18.2一元二次方程的解法分解因式法(沪科版)(1)
- 格式:ppt
- 大小:1.87 MB
- 文档页数:15
一元二次方程的解法(四)----因式分解法知识要点梳理:1.分解因式的方法有:提公因式法、利用平方差公式分解因式、利用完全平方公式分解因式、十字相乘法、分组分解法等2.因式分解法解一元二次方程的原理:000==⇔=b a ab 或预习引入:将下列各式分解因式(1)y y 22-(2)942-x (3)2222+-x x(4)862+-x x(5)y y x x 2422--+经典例题例1:用因式分解法解下列方程:(1) t (2t -1)=3(2t -1);(2) y 2+7y +6=0(3)(2x -1)(x -1)=1.(4)0)34()43(22=---x x例2:用适当方法解下列方程: (1)3(1-x )2=27; (2)x 2-6x -19=0;(3)3x 2=4x +1; (4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0; (6)4(3x +1)2=25(x -2)2.例3.解关于x 的方程:(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.经典练习:一.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 *(8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .3二.填空题(1)方程(2x +1)2+3(2x +1)=0的解为__________.(2)方程t (t +3)=28的解为_______.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.三.用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0; (2)(x-2)2=256; (3)x2-3x+1=0;(4)x2-2x-3=0; (5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9; (7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0; (9)2x2-8x=7(10)(x+5)2-2(x+5)-8=0.拓展练习1.已知x 2+3xy -4y 2=0(y ≠0),试求y x yx +-的值.2.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.3.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y , 则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗巩固作业:1.分别用三种方法来解以下方程(1)x2-2x-8=0 (2)3x2-24x=0用因式分解法:用配方法:用公式法:用因式分解法:用配方法:用公式法:2.已知x2+3x+5的值为9,试求3x2+9x-2的值.3.当x取何值时,能满足下列要求?(1)3x2-6的值等于21;(2)3x2-6的值与x-2的值相等.4.一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.。
一元二次方程的解法--公式法,因式分解法—知识讲解(基础)【学习目标】1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=.①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a -±-=.②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =-.③当240b ac ∆=-<时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程 1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式. 【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1)x 2+3x+1=0;(2)2241x x =-; (3)2x 2+3x-1=0.【答案与解析】(1)a=1,b=3,c=1∴x==.∴x 1=,x 2=.(2)原方程化为一般形式,得22410x x -+=.∵2a =,4b =-,1c =,∴224(4)42180b ac -=--⨯⨯=>.∴42221222x ±==±⨯,即1212x =+,2212x =-.(3)∵a=2,b=3,c=﹣1∴b 2﹣4ac=17>0∴x=∴x 1=,x 2=.【总结升华】用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算24b ac -的值;(3)若24b ac -是非负数,用公式法求解. 举一反三:【变式】用公式法解方程:(2014•武汉模拟)x 2﹣3x ﹣2=0.【答案】解:∵a=1,b=﹣3,c=﹣2;∴b 2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==, ∴x 1=,x 2=.2.用公式法解下列方程: (1)(2014•武汉模拟)2x 2+x=2;(2)(2014秋•开县期末)3x 2﹣6x ﹣2=0 ;(3)(2015•黄陂区校级模拟)x 2﹣3x ﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c 的值,代入求值即可.【答案与解析】解:(1)∵2x 2+x ﹣2=0,∴a=2,b=1,c=﹣2,∴x===,∴x 1=,x 2=.(2)∵a=3,b=﹣6,c=﹣2,∴b 2﹣4ac=36+24=60>0,∴x=, ∴x 1=,x 2=(3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x==,解得 x 1=,x 2=.