期末复习例题
- 格式:pdf
- 大小:153.11 KB
- 文档页数:4
辅导讲义期末模拟小测试(时间20分钟,满分50分)一、选择题:(每小题2分,满分8分)(每题只有一个选项正确) 1、如果35yx =,那么下列式子不正确的是( ) A .:1:15x y = B .5:1:3x y = C .1,15x y == D .153x y= 2、下列各数中,最大的数是( )A .13B ...0.30C .0.3D .331003、一根绳子15米,截去它的13后,在接上13米,这时绳子的长度是( )A .5米B .153米C .1143米D .1103米4、某商品的价格提高16后,再降低16,结果与原价相比( )A .不变B .降低56C .降低136D .无法比较二、填空题:(每题3分,满分42分)5、分解素因数:910= .6、三个连续的偶数和是102,则这三个偶数是 .7、甲比乙35多,那么乙比甲少 .(填几分之几) 8、已知:25233x y x y +=-,则:x y 的比值是 .9、已知:5,3x y ==,则x y -= . 10、绝对值小于3的所有负整数的和是 .11、已知一个比例的两个内项互为倒数,其中一个外项是113,那么另一个外项是 . 12、如果144A B ⨯=,A 和B 的最大公因数是6,那么它们的最小公倍数是 .13、如图所示的两个圆盘中,指针旋转后落在每一个数字区域中的可能性是相同的,同时旋转两个转盘,两个指针同时落在偶数上的可能性大小是 .14、预备某班在期末数学考试中有49人成绩合格,已知这次考试成绩的不合格率为2%,那么此班共有 人.15、一辆拖拉机前轮的直径为50厘米,后轮直径为120厘米,当拖拉机在行驶过程中,后轮转了10圈时,前轮转了 圈.16、一块半径为10cm 的圆形木块,把它平均锯成20块扇形,每块扇形木块的周长是 cm . 17、如图,半圆的面积1S 是25.12平方厘米,圆的面积2S 是12.56平方厘米,那么长方形(阴影部分)的面积是 平方厘米.18、如图,四个圆的半径均为4厘米,阴影部分的周长是 厘米.第13题图 第17题图 第18题图【知识梳理1】 1.通分: 2.约分:3.求几个分数的公分母一般有三种方法:S2S1(1)15:21:6 (2)258::5615(3)0.75:0.25:1.25例4:根据条件,求z y x ::的值(1):2:7,:3:5x y y z == (2)1111::,::2324x y y z == (3)12:2:3,::23x y y z ==试一试:化简整数比(1)10.24:1:15 (2)258::5615(3)0.72:0.12:2.4一、填空题1.已知532⨯⨯=A ,则A 的素因数有 个。
初三化学1—6章期末总复习讲解及训练习题例题解析: 1.某种物质经鉴定只含有一种元素,则下列说法正确的是 ( D ) A . 该物质一定是稀有气体 B . 该物质肯定是纯净物C . 该物质肯定是单质D . 该物质可能是几种单质的混合物解析:由于一种元素可能形成几种单质,如碳元素可以形成金刚石、石墨、C 60等单质。
而物质又可分为纯净物和混合物。
当一种元素只构成一种单质时,该物质为纯净物;当一种元素构成的几种单质混合在一起时,则为混合物。
故D 正确而B 、C 不一定正确。
而单质不一定是稀有气体,还可能有其它的金属单质和非金属单质。
故A 也不全面。
因此,若某物质只由一种元素组成,该物质可能为单质,也可能是由同一种元素组成的几种单质的混合物。
答案:D 。
2.某元素R 与Mg 元素形成化合物MgR ,则R 元素的原子结构示意图可能是 ( B )解析:本题是一道较为综合的题目,它涉及化学式、化合价、原子结构及示意图等多个知识点。
解题思路为: 化学式(MgR )−−→−决定R 的化合价−−−−−−→−综合原子结构特点R 的原子结构由MgR 知R 为-2价,R 的原子结构特征为最外层有6个电子,易得到两个电子形成稀有气体元素原子的稳定结构的阴离子。
答案:B 。
3.有一包混合物,其中可能含有适量炭粉、碳酸钙、氧化铜、氧化铁中的一种或几种,现进行如下实验:① 取样品,加热至高温,产生一种气体,该气体能使澄清石灰水变浑浊。
② 把足量的盐酸滴入冷却后的残渣中,残渣全部溶解,并产生一种可燃性气体。
问: (1) 混合物中一定不含有 ;(2) 混合物中一定含有 ;实验过程中肯定发生反应的化学方程式是(3) 混合物中可能含有的物质是 ,为证明它是否存在。
你认为可采取的方法是 ,该方法所依据的化学原理是(用化学方程式表示) 。
解析:对于这类问题,抓住特征反应就找到了突破口。
由①知,产生的气体是CO 2。
而能产生CO 2的反应有三种:碳酸钙分解、炭粉与氧化铁反应、炭粉与氧化铜反应。
