(虚线表示被遮住的部分) 9.画一个长方体,使它的长、宽、高分别为5厘米、2厘米、3厘米.8.3 长方体中棱与棱位置关系的认识 【学习目标/难点重点】1.认知且能用数学语言正确地表述长方体中棱与棱位置关系和空间两直线的三种位置关系,2.在动手操作、观察和思考的过程中体会认知事物的概括分类思想,体会空间想象能力. 【学习过程】 一、课前复习AB CDEF GH1) 2)3)4)1.“斜二测”画法. 二、新课学习 1.观察并思考:1)棱AB 与棱AE 是什么位置关系?2)棱AB 与棱EF 是什么位置关系? 1)棱AB 与棱GC 是什么位置关系?2.观察生活实例:跑道、铁门的横竖栏、铁路轨道和公路的位置关系(图1)读作:直线AB 与直线CD ,(图2)读作:直线AB 与直线CD ,记作:直线AB 直线CD (也可读作直线AB 直线CD.(图3)读作:直线AB 与直线CD. 3.小结——空间两直线位置关系: 5.例题1:在长方体ABCD-EFGH 中, 1)哪些棱与棱AB 平行? 2)哪些棱与棱AB 相交?3)哪些棱与棱AB 异面?6.练习2:在长方体ABCD-EFGH 中, 1)棱FB 与棱HD 的位置关系是 记作: 为什么?2)棱HG 与棱HD 的位置关系是 为什么?3)棱EF 与棱HD 的位置关系是 为什么?4)有条棱与棱HD 平行?它们分别是.GHEFA BCDαmlCDF EGH有条棱与棱HD 相交?它们分别是. 有条棱与棱HD 异面?它们分别是.三、课堂小结1.长方体中棱与棱位置关系和空间两直线的三种位置关系. 四、课堂检测数学习题册 习题8.3课课精炼一、填空题:1.如图,在长方体ABCD-HEFG 中, 1)与棱AB 平行的棱有, 与棱AB 相交的棱有, 与棱AB 异面的棱有;2)与棱GH 平行的棱有,与棱GH 相交的棱有, 与棱GH 异面的棱有.2.如图,一张长方形纸片ABCD 对折后翻开所成的图形中, 1)与直线DF 平行的直线是, 2)与直线EF 平行的直线是, 与直线EF 相交的直线是, 3)与直线AE 异面的直线是, 与直线BC 异面的直线是. 二、选择题:3.如图所示的长方体中,与棱AB 平行的棱有 ( )A.2条B.3条C.4条D.8条4.如图所示,下面各条棱中,与棱CD 垂直的是 ( )A.棱ABB.棱EFC.棱BFD.棱HG 三、解答题5.在长方体ABCD-EFGH 中,指出下列各对棱的位置关系: 1)棱EF 与棱BC ; 2)棱EF 与棱DC ; 3)棱EF 与棱FB ;AB CDEF GHABDCFEEA BFDC GHEABFDCGH4)棱EH 与棱BC ;6.如图,是将一个长方体沿它的底面的对角线切去一半后剩下的部分. 1)与直线FG 平行的直线是, 2)与直线BC 异面的直线是, 3)与直线BC 相交的直线是, 4)AB 与EF , 5)AE 与FG , 6)FG 与CG.7.数一数,在长方体ABCD-EFGH 中,有多少对平行的棱?有多少对相交的棱?有多少对异面的棱?8.4 长方体中棱与平面位置关系的再认识 【学习目标/难点重点】1.理解长方体中棱与平面的垂直关系;会用数学式子表示直线与平面的垂直,2.理解长方体中的棱与面分别是直线和平面的部分;能举出直线与平面垂直的实例,3.知道检验直线与平面是否垂直的常用方法,知道使用各种方法检验的实际对象;在长方体中找出现成的检验棱与平面垂直的合页型折纸. 【学习过程】 一、课前复习1.长方体中棱与棱的位置关系. 二、新课学习1.观察并思考:竖直方向上的每一条棱与下底面的位置关系是怎样的?2.直线与平面的垂直关系:表示方法: 直线AD 垂直于平面CDHG 记为 :直线AD ⊥平面CDHG 3.思考——长方体中棱与平面的垂直关系: 1)长方体中每一条棱都与几个面垂直? 2)长方体中每个面都与几条棱垂直?3)长方体中一共可以写出多少对棱与面的垂直关系?4.生活实例:请同学们说出生活环境中还有那些直线与平面垂直的例子.5.