【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在240b ac -≥的前提下,代入求根公式可求出方程的根. 举一反三:【变式】用公式法解下列方程: 2221x x +=; 【答案】解:移项,得22210x x +-=.∵ 2a =,2b =,1c =-,224242(1)120b ac -=-⨯⨯-=>,∴ 21213222x -±-±==⨯, ∴ 1132x --=,2132x -+=.类型二、因式分解法解一元二次方程3.用因式分解法解下列方程:(1)3(x+2)2=2(x+2); (2)(2x+3)2-25=0; (3)x (2x+1)=8x ﹣3.【思路点拨】 用因式分解法解方程,一定要注意第1小题,等号的两边都含有(x+2)这一项,切不可在方程的两边同除以(x+2),化简成3(x+2)=2,因为你不知道(x-2)是否等于零.第2小题,运用平方差公式可以,用直接开方也可以.第3小题化成一般式之后,再运用分解因式法解方程. 【答案与解析】(1)移项.得3(x+2)2-2(x+2)=0,(x+2)(3x+6-2)=0.∴ x+2=0或3x+4=0,∴ x 1=-2,243x =-. (2)(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0, ∴ x 1=1,x 2=-4.(3)去括号,得:2x 2+x=8x ﹣3,移项,得:2x 2+x ﹣8x+3=0合并同类项,得:2x 2﹣7x+3=0, ∴(2x ﹣1)(x ﹣3)=0, ∴2x﹣1=0或 x ﹣3=0,∴,x 2=3.【总结升华】(1)中方程求解时,不能两边同时除以(x+2),否则要漏解.用因式分解法解一元二次方程必须将方程右边化为零,左边用多项式因式分解的方法进行因式分解.因式分解的方法有提公因式法、公式法、二次三项式法及分组分解法.(2)可用平方差公式分解.4.解下列一元二次方程: (1)(2x+1)2+4(2x+1)+4=0; (2)(31)(1)(41)(1)x x x x --=+-.【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0.即2(23)0x +=, ∴ 1232x x ==-. (2)移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以11x =,22x =-.【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉x =1这个根. 举一反三:【变式】(1)(x+8)2-5(x+8)+6=0 (2)3(21)42x x x +=+【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0 X 1=-6,x 2=-5. (2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=01212,23x x =-=.5.探究下表中的奥秘,并完成填空:一元二次方程 两个根 二次三项式因式分解 x 2﹣2x+1=0 x 1=1,x 2=1 x 2﹣2x+1=(x ﹣1)(x ﹣1) x 2﹣3x+2=0 x 1=1,x 2=2 x 2﹣3x+2=(x ﹣1)(x ﹣2) 3x 2+x ﹣2=0 x 1=,x 2=﹣1 3x 2+x ﹣2=3(x ﹣)(x+1) 2x 2+5x+2=0x 1=﹣,x 2=﹣2 2x 2+5x+2=2(x+)(x+2)4x 2+13x+3=0 x 1= ,x 2= 4x 2+13x+3=4(x+ )(x+ )将你发现的结论一般化,并写出来.【思路点拨】利用因式分解法,分别求出表中方程的解,总结规律,得出结论. 【答案与解析】填空:﹣,﹣3;4x 2+13x+3=4(x+)(x+3).发现的一般结论为:若一元二次方程 ax 2+bx+c=0的两个根为x 1、x 2,则 ax 2+bx+c=a (x ﹣x 1)(x ﹣x 2).【总结升华】考查学生综合分析能力,要根据求解的过程,得出一般的结论,解一元二次方程——因式分解法.一元二次方程的解法--公式法,因式分解法—巩固练习(基础)【巩固练习】 一、选择题 1.(2014•泗县校级模拟)下列方程适合用因式方程解法解的是( ) A .x 2﹣3x+2=0 B .2x 2=x+4 C .(x ﹣1)(x+2)=72 D .x 2﹣11x ﹣10=02.方程(1)2x x -=的解是( )A .1x =-B .2x =-C .11x =-,22x =D .11x =,22x =-3.一元二次方程2340x x +-=的解是( ) A .11x =;24x =- B .11x =-;24x = C .11x =-;24x =- D .11x =;24x =4.方程x 2-5x-6=0的两根为( )A .6和1B .6和-1C .2和3D .-2和3 5.方程(x-5)(x-6)=x-5的解是 ( )A .x =5B .x =5或x =6C .x =7D .x =5或x =7 6.已知210x x --=,则3222012x x -++的值为 ( )A . 2011B .2012C . 2013D .2014 二、填空题7.(2015•厦门)方程x 2+x =0的解是___ _____; 8.方程(x-1)(x+2)(x-3)=0的根是_____ ___.9.请写一个两根分别是1和2的一元二次方程___ _____.10.若方程x 2-m =0的根为整数,则m 的值可以是_____ ___.(只填符合条件的一个即可) 11.已知实数x 、y 满足2222()(1)2x y x y ++-=,则22x y +=________.12.已知y =(x-5)(x+2).(1)当x 为 值时,y 的值为0; (2)当x 为 值时,y 的值为5.三、解答题 13.