九下期末复习资料(一)——《二次函数》【例题讲解】例1:二次函数y=a x 2+b x+c (a ≠0)的图象如图所示,根据图象回答下列问题.(1)如图1,若抛物线经过点A (-3,0),对称轴是直线x =-1,与y 轴的交点坐标为(0,3)①求抛物线的解析式;①写出它的顶点坐标;①写出它与坐标轴的交点坐标;①当x 取何值时,抛物线中y 随x 增大而增大;①已知A (-2, y 1),B (2, y 2)为函数图象上的两个点,请比较y 1和y 2的大小关系; ①已知-3≤x ≤-2,求y 的取值范围;①写出方程ax 2+bx +c =0的根;①写出不等式ax 2+bx +c <0的解集;①若方程ax 2+bx +c =k 无实数根,写出k 的取值范围.(2)二次函数y =ax 2+bx +c 的图象如图1所示,抛物线经过点A (-3,0),对称轴是直线x =-1,下列结论:①abc >0;①2a ﹣b <0;①a ﹣b +c <0;①9a +3b +c <0,其中正确的有 .(3)如图1,抛物线y =ax 2+bx +c (a <0)经过(2, n ),(-4, n )两点,若点M (x 1, y 1),点N (x 2, y 2)也在抛物线上,且满足x 1<x 2,x 1+x 2>-2,则 y 1,y 2的大小关系 . (4)如图2,抛物线y =ax 2+bx +c (a <0)与直线y =kx +n 相交于点C (−52,74)、C (0,3)两点,则关于x 的不等式ax 2+bx +c <kx +n 的解集是 .BC图1 图2例2:如图,抛物线y=a x2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.例3:如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面13米高处,隧道的宽度是多少?4(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.【课内练习】1.已知函数y=(m−2)x m2−2+2x−7是二次函数,则m的值为()A.±2B.2C.-2D.m为全体实数2.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)23.抛物线y=ax2经过点(2,-8),则a=.4.若二次函数y=x2−6x+9的图象经过A(−1,y1),B(1,y2),C(3,y3)三点,则y1,y 2,y3大小关系为.5.抛物线y=x2-4x+5,当0≤x≤3时,y的取值范围是.6.写出抛物线y=﹣x2+4x的开口方向、对称轴、顶点坐标和最大值.7.如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为x米.(1)若两个鸡场的面积之和为S,求S关于x的关系式;(2)两个鸡场面积之和S有最大值吗?若有,求出这个最大值.【课后作业】1.抛物线y=−(x+1)2−1的顶点坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2.若二次函数y=2(x−1)2−1的图象如图所示,则坐标原点可能是()A.点A B.点B C.点C D.点D3. 某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x元,则依据题意可列方程为()A.(50−40+x)(500−x)=8000B.(40+x)(500−10x)=8000C.(50−40+x)(500−10x)=8000D.(50−x)(500−10x)=8000第2题图第4题图第5题图4.如图,将一个含45°的直角三角板ABC放在平面直角坐标系的第一象限,使直角顶点A的坐标为(1,0),点C在y轴上.过点A,C作抛物线y=2x2+bx+c,且点A为抛物线的顶点.要使这条抛物线经过点B,那么抛物线要沿对称轴向下平移()A.5个单位B.6个单位C.7个单位D.8个单位5.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)和B,与y轴交于点C.下列结论:①abc<0;①2a+b>0;①4a-2b+c>0;①3a+c>0.其中错误的结论个数为()A.1个B.2个C.3个D.4个6.已知抛物线y=x2+bx+c经过点A(m,n),B(4﹣m,n),且抛物线与x轴有交点,则c的最大值为()A.0B.2C.4 D.87.已知二次函数y=﹣x2+2x+3,当自变量x的值满足a<x≤2时,函数y的最大值与最小值的差为1,则a的值可以为()A.−12B.12C.﹣1D.18.抛物线y=−(x+1)2−1的顶点坐标为.9.将二次函数y=−x2+6x−8用配方法化成y=(x−ℎ)2+k的形式为y=.10.已知二次函数y=ax2+4x+3(a≠0)的顶点在x轴上,则a= .11.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是.12.若关于x的函数y=x2−2x+k+1的图象与x轴只有1个交点,则k的值是.13.已知二次函数y=x2﹣x﹣6.求二次函数的图象与坐标轴的交点所构成的三角形的面积.14.已知二次函数y=C x2+bx+c(其中a、b、c为常数,且C≠0)的自变量x的值与它对应的函数值y如下表所示:(1)该二次函数图象的对称轴是直线.(2)如果n=−2,求此二次函数的解析式及其图像与y轴的交点坐标.15.已知抛物线y=−x2+bx+c如图所示,它与x轴的一个交点的坐标为A(−1,0),与y轴的交点坐标为C(0,3).(1)求抛物线对应的函数表达式及与x轴的另一个交点B的坐标;(2)根据图象回答:当x取何值时,y<0;(3)在抛物线的对称轴上有一动点P,求PA+PC的最小值,并求当PA+PC取最小值时点P的坐标.。