检验直线与平面垂直的方法:1)铅垂线法:只能用于检验直线与水平面是否垂直; 2)三角尺法:可以检验一般的直线与平面是否垂直;ABFGAC BD FEG H GFEHAD CB3)合页型法:可以检验一般的直线与平面是否垂直;6.思考: 1)“三角尺”检验法与“合页型折纸”检验发有什么相同之处? 2)要检验尖顶屋上的旗杆是否与地面垂直,应用哪种方法比较合理.7.例题1:在长方体中找出能够说明棱与平面是否垂直现成的合页型折纸三、课堂小结1.长方体中棱与平面的垂直关系,会用数学式子表示直线与平面的垂直,2.检验直线与平面是否垂直的常用方法,知道使用各种方法检验的实际对象.四、课堂检测数学习题册 习题8.4(线面垂直部分)课课精炼一、填空题:1.如图,在长方体ABCD-EFGH 中, 1)与棱DH 垂直的面是, 2)与棱BC 垂直的面是, 3)与棱AB 垂直的面是, 4)与面ABCD 垂直的棱有, 5)与面ABFE 垂直的棱有, 6)与面BCGF 垂直的棱有,7)在长方体中的每一条棱有个面和它垂直,每一个面有条棱和它垂直. 2.如图,是教室相邻的三面墙(或地面), 1)与墙面ADFE 垂直的墙角线是, 2)与墙角线AD 垂直的墙面是, 3)与墙角线DF 垂直的墙面是, 4)与地面ABCD 垂直的墙角线是. 二、选择题:3.如图所示的长方体中,与面ADHE 垂直的棱是 ( )A.棱AE 和棱EHB.棱AB 和棱EFC.棱EF 和棱FGD.棱BC 和棱FB4.下列说法中,错误的是 ( )A.旗杆垂直于地面B.墙面一般垂直于地面EA BFD C G HB F GCEHDAGFEH ADCBGE BCDC.东方明珠电视塔垂直于地面D.树木一定垂直于地面 三、解答题5.在长方体ABCD-EFGH 中, 1)写出所有与棱AB 垂直的面; 2)写出所有与面EFGH 垂直的棱.6.在如图所示的长方体中,,求与平面BCGF 垂直的所有棱的长度之和.7.如图,指出图中可以用来检验AE 垂直于面ABCD 的现成的合页型折纸.8.如何检验山顶上直立的旗杆是否与水平面垂直? 8.5 长方体中平面与平面位置关系的认识 【学习目标/难点重点】1.理解长方体中平面与平面的垂直关系;会用数学式子表示平面与平面的垂直,2.能举出平面与平面垂直的实例,3.知道检验平面与平面是否垂直的常用方法;在长方体中找出现成的检验平面与平面垂直的合页型折纸. 【学习过程】 一、课前复习1.长方体中棱与棱的位置关系.2.长方体中棱与面的位置关系. 二、新课学习1.观察并思考:正面与下底面有怎样的位置关系?2.平面与平面的垂直关系:表示方法:平面ABCD 垂直于平面CDHG 记为 :平面ABCD ⊥平面CDHG3.思考——长方体中平面与平面的垂直关系:1)长方体中每一个面都与几个面垂直?2)长方体中相邻两个面之间的位置关系是怎样的? 3)长方体中一共可以写出多少对面与面的垂直关系? 4.生活实例:请同学们说出生活环境中还有那些平面与平面垂直的例子.5.检验平面与平面垂直的方法:EAB FDC GHG HDC A B FEE A BF DC GHGFEHADCBG F EH A DCB1)铅垂线法:检验墙面与地面(水平面)是否垂直;2)合页型折纸法: 3)三角尺法:6.例题1:在长方体中,能够说明平面ABFE ⊥平面ABCD 的合页型折纸是什么?7.如果把骰子看作是一个正方体.点数1的对面是6,点数的对面是2,点数4的对面是3,那么: 1)与点数1的面垂直的面有哪些? 2)哪些面与点数4的面垂直?3)在6个面中,互相垂直的面共有几对?三、课堂小结1.长方体中平面与平面的垂直关系,会用数学式子表示平面与平面的垂直,2.检验平面与平面是否垂直的常用方法,知道使用各种方法检验的实际对象. 四、课堂检测数学习题册 习题8.5(面面垂直部分)课课精炼一、填空题:1.如图,在长方体ABCD-EFGH 中, 1)与面ABFE 垂直的面是, 2)与面BCGF 垂直的面是, 3)与面EFGH 垂直的面是,4)在长方体中每个面都有个平面和它垂直, 5)与面ADHE 垂直的棱有, 6)与棱 DC 垂直的面有,2.