期末复习4(22.圆解答题)例题:在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F (I )如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;(Ⅱ)如图②,若点F 为AD 的中点,O 的半径为2,求AB 的长.1.在ABC 中,90B ∠=︒,D 为AC 上一点,以CD 为直径的O 与AB 相切于点E ,与BC 相交于点F ,连接CE .(Ⅰ)如图①,若27ACE ∠=︒,求A ∠和ECB ∠的大小; (Ⅱ)如图②,连接EF ,若//EF AC ,求A ∠的大小.2.如图,AB是O的直径,点C是O上一点,BAC∠的平分线AD交O于点D,过点⊥交AC的延长线于点E.(1)求证:DE是O的切线;D作DE AC(2)如果60BAC∠=︒,43AE=,求AC长.⊥.AB是O的弦,AC交O于点D,且D为AC的中点,3.已知在ABC中,BC AB∠的大小;延长CB交O于点E,连接AE.(Ⅰ)如图①,若50∠=,求EACE︒(Ⅱ)如图②,过点E作O切线,交AC的延长线于点F.若2CF CD=,求CAB∠大小.4.已知⊙O 是ABC ∆的外接圆, 过点A 作⊙O 的切线, 与CO 的延长线交于点P ,CP 与⊙O 交于点D .(1)如图①, 若ABC ∆为等边三角形, 求P ∠的大小;(2)如图②, 连接AD , 若PD AD =, 求ABC ∠的大小.5.己知AB 是O 的直径,C 为O 上一点,58OAC ∠=︒.(Ⅰ)如图①,过点C 作O 的切线,与BA 的延长线交于点P ,求P ∠的大小;(Ⅱ)如图②,P 为AB 上一点,CP 延长线与O 交于点Q .若AQ CQ =,求APC ∠的大小.6.如图,在⊙O中,点C为AB的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.7.已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.(Ⅰ)如图①,若∠BAC=250,求∠AMB的大小;(Ⅱ)如图②,过点B作BD⊥AC于点E,交⊙O于点D,若BD=MA,求∠AMB的大小.8.如图,AB为O的直径,E为O上一点,点C为BE的中点,过点C作直线CD垂直直线AE,垂足为D.(1)求证:DC为O的切线;(2)若AB=4,∠CAD=30°,求AC.参考答案1.(Ⅰ)36A ∠=︒;27ECB ∠=︒;(Ⅱ)30°【来源】2021年天津市红桥区九年级下学期二模数学试卷【分析】(Ⅰ)连接OE ,由切线的性质,等腰三角形的性质,即可求出答案;;(Ⅱ)连接OE ,OF ,证明四边形OEFC 为平行四边形,根据平行四边形的性质,即可求出答案.【详解】解:(Ⅰ)如图,连接OE .∵AB 与O 相切,∴OE AB ⊥,即90AEO ∠=︒.∵27ACE ∠=︒,∴254AOE ACE ∠=∠=︒.∴9036A AOE ∠=︒-∠=︒.∵OE OC =,∴OEC OCE ∠=∠.∵90B ∠=︒,∴//OE BC .∴ECB OEC ∠=∠.∴27ECB ∠=︒.(Ⅱ)如图,连接OE ,OF .∵,OE BC EF AC ∥∥,∴四边形OEFC 为平行四边形.∴OE CF =.∴OC OF CF ==.∴60ACB ∠=︒.∴9030A ACB ∠=︒-∠=︒.【点睛】本题考查了圆的切线的性质,等腰三角形的性质,平行四边形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题.2.(1)见解析;(283 【来源】2020年天津市河北区九年级二模数学试题【分析】(1)连接OD ,证OD ∥AE ,由已知DE ⊥AE ,得出DE ⊥OD ,即可得出结论;(2)作OF ⊥AC 于F ,则四边形ODEF 为矩形,得出OF=DE ,证∠DAE=30°,求出DE=4,则OF=DE=4,由三角函数定义求出43,即可得出答案. 【详解】解:(1)证明:连接OD ,如图,BAC ∠的平分线AD 交O 于点D ,BAD DAC ∴∠=∠,OA OD =,OAD ODA ∠=∠∴,ODA DAC ∴∠=∠,//OD AE ∴,DE AE ⊥,DE OD ∴⊥,OD 为半径,DE ∴是O 的切线;(2)作OF AC ⊥于F60BAC ∠=︒,30DAE ∴∠=︒,在Rt ADE ∆中,tan304DE AE =⋅︒=四边形ODEF 为矩形,4OF DE ∴==,在Rt OAF ∆中,60OAF ∠=︒AF ∴=2AC AF ∴==【点睛】本题考查了切线的判定与性质、角平分线定义、垂径定理、等腰三角形的性质、平行线的判定与性质、矩形的判定与性质、三角函数定义等知识;熟练掌握切线的判定和垂径定理是解题的关键.3.(Ⅰ)65EAC ︒∠=;(Ⅱ)30CAB ︒∠=.【来源】2020年天津市和平区中考三模数学试题【分析】(1)连接ED ,由∠ABE=90°可得AE 是⊙O 的直径,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC ,根据垂直平分线的性质可得AE=CE ,则∠AED=∠CED=25°,则在直角三角形AED 中,可求得∠EAD 的度数;(2)首先证明三角形AEC 是等边三角形,由于AB ⊥CE ,则易求出∠CAB 的度数.【详解】解:(Ⅰ)连接DE .BC AB ⊥,延长CB 交O 于点E ,90ABE ︒∴∠=.AE ∴为O 的直径.90ADE ︒∴∠=.又D 为AC 的中点,DE ∴垂直平分AC .AE CE ∴=.11502522AED CED AEC ︒︒∴∠=∠=∠=⨯=.90902565EAC AED ︒︒︒︒∴∠=-∠=-=.(Ⅱ)EF 是O 的切线,又由(Ⅰ)得AE 为O 的直径,EF AE ∴⊥.90AEF ︒∴∠=. D 为AC 的中点,2AC CD ∴=.2CF CD =,AC CF ∴=.12CE AF AC ∴==.又由(Ⅰ)得AE CE =,AE CE AC ∴==.ACE ∴是等边三角形.60EAC ︒∴∠=.又BC AB ⊥,1302CAB EAC ︒∴∠=∠=.【点睛】本题主要考查了圆周角定理、切线的判定与性质、垂直平分线的性质的性质等知识. 4.(1)30︒;(2)60︒【来源】2020天津市西青区二模数学试题【分析】(1)连接AO ,根据ABC ∆为等边三角形得到60ABC ∠=,根据圆周角定理得到2120AOC ABC ∠=∠=,进而求得60AOP ∠=,再由切线的性质的PAO 90∠=,然后根据三角形内角和得到结果.(2))连接AO ,由已知条件证的2∠=∠OAD PAD ,根据切线的性质推出30PAD ∠=,进而求得答案.【详解】(1)连接AOABC ∆∴为等边三角形;60ABC ∴∠=;2120AOC ABC ∴∠=∠=;180AOC AOP ∴∠+∠=;60AOP ∴∠=; PA 为O 的切线,A 为切点;PA AO ∴⊥;即PAO 90∠=;90P AOP ∴∠+∠=;90906030P AOP ∴∠=-∠=-=;(2)连接AO=;PD AD∴∠=∠;P PAD=;OA OD∴∠=∠;ADO OAD∠=∠+∠=∠;ADO P PAD PAD2∴∠=∠;2OAD PADPA为O的切线,A为切点;∴⊥;PA AO即PAO90∠=;PAD OAD∴∠+∠=;90∴∠+∠=;PAD PAD290∴∠=;PAD30∴∠=∠=;260ADO PAD即ADC60∠=;∴∠=∠=;60ABC ADC【点睛】本题主要考查了切线的性质应用,结合了三角形的内角和、外角定理等知识点的考查. 5.(I)26︒(II)48︒【来源】天津市河北区2019-2020学年九年级下学期线上测试数学试题【分析】(I)根据等腰三角形中有一底角为58度时,可得∠COA=64︒,根据切线的性质得出∠OCP=90︒,进而求得∠P的度数;(II)先由(I)知∠AOC=64︒,根据圆周角定理得∠Q=1∠AOC=32︒,根据等腰三角2形的性质和三角形内角和定理得∠QAC=∠QCA=74︒,最后由三角形外角的性质可得结论.【详解】(I)∵OA=OC,∠OAC=58︒,∴∠OCA=58︒∴∠COA=180︒−2×58︒=64︒∵PC是⊙O的切线,∴∠OCP=90︒,∴∠P=90︒−64︒=26︒;(II)∵∠AOC=64︒,∠AOC=32︒,∴∠Q=12∵AQ=CQ,∴∠QAC=∠QCA=74︒,∵∠OCA=58︒,∴∠PCO=74︒−58︒=16︒,∵∠AOC=∠QCO+∠APC,∴∠APC=64︒−16︒=48︒.【点睛】本题主要考查的是切线的性质、等腰三角形的性质、三角形的外角的性质、三角形的内角和定理,熟练掌握这些性质是解题的关键.6.(1)见解析;(2)83【来源】天津市河西区2019-2020学年九年级下学期线上结果检测数学试题【分析】(1)连接OA,由=CA CB,得CA=CB,根据题意可得出∠O=60°,从而得出∠OAD=90°,则AD与⊙O相切;(2)由题意得OC⊥AB,Rt△BCE中,由三角函数得BE=43,即可得出AB的长.