用可以检验墙面是否垂直于水平面, 用可以检验橱柜的隔板是否垂直于侧面, 用可以检验两个墙面是否垂直.3.长方体中相邻的两个面有的关系. 二、选择题:4.长方体中,与一个面垂直的面有 ( )A.1个B.2个C.3个D.4个5.下列方法中,不能用于检验平面与平面是否垂直的是 ( )EA BFDC GHGFEHADCB11 / 11 A.长方形纸片 B.三角尺 C.合页型折纸 D.铅垂线三、解答题6.在长方体ABCD-EFGH 中,1)写出所有与面ABCD 垂直的面;2)写出所有与面DCGH 垂直的面;3)面DCFE 与面BCGF 是否垂直?如果垂直,请在图中画出现成的合页型折纸;4)写出与面DCFE 垂直的面.7.如果把骰子看作是一个正方体.点数1的对面是6,点数的对面是2,点数4的对面是3.1)与点数2的面垂直的面的点数分别是多少?2)与点数1的面垂直的面的点数之和是多少?8. 如图,在桌面上放着一本翻开的书,图中有几个面与桌面垂直?你的判断依据是什么?请把这些写出来.B A E F D H GC A B C DHF E G。
-------------长方体的再认识(★★★)1.了解构成长方体的元素;2.会用斜二测画法画长方体的直观图;3.掌握长方体中棱与棱、棱与面、面与面的位置关系;4.掌握棱与面、面与面的垂直及平行的验证方法;知识结构棱、面的三个特点:(1)长方体的每个面都是长方形构成长方体的三要素:点、棱、面(2)长方体的十二条棱可分为三组,每组中的四条棱相等(3)长方体的六个面可分为三组,每组中两个面的形状大小相同面与面的位置关系(1)平行.检验方法:棱与棱的位置关系:棱与平面的位置关系:长方形纸片(1)相交 (1)平行(2)垂直检验方法:(2)垂直.检验方法:(3)异面⑴铅垂线法⑵长方形纸片法(1)铅垂线(2)三角板法(3)合页型折纸(2)垂直检验方法:⑴铅垂线法⑵三角板法⑶合页型折纸1.本部分建议时长5分钟.2.请学生先试着自行补全上图,发现学生有遗忘时教师帮助学生完成.1.本部分建议时长20分钟.2.进行例题讲解时,教师宜先请学生试着自行解答.若学生能正确解答,则不必做过多的讲解;若学生不能正确解答,教师应对相关概念、公式进行进一步辨析后再讲解例题.3.在每一道例题之后设置了变式训练题,应在例题讲解后鼓励学生独立完成,以判断学生是否真正掌握了相关考点和题型.4.教师应正确处理好例题与变式训练题之间的关系,宜采用讲练结合的方式,切不可将所有例题都讲完后再让学生做变式训练题.例题1一个长方体中,有公共点的三条棱的长度的比为2:3:4,最小的一个面的面积为2162cm , (1)求这个长方体的所有棱长的总和;“典例精讲”这一部分的教学,可采用下面的策略:“知识结构”这一部分的教学,可采用下面的策略:(2)求这个长方体的表面积; (3)求这个长方体的体积。
(★★)答案:(1)216cm ;(2)18722cm ;(3)51843cm两条较短的棱为长和宽的长方形的面积,是最小的面积,又知三棱长之比,故可求得三棱长,进而可得其他所求。
六年级数学第二学期第八章长方体的再认识重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是由4个相同的小正方体组合而成的几何体,从左面看得到的平面图形是().A.B.C.D.2、如图所示,该几何体的主视图是()A.B.C.D.3、如图,一个圆柱体被截去一部分,则该几何体的主视图是()A.B.C.D.4、下列几何体中,面的个数最多的是()A.B.C.D.5、如图所示的几何体的俯视图是()A.B.C.D.6、如图所示的几何体的主视图是()A.B.C.D.7、一个儿何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是()A.B.C.D.8、如图所示的一个六角螺帽毛坯底面正六边形的边长、高和内孔直径都相等,其主视图是()A.B.C.D.9、下面的几何体的左视图是()A.B.C.D.10、四个相同的小正方体组成的立体图形如图所示,它的主视图为()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正方体的一个平面展开图如图所示,则在原正方体上“百”的对面是 __.2、一个棱长为2厘米、6厘米、8厘米的长方体,最多可切割出棱长为1厘米、2厘米、3厘米的长方体_______个.3、一个长方体的每一条棱扩大到原来的3倍后,它的体积是3162cm ,原来长方体的体积是_______3cm .4、在长方体1111ABCD A B C D 中,与平面11AA D D 垂直的棱有________条.5、凡与铅垂线重合的直线必与平面_______(填“垂直”或“平行”).三、解答题(5小题,每小题10分,共计50分)1、如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a ,图2中几何体的表面积为b ,那么a 与b 的大小关系是 ;A .a >b ;B .a <b ;C .a =b ;D .无法判断.(2)小明说“设图1中大正方体的棱长之和为m ,图2中几何体的各棱长之和为n ,那么n 比m 正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.2、已知长方体无盖纸盒的长、宽、高分别为9cm 、7cm 、5cm ,这个纸盒的外表面积和容积各是多少?3、如图是由若干个相同的正方体组成的立体图形从上往下看所得到的平面图形,正方形上标注的数字表示该位置上正方体的个数.请画出这个立体图形从左面看所得到的平面图形.4、补画下列图形,使它成为长方体.(注意:遮住的线段应该用虚线表示)5、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图是一个由7个相同的小正方体搭成的几何体,请从图的正面、左面和上面看这个几何体,并在所给的图中画出各自的图形.-参考答案-一、单选题1、D【分析】根据左视图的定义即可求解.【详解】从左面看得到的平面图形是故选D.【点睛】此题主要考查三视图,解题的关键是熟知左视图的定义.2、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到是图形是:故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3、C【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是一个的矩形少了一个角,如图所示:,故选:C.【点睛】本题考查了三视图,解题关键是树立空间观念,准确识图,注意:看见的棱是实线.4、C【分析】分别分析选项中各个图形有几个面然后确定正确答案即可.【详解】解:A选项有一个底面一个侧面,共两个面;B选项有两个底面三个侧面,共五个面;C选项有两个底面四个侧面,共六个面;D选项有两个底面一个侧面,共三个面;故选:C.【点睛】本题主要考查立体图形的认识,分别数出每个图形的面数是解题的关键.5、A【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看,是一个三角形.故选:A.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图是解题关键.6、B【分析】根据主视图即从物体的正面观察进而得出答案.【详解】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B【点睛】本题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.7、B【分析】主视图的列数与俯视图的列数相同,且每列小正方形的数目为俯视图中该列小正方数字中最大数字,从而可得出结论.【详解】由已知条件可知:主视图有3列,每列小正方形的数目分别为4,2,3,根据此可画出图形如下:故选:B.【点睛】本题考查了从不同方向观察物体和几何图像,是培养学生观察能力.8、C【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从正面看,是一行三个矩形,中间的矩形的长较大,两边的矩形相同.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解题关键是明确主视图的概念,准确识图.9、D【分析】根据几何体的特点即可求解.【详解】从左边看,第一排三个正方形,第二排两个,第三排一个.即故选D.【点睛】此题主要考查三视图的判断,解题的关键是熟知左视图的定义.10、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题1、建【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以在原正方体上“百”的对面是“建”.故答案为:建.【点睛】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的前提.2、16【分析】先分别求出原长方体和需要切割的小长方体的体积,再相除计算即可.【详解】∵()326896cm ⨯⨯=,()31236cm ⨯⨯=, ∴96616÷=(个).故答案为:16.【点睛】此题考查长方体的体积,解题的关键是抓住长方体切割成小正方体的特点进行计算.3、6【分析】根据长方体的体积公式:v=abh ,再根据积的变化规律,积扩大是倍数等于因数扩大倍数的乘积.由此解答.【详解】解:()()31623336cm ÷⨯⨯=. 所以,原长方体的体积是63cm .故答案为:6.【点睛】此题考查的目的是使学生掌握长方体体积的计算方法,理解长方体体积的变化规律是解题关键. 4、4【分析】长方体中的棱与面的关系有2种:平行和垂直,结合图形可找到与面AA D D 垂直的棱.【详解】解:如图示:根据图形可知与面AA D D垂直的棱有AB,CD,C D'',A B''共4条.故答案是:4.【点睛】主要考查了长方体中的棱与面之间的位置关系.要知道长方体中的棱的关系有2种:平行和垂直.5、垂直【分析】根据铅垂线法可直接作答.【详解】因为凡与铅垂线重合的直线必与平面垂直;故答案为垂直.【点睛】本题主要考查长方体中棱与面的位置关系,熟练掌握位置关系解题的关键.三、解答题1、(1)C;(2)不正确,理由见解析;(3)图③不是图②几何体的表面展开图,改后的图形见解析【分析】(1)根据“切去三个面”但又“新增三个面”,因此与原来的表面积相等;(2)根据多出来的棱的条数及长度得出答案;(3)根据展开图判断即可.【详解】解:(1)根据“切去三个小面”但又“新增三个相同的小面”,因此与原来的表面积相等,即a =b 故答案为:a =b ;(2)如图④红颜色的棱是多出来的,共6条,当且仅当每一条棱都等于原来正方体的棱长的一半,n 比m 正好多出大正方体的3条棱的长度,故小明的说法是不正确的;图④ 图⑤(3)图③不是图②几何体的表面展开图,改后的图形,如图⑤所示.【点睛】本题考查几何体表面积的意义、棱长之和、几何体的表面展开图,考查学生的观察能力,关键是抓住几何图形变换后边长和棱长的变与不变的量.2、外表面积为2223cm ,容积为2315cm【分析】根据长方体的表面积和容积的计算公式计算即可;【详解】纸盒的外表面积为()29795752223cm ⨯+⨯+⨯⨯=;容积为3975315cm ⨯⨯=. 答:这个纸盒的外表面积为2223cm ,容积为2315cm .【点睛】本题主要考查了长方体的棱与棱的关系及面积、体积公式应用,准确分析是解题的关键.3、图见解析.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为2,3.据此可画出图形.【详解】解:如图【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4、画图见详解【分析】直接根据长方体的概念进行作图即可.【详解】【点睛】本题主要考查长方体的概念,关键是根据长方体的概念进行作图即可.5、见解析【分析】主视图有3列,每列小正方形数目分别为1,2,3;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每行小正方形数目分别为1,1,2.【详解】解:如图所示:【点睛】此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.。