【详解】(1)证明:如图,连接OA,∵=CA CB,∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°﹣(∠O+∠D)=90°,∴AD与⊙O相切;(2)∵∠O=60°,OA=OC,∴△OAC是等边三角形,∴∠ACO=60°,∵∠ACB=120°,∴∠ACB=2∠ACO,AC=BC,∴OC⊥AB,AB=2BE,∵CE=4,∠B=30°,∴BC=2CE=8,∴BE2CE∴AB=2BE=∴弦AB的长为【点睛】本题考查了切线的判定和性质,垂径定理,解直角三角形,熟练掌握切线的判定和性质是解题的关键.7.(Ⅰ)50°;(Ⅱ)60°【来源】2021年天津市南开区中考三模数学试卷【分析】(Ⅰ)由AM与圆O相切,根据切线的性质得到AM垂直于AC,可得出∠MAC为直角,再由∠BAC的度数,用∠MAC-∠BAC求出∠MAB的度数,又MA,MB为圆O的切线,根据切线长定理得到MA=MB,利用等边对等角可得出∠MAB=∠MBA,由底角的度数,利用三角形的内角和定理即可求出∠AMB的度数.(Ⅱ)连接AB,AD,由直径AC垂直于弦BD,根据垂径定理得到A为优弧BAD 的中点,根据等弧对等弦可得出AB=AD,由AM为圆O的切线,得到AM垂直于AC,又BD 垂直于AC,根据垂直于同一条直线的两直线平行可得出BD平行于AM,又BD=AM,利用一组对边平行且相等的四边形为平行四边形得到ADBM为平行四边形,再由邻边MA=MB,得到ADBM为菱形,根据菱形的邻边相等可得出BD=AD,进而得到AB=AD=BD,即△ABD为等边三角形,根据等边三角形的性质得到∠D为60°,再利用菱形的对角相等可得出∠AMB=∠D=60°.【详解】解:(Ⅰ)∵MA切⊙O于点A,∴∠MAC=90°.又∠BAC=25°,∴∠MAB=∠MAC-∠BAC=65°.∵MA、MB分别切⊙O于点A、B,∴MA=MB.∴∠MAB=∠MBA.∴∠AMB=180°-(∠MAB+∠MBA)=50°.(Ⅱ)如图,连接AD、AB,∵MA⊥AC,又BD⊥AC,∴BD∥MA.又∵BD=MA,∴四边形MADB是平行四边形.又∵MA=MB,∴四边形MADB是菱形.∴AD=BD.又∵AC为直径,AC⊥BD,∴AB =" AD" .∴AB=AD=BD.∴△ABD是等边三角形.∴∠D=60°.∴在菱形MADB中,∠AMB=∠D=60°【点睛】此题考查了切线的性质,圆周角定理,弦、弧及圆心角之间的关系,菱形的判定与性质,等腰三角形的判定与性质,切线长定理,以及等边三角形的判定与性质,熟练掌握性质及定理是解本题的关键.8.(1)见解析;(2)23AC=.【来源】湖南省长沙市长沙县2020-2021学年九年级上学期期末数学试题【分析】(1)利用在同一个圆中等弧对等角得出∠BAC=∠CAD,根据等腰三角形的性质、等量代换以及平行线的判定得到AD∥OC,再根据垂线的性质可以证明出OC⊥DC,根据切线的判定即可得出结论;(2)求AC可以放在Rt AOF中,结合(1)的结论以及利用勾股定理求解即可.【详解】(1)连接OC,则:∵点C为BE的中点∴CE CB=∴∠BAC=∠CAD∴OA=OC∴∠BAC=∠OCA∴∠CAD=∠OCA∴AD∥OC∵AD⊥DC∴∠ADC =90°∴∠OCD =90°∴OC ⊥DC又OC 是O 的半径∴DC 为O 的切线;(2)过点O 作AC 的垂线交于点F ,OA OC =,AOC ∴为等腰三角形, 12AF AC ∴=, AB =4,∠CAD =30°,122AO AC ∴==, 由(1)知30DAC CAB ∠=∠=︒, 112OF AO ∴==, 在Rt AOF 中,223AF AO OF ∴- 223AC AF ∴==3∴=AC 【点睛】本题考查了圆的切线、等弧对等角、平行线的判定及性质、勾股定理、等腰三角形的判定及性质,解题的关键是掌握相关知识点、添加适当辅助线进行解答.。
刚架、桁架:1、直杆无荷载区段的弯矩图为直线。
()2、a图示结构的弯矩图为图b。
()3~8、判断以下弯矩图的正误。
()9~10、图示体系A(K)点处的弯矩为(),()侧受拉。
11、图示结构中截面K的剪力值为()12~13、图示结构中K截面的弯矩值为(),剪力值为()。
14. 图示刚架截面K的弯矩(以下侧受拉为正)为。
3 kN m15、图示桁架中零杆(含零支杆)个数为:()16、图示桁架中零杆(含零支杆)个数为:()17、图示桁架零杆的个数为()(A)5根;(B)6根;(C)7根;(D)8根。
18、图示桁架中的零杆为()A、DC, EC, DE, DF, EFB、DE, DF, EFC、AF, BF, DE, DF, EFD、DC, EC, AF, BFA 、CH BI DG ,,B 、BI AB BG DC DG DE ,,,,,21~23、图示桁架各杆的轴力为( )。
24.图示桁架a 、b 杆轴力分别为 、 。
25.图示桁架中杆a、b的轴力分别为F Na=____,F Nb=____。
26、图示结构中1杆的轴力为()27、静定结构因支座移动,()A、会产生内力,但无位移B、会产生位移,但无内力C、内力和位移均不会产生D、内力和位移均会产生28、静定结构的几何特征是:()A.无多余的约束;B.几何不变体系;C.有多余的约束;D.几何不变且无多余约束。
虚功原理(静定结构位移的计算):1、形体系的虚功原理可表述为:变形体系处于平衡的必要和充分条件是,对于任何虚位移,外力所作虚功总和等于各微段上的内力在其变形上所作的虚功总和。
简单的说,即。
2、图乘法的应用条件是:①杆段是________杆段;②两个弯矩图中至少有一个是____图形。
3、在功的表达式中,凡与力对应的因子称为广义力,凡与位移对应的因子称为广义位移。
()4、在超静定结构计算中,一部分杆考虑弯曲变形,另一部分杆考虑轴向变形,则此结构为:()A.梁B.桁架;C.横梁刚度为无限大的排架;D.组合结构。
辅导讲义期末模拟小测试(时间20分钟,满分50分)一、选择题:(每小题2分,满分8分)(每题只有一个选项正确)1.下列说法正确的是……………………………………………………………………( )(A )一个整数不是正整数就是负整数; (B )一个正整数不是素数就是合数;(C )一个正整数不是奇数就是偶数; (D )一个正整数的最大因数不是它的最小倍数. 2.下列计算⎪⎭⎫⎝⎛+÷2117836的过程中,正确的是…………………………………………( ) (A )214971149211749⨯+⨯=⎪⎭⎫ ⎝⎛+÷;(B )218517118512117851⨯+⨯=⎪⎭⎫ ⎝⎛+÷; (C )2911491122749⨯=⎪⎭⎫ ⎝⎛+÷; (D )291185111227851⨯=⎪⎭⎫ ⎝⎛+÷. 3.已知有大、小两种纸杯与一桶果汁,其中小纸杯与大纸杯的容量比为2∶3,如果这桶果汁刚好装满小纸杯120个,那么这桶果汁最多可装满大纸杯的个数为……………( ) (A )360;(B )180 ; (C )80 ;(D )60.4.一种商品先涨价10%,又降价20%,现价是原价的…………………………………( )(A )90%;(B )88%; (C )86%;(D )80%.二、填空题:(每题3分,满分42分)5.既能被2整除,又能被5整除的最小正整数是 . 6.0.6的倒数是 .7.求比值:18分∶1.2时= .8.如果6是x 和9的比例中项,那么=x .9.如果A 和B 的最大公因数是15,且k A ⨯⨯=32,73⨯⨯=k B ,那么=k .10.如果一个分数的分母是40,且与85相等,那么这个分数的分子是 . 11.3.14、•114.3、π这三个数中,最大的是 .12.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,它的直径还不到人体头发丝粗细的201.那么,人体的头发丝直径最粗不超过 微米.13.2013年8月发布的“空气净化器比较试验结果通报”显示,市场上主流的中高端型号的22台各品牌空气净化器产品样机中,PM2.5去除率高于90%的有18台,占抽样产品的百分率为(精确到1%) . 14.一个纸盒里有红、黄、蓝、绿四种颜色的小球,这些小球除颜色不同外其余都完全相同,如图是各个颜色小球数量的统计图.如果小红从箱子中拿出一个小球,那么拿到绿色小球的可能性大小为 .15.如果一个半径为2cm 的圆的面积恰好与一个半径为4cm 的扇形面积相等,那么这个扇形的圆心角度数为 .16.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.那么半径为2的“等边扇形”的面积为 .17.如图,点P 在圆O 的圆周上顺时针匀速运动,现将圆O 八等分,如果点P 从A 点开始经过1分钟,其位置正好第一次在B 点,那么点P 从A 点开始经过45分钟,其位置在 点.(用图中的字母表示)18.如图(甲)、(乙),是两个边长相等的正方形,甲图以边为半径在正方形内画圆弧,联结对角线;乙图以各边为直径在正方形内画半圆,阴影部分的面积分别记为甲S 、乙S ,那么甲S 和乙S 的大小关系是:甲S 乙S .(填“>”、“=”或“<”)例1:如图,正方形ABCD 的边长为1,弧DE 、弧EF 、弧FG 、弧GH 、…的圆心依次按A 、B 、C 、D 循环,45°O AB C DEFG H (甲) (乙)(第14题图)(第17题图) (第18题图)它们依次连接得到曲线DEFGH …. (1)求曲线DEFGHI 的长.(结果保留π)(2)曲线DEFGHI 所连接的最后一段弧是第2 次以点A 为圆心画的弧,如果有一条按照上述规则画出的曲线,它所连接的最后一段弧是第4次以点A 为圆心画的弧,请直接写出这条曲线的长.(结果保留π)例题2:上海市居民用电使用“阶梯电价”与“分时电价”相结合的方式.阶梯电价按照年度电量为单位实施,分档电量和电价水平见下表(1):如果一户的全年用电量为3500度,具体使用情况如表(2),那么这户的全年电费支出为: 0.617×2120+0.307×1000+0.677×280+0.337×100=1838.3(元).小明家2013年全年的用电情况如图所示,每个月的谷时段的用电量是峰时段用电量的31. 问:(1)小明家2013年全年用电量是多少度?