沪教版数学六年级下册第八章《长方体的再认识》复习教学设计一. 教材分析沪教版数学六年级下册第八章《长方体的再认识》复习教学内容主要包括长方体的特征、表面积和体积的计算方法以及长方体在实际生活中的应用。
本章内容是对长方体知识的系统复习和巩固,旨在帮助学生深化对长方体的认识,提高空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习过长方体的相关知识,对长方体的特征、表面积和体积的计算方法有一定的了解。
但在实际应用中,部分学生可能会遇到困难和问题。
因此,在复习教学中,需要关注学生的学习情况,针对性地进行指导和帮助。
三. 教学目标1.知识与技能:通过对长方体的再认识,使学生掌握长方体的特征、表面积和体积的计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过复习教学,培养学生自主学习、合作学习的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和团队协作精神,使学生在数学学习中获得成就感。
四. 教学重难点1.教学重点:长方体的特征、表面积和体积的计算方法。
2.教学难点:长方体在实际生活中的应用,空间想象能力的培养。
五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考,发现长方体的特征和计算方法。
2.案例分析法:教师提供实际生活中的案例,引导学生运用长方体的知识解决问题。
3.小组合作学习法:学生分组讨论,共同完成任务,提高团队协作能力。
六. 教学准备1.教学课件:制作长方体的特征、表面积和体积的计算方法的教学课件。
2.教学案例:收集实际生活中的长方体应用案例。
3.学习任务单:设计学习任务单,引导学生进行自主学习和合作学习。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾长方体的特征、表面积和体积的计算方法,激发学生的学习兴趣。
2.呈现(10分钟)教师利用课件展示长方体的特征和计算方法,让学生直观地感受长方体的结构。
第八章 长方体的再认识 第二课时一、 概念1、 长方体的元素:六个面、八个顶点、十二条棱2、 长方体的三元素的特点:(主要是外观特征和数量关系)①长方体的每个面都是长方形;②长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
③长方体的六个面可以分为三组,每组中的两个面形状大小都相同。
3、 正方体是特殊的长方体。
4、 平面是平的,无边无沿,没有厚度和大小,一般用平行四边形来表示。
记作:平面ABCD 或平面α。
5、 将水平放置的平面画成一边是水平位置,另一边与水平线成45度角的平行四边形。
6、 斜二侧画法画长方体时要注意:宽画成标注尺寸的一半;看不到的线画成虚线;要标字母和尺寸,要写结论。
长方体ABCD-EFGH 、平面ABCD 、棱AB 、顶点A 。
7、 空间中两直线的位置关系有三种:相交、平行、异面① 如果两条直线在同一平面内,有唯一公共点,称这两条直线的位置关系是相交;② 如果两条直线在同一平面内,没有唯一公共点,称这两条直线的位置关系是平行;③ 如果两条直线既不平行也不相交,称这两条直线的位置关系是异面。
8、 直线垂直于平面记作:直线PQ ⊥平面ABCD ;直线平行于平面记作:直线PQ ∥平面ABCD 。
9、 计算公式之一:(三条棱长分别是a 、b 、c 的长方体)① 棱长和 = 4()a b c ++ ; ② 体积 = abc ;③ 表面积 = 2()ab bc ac ++ ;④ 无盖表面积 = S ab -、S bc -、S bc -10、计算公式之二:(边长是a 正方体)① 棱长和= 12a ;②体积= 3a ;③表面积= 26a ;④无盖表面积 =25a 。