(2)小明家12月份的谷时段用电量为51度,那么小明家12月份的电费为多少?(结果精确到0.1) (说明:每户每月的用电量进行累积,超过第一档使用量后的各月电费按第二档收费)第一学期六年级期末测试卷(考试时间60分钟,满分100分)表(1)IHGFED C BA22.5°第二档用电量第一档用电量表(2)18.如图,一个边长是1厘米的等边三角形ABC ,将它沿直线l 作顺时针方向的翻动,到达图中最右边三角形的位置,那么顶点B 所经过的路程是 厘米.三、计算题,要求写出计算的主要步骤:(本大题共4题,每题5分,满分20分) 19.计算:212.21530+-. 20.计算:21.2525%23÷⨯.21.计算:3112(110%) 3.9553÷+-⨯. 22.解方程:1120% 2.573x +÷=⨯.四、简答题(本大题共5题,满分38分)23.(本题满分7分)小杰去新华书店买书,共带了60元钱.他先买了一本科普读物,恰好花了他所带钱数的13,接着他又用剩下钱数的25买了一本小说,那么小杰还剩下多少元钱?(第18题图)CABl24.(本题满分7分)据报道:“2014年第四季度网上商城液晶电视的出货量为13.6万台,比2014年第三季度增长了33%,占全国液晶电视市场的份额已经从9%提高到了15%.”求2014年第三季度网上商城液晶电视的出货量.(精确到0.1万台)25.(本题满分7分)已知,在直角三角形ABC 中,∠ACB = 90°,AC = 8,BC = 6,AB = 10,以AB 边为直径作半圆,把4个相同的直角三角形通过一定的图形运动拼成四叶草的形状(如图所示),求阴影部分的面积.26.(本题满分8分)如图,一只狗被一根12米长的绳子拴在一建筑物的墙角上,这个建筑的平面图是边长为10米的正方形,狗不能进入建筑物内活动.求狗所能活动到的地面部分的面积.(精确到1平方米)27.(本题满分9分)材料1:经济学家将家庭或个人在食品消费上的支出与总消费支出的比值称作恩格尔系数.(第26题图)(第25题图)CA B100%=⨯食品消费支出总额即:恩格尔系数消费支出总额.恩格尔系数可以用来刻划不同的消费结构,也能间接反映一个国家(地区)不同的发展阶段.联合国粮农组织的规定如下表所示:恩格尔系数 大于或等于60%恩格尔系数 在50%~60%之间恩格尔系数 在40%~50%之间恩格尔系数 在30%~40%之间恩格尔系数 小于30% 绝对贫困温 饱小 康富 裕最富裕(注:在50%-60%之间是指含50%,不含60% 的所有数据,以此类推)材料2:2014年2月22日国家统计局上海调查总队报道:2013年上海市居民家庭生活消费总支出人均13425元.其中食品支出人均5334元(包括粮食支出450元,蔬菜及制品支出438元,肉禽蛋奶及制品支出1393元,水产品支出581元),衣着支出人均771元,居住支出人均2260元,公用事业支出人均694元,交通通信支出人均1719元,文化教育支出人均964元,医疗保健支出人均1181元,其它支出人均502元.根据上述材料,(1)分别计算出“食品”、“衣着”、“居住”、“公用事业”、“交通通信”、“文化教育”和“医疗保健”占家庭生活消费总支出的百分比,并补充..完成下列扇形统计图.(百分号前保留一位小数,圆心角精确到1°)(2)计算上海市居民的恩格尔系数,并判断2013年上海市居民的生活水平.(第27题图)其它3.7%衣着 %12.8%文化教育 %8.8%。
20212022学年六年级数学上册期末复习系列之专题复习压轴版(解析版)【考点一】分数乘法简便计算。
【典型例题1】简便计算:“添加因数1”。
759575⨯- 9292167+⨯ 解析:6320;7223 【典型例题2】 简便计算:“分子拆分与乘法分配律相结合”。
717×1625+917×725 247179249175⨯+⨯解析:177;345【典型例题3】简便计算:“统一形式:少数服从多数”。
3.5×114 +125%+112 ×45解析:215【典型例题4】简便计算拆分整数:整数接近分数的分母或接近分母的倍数 2010×1232009解析:1232009123201620152017⨯解析:201520162015【考点二】分数混合运算。
【典型例题】用递等式计算,能简算的要简算。
5×(52×73)×14 83×16%+813÷425 2019×20182017[54(0.125+83)]÷41 6÷7676÷6 解析:12;258;201720182017;56;748【考点三】化简比。
【典型例题】化连比甲:乙4:5=,乙:丙3:7=,那么甲:乙:丙=( 12:15:35 )。
解析:5和3的最小公倍数是15,所以甲数是12,乙数是15,丙数是35.【考点四】分数、小数、除法、比、百分数等五种“数”之间的互化。
【典型例题】 1. 153:÷= 120.6()=== % 1.9;5;60 【对应练习】 10:80.25()=== %5=÷ 。
解析:2;40;25;20【考点五】寻找单位“1”。
【典型例题】甲数是乙数的52。
单位“1”是( 乙数 );数量关系是(乙数)×( 52)=( 甲数)【对应练习】 小亮比妈妈矮18。
第一部分 直流电阻电路一、参考方向、功率U图1 关联参考方向图2 非关联参考方向在电压、电流采用关联参考方向下,二端元件或二端网络吸收的功率为P =UI ;在电流、电压采用非关联参考方向时,二端元件或二端网络吸收的功率为P = -UI 。
例1、计算图3中各元件的功率,并指出该元件是提供能量还是消耗能量。
u u = -u =10(a)图3解:(a)图中,电压、电流为关联参考方向,故元件A 吸收的功率为 p=ui =10×(-1)= -10W<0 A 发出功率10W ,提供能量 (b)图中,电压、电流为关联参考方向,故元件B 吸收的功率为 p=ui =(-10)×(-1)=10W >0 B 吸收功率10W ,消耗能量 (c)图中,电压、电流为非关联参考方向,故元件C 吸收的功率为 p=-ui = -10×2= -20W <0 C 发出功率20W ,提供能量二、KCL 、KVLKCL :对集总参数电路中任一节点,在任一瞬时,流入或者流出该节点的所有支路电流的代数和恒为零,即Σi =0;KVL :对集总参数电路中的任一回路,在任一瞬时,沿着任一方向(顺时针或逆时针)绕行一周,该回路中所有支路电压的代数和恒为零。
即Σu =0。
例2、如图4中,已知U 1=3V ,U 2=4V ,U 3=5V ,试求U 4及U 5。
解:对网孔1,设回路绕行方向为顺时针,有 -U 1+U 2-U 5=0得 U 5=U 2-U 1=4-3=1V 对网孔2,设回路绕行方向为顺时针,有 U 5+U 3-U 4=0得 U 4=U 5+U 3=1+5=6V 三、电路元件理想电压源,理想电流源,电阻元件,电容元件,电感元件,受控源电容:q=Cu ,,,tu C i d d =ξξ+=ξξ=⎰⎰∞-d )(1d )(1)(00i Cu i Ct u tt2c )(21)(t Cu tW =图4电感:ΨL =Li ,,,t i L t Ψu d d d d L ==ξξ+=ξξ=⎰⎰∞-d )(1d )(1)(00u L i u L t i tt 2)(21)(t Li t W L =例3、电路如图5所示,试写出各图中U 与I 之间的关系式。
2012-2013期末总复习例题例题1 水在正常沸点时,如果水中含有直径为10-6m 的空气泡,若使这样的水沸腾,需要过热多少度?已知:正常沸点时水的表面张力215.8910N m σ--=⨯⋅,水的气化焓为140.565kJ mol -⋅(视为常数),水的密度为30.9584g cm -⋅。
例题2, 291K ,CaF 2饱和溶液的电导率4138.610S m κ--=⨯ ,纯水之电导率411.510S m κ--=⨯ 。
设291K 下()m NaCl ∞Λ、()m NaF ∞Λ、21()2m CaCl ∞Λ分别为4108.910-⨯,490.210-⨯和4116.710-⨯21S m mol - ,试判断43210mol dm --⨯ 的NaF 溶液中加入等体积、同浓度的CaCl 2溶液是否有沉淀生成?例题3 298.2K 时水的表面张力217.19710N m γ--=⨯⋅,411,, 1.57010Bp A n N m K T γ---∂⎛⎫=-⨯⋅⋅ ⎪∂⎝⎭,试计算298.2K 、1p θ下可逆地增大422.00010m -⨯表面积时,体系的H ∆、S ∆、A G ∆、f W 及Q 。
例题4 一含有4.93% Tl 的汞齐和另一含10.02% Tl 的汞齐分别为电池的两极,电解质溶液是Tl 2SO 4溶液,25℃时电池电动势为0.029480V ,30℃时为0.029971V.(1) 哪个电极为负极,写出计算电动势的表示式(能斯特方程);(2) 30℃时,加入汞使汞齐浓度由10.02%稀释到4.93%,求Tl 的摩尔稀释热;(3) 40℃时的电动势为多少?例题 5 硝酰胺NO 2NH 2 在缓冲介质(水溶液)中缓慢分解,2222()NO NH N O g H O →↑+实验找到如下规律:(a) 恒温下,在硝酰胺溶液上部固定体积中,用测定N 2O 气体的分压p 来研究分解反应,根据p-t 曲线可得:lg 'p k t p p∞∞=- (b) 改变缓冲介质,使在不同的pH 值下进行实验,做1/2lg t pH -图,得一直线,其斜率为-1,截距为lg(0.693/)k ,请解答下列问题:(1) 请从上述实验结果,求该反应的速率方程;(2) 有人提出如下两种反应历程:122322222232322323()()()()()k k k k NO NH N O g H OB NO NH H O NO NH H O NO NH N O H O -++++A −−→+−−→++←−−−−→+瞬间达到平衡速率决定步骤 你认为上述反应历程是否与事实相符,为什么?(3) 请你提出认为比较合理的反应历程假设,并求其速率方程。