11、长方体不一定是正方体;正方体一定是长方体。
12、长方体中棱与棱的位置关系有3种,分别是平行、相交、异面。
13、长方体中棱与面的位置关系有2种,分别是:平行、垂直。
14、长方体中面与面的位置关系有2种,分别是:平行、垂直。
教师学生上课时间学科数学年级课题名称长方体的再认识综合复习教学目标1.了解构成长方体的元素;2.会用斜二测画法画长方体的直观图;3.掌握长方体中棱与棱的位置关系;4.理解长方体中棱与面、面与面的位置关系;5.知道检验直线、平面与平面是否垂直、平行的常用方法;重点难点熟练的掌握长方体中位置关系.长方体的再认识综合复习一.上节回顾二、本节内容(一)知识点讲解1.长方体有个顶点,条棱,个面.2.长方体所有的棱可分为组,每组中的条棱的.3.斜二测画法画长方体的直观图4.长方体中棱与棱的位置关系5.检验直线与平面垂直的方法(1)铅垂线法:只能用于检验直线与水平面是否垂直;(2)三角尺法:可以检验一般的直线与平面是否垂直;(3)合页型法:可以检验一般的直线与平面是否垂直.6. 检验直线与平面平行的方法:(1)铅垂线;(2)长方形纸片.7. 检验平面与平面垂直的方法:(1)铅垂线:检验平面与地面(水平面)是否垂直;(2)合页型折纸;(3)三角尺.8. 检验平面与平面平行的方法:(1)长方形纸片:按交叉的方向检验两次,两边都于被检验的面紧贴;(2)水准仪:(用于检验平面与水平面的平行)按交叉的方向检验两次,水泡都要在中间.【典型例题】例题1:已知一个长方体的宽是6cm,长比宽的3倍多2cm,高是宽的一半,求这个长方体的所有棱长之和.参考答案:长:6×3+2=20cm高:6×12=3cm4×(6+20+3)=116cm答:这个长方体的所有棱长之和是116cm。
试一试:一个长方体的长、宽、高之比为4:3:2,已知这个长方体的棱长之和是108厘米,求这个长方体的表面积和体积.参考答案:设这个长方体的长、宽、高分别为4x厘米,3x厘米,2x厘米则4×(4x+3x+2x)=108 x=3长:4x=12 宽:3x=9 高:2x=6表面积:S=2(12×9+12×6+9×6)=468平方厘米体积:V=12×9×6=648立方厘米答:这个长方体的表面积是468平方厘米,体积是648立方厘米。
沪教版数学六年级(下)第八章长方体的再认识知识点汇总
第八章长方体的再认识
1、长方体有六个面,八个顶点,十二条棱。
2、长方体的每个面都是长方形。
3、长方体的十二条棱可以分为三组,每组中的四条棱的长度相等。
4、长方体的六个面可以分为三组,每组中的两个面的形状和大小都相同。
5、长方体中棱与棱位置关系的认识:
一条棱与另一条棱所在的直线在同一个面内,它们有惟一的公共点,我们称这两条棱相交。
一条棱与另一条棱所在的直线在同一个面内,但它们没有公共点,我们称这两条棱平行。
一条棱与另一条棱所在的直线既不平行,也不相交,我们称这两条棱异面。
6、一般地,如果直线AB与直线CD在同一平面内,具有惟一公共点,那么称这两条直线
的位置关系为相交,读作:直线AB与直线CD相交。
7、如果直线AB与直线CD在同一平面内,但没有公共点,那么称这两条直线的位置关系
为平行,记作:AB∥CD,读作:直线AB与直线CD平行。
8、如果直线AB与直线CD既不平行,也不相交,那么称这两条直线的位置关系为异面,
读作:直线AB与直线CD异面。
9、直线PQ垂直于平面ABCD,记住:直线PQ⊥平面ABCD,读作:直线PQ垂直于平
面ABCD。
10、如何检验直线与平面垂直呢?可以用“铅垂线”检验。
如果细棒垂直于墙面,可以用“三角尺”检验。
还可以用“合页型折纸”检验直线是否垂直于平面。
11、直线PQ平行于平面ABCD,记作:直线PQ∥平面ABCD,读作:直线PQ平行于平面ABCD
12、如何检验直线与平面平行呢?可以用“铅垂线”检验。
也可以用“长方形纸片”检验
1 / 1。