(2014秋•宝坻区校级期末)解方程 (1)2(x ﹣3)2=8(直接开平方法)(2)4x 2﹣6x ﹣3=0(运用公式法)(3)(2x ﹣3)2=5(2x ﹣3)(运用分解因式法) (4)(x+8)(x+1)=﹣12(运用适当的方法)14.用因式分解法解方程(1)x 2-6x-16=0.(2)(2x+1)2+3(2x+1)+2=0.15(2)请观察上表,结合24b ac -的符号,归纳出一元二次方程的根的情况. (3)利用上面的结论解答下题.当m 取什么值时,关于x 的一元二次方程(m-2)x 2+(2m+1)x+m-2=0, ①有两个不相等的实数根; ②有两个相等的实数根; ③没有实数根.【答案与解析】 一、选择题 1.【答案】C ;【解析】解:根据分析可知A 、B 、D 适用公式法.而C 可化简为x 2+x ﹣72=0,即(x+9)(x ﹣8)=0, 所以C 适合用因式分解法来解题.故选C .2.【答案】C ;【解析】整理得x 2-x-2=0,∴ (x-2)(x+1)=0.3.【答案】A ;【解析】可分解为(x-1)(x+4)=04.【答案】B ;【解析】要设法找到两个数a ,b ,使它们的和a+b =-5,积ab =-6,∴ (x+1)(x-6)=0,∴ x+1=0或x-6=0. ∴ x 1=-1,x 2=6. 5.【答案】D ;【解析】此方程左右两边含有相同的因式(x-5),应移项后用因式分解法求解.即(x-5)(x-6)-(x-5)0.∴ (x-5)(x-6-1)=0,∴ 15x =,27x =6.【答案】C ;【解析】由已知得x 2-x =1,∴ 322222012()20122012120122013x x x x x x x x 2-++=--++=-++=+=.二、填空题 7.【答案】x 1=0,x 2=-1.【解析】可提公因式x ,得x(x+1)=0.∴ x =0或x+1=0,∴ x 1=0,x 2=-1. 8.【答案】x 1=1,x 2=-2,x 3=3.【解析】由x-1=0或x+2=0或x-3=0求解. 9.【答案】2320x x -+=;【解析】逆用因式分解解方程的方法,两根为1、2的方程就是(x-1)(x-2)=0,然后整理可得答案. 10.【答案】4;【解析】 m 应是一个整数的平方,此题可填的数字很多. 11.【答案】2;【解析】由(x 2+y 2)2-(x 2+y 2)-2=0得(x 2+y 2+1)(x 2+y 2-2)=0又由x ,y 为实数,∴ x 2+y 2>0,∴ x 2+y 2=2. 12.【答案】 (1) x =5或x =-2;(2) 3692x +=或3692x -=. 【解析】(1)当y =0时(x-5)(x+2)=0,∴ x-5=0或x+2=0,∴ x =5或x =-2.(2)当y =5时(x-5)(x+2)=5,∴ 23150x x --=,3941(15)369212x ±-⨯⨯-±==⨯,∴ 3692x +=或3692x -=. 三、解答题13.【解析】解:(1)(x ﹣3)2=4x ﹣3=2或x ﹣3=﹣2, 解得,x 1=1或x 2=5; (2)a=4,b=﹣6,c=﹣3,b 2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84,x==,,;(3)移项得,(2x ﹣3)2﹣5(2x ﹣3)=0,因式分解得,(2x ﹣3)(2x ﹣3﹣5)=0,,x 2=4;(4)化简得,x 2+9x+20=0,(x+4)(x+5)=0,解得,x 1=﹣4,x 2=﹣5.14.【解析】(1)(x-8)(x+2)=0,∴ x-8=0或x+2=0,∴ 18x =,22x =-.(2)设y =2x+1,则原方程化为y2+3y+2=0,∴ (y+1)(y+2)=0,∴ y+1=0或y+2=0, ∴ y =-1或y =-2.当1y =-时,211x +=-,1x =-;当2y =-时,212x +=-,32x =-. ∴ 原方程的解为11x =-,232x =-.15.【解析】(2)①当240b ac ->时,方程有两个不相等的实数根; ②当240b ac -=时,方程有两个相等的实数根;③当240b ac -<时,方程没有实数根. (3)242015b ac m -=-,①当原方程有两个不相等的实数根时,2420150b ac m -=->,即34m >且m ≠2; ②当原方程有两个相等的实数根时,b 2 -4ac =20m -15=0,即34m =; ③当原方程没有实数根时, 2420150b ac m -=-<,即34m <.一元二次方程的解法--公式法,因式分解法—知识讲解(提高)【学习目标】1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程 1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a--=②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③当240b ac ∆=-<时,右端是负数.因此,方程没有实根. 要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.解关于x 的方程2()(42)50m n x m n x n m ++-+-=.【答案与解析】(1)当m+n =0且m ≠0,n ≠0时,原方程可化为(42)50m m x m m +--=.∵ m ≠0,解得x =1.(2)当m+n ≠0时,∵ a m n =+,42b m n =-,5c n m =-,∴ 2224(42)4()(5)360b ac m n m n n m m -=--+-=≥,∴ 2243624|6|2()2()n m m n m m x m n m n -±-±==++, ∴ 11x =,25n m x m n-=+. 【总结升华】解关于字母系数的方程时,应该对各种可能出现的情况进行讨论.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用公式法解含有字母系数的一元二次方程---例2练习】【变式】解关于x 的方程2223(1)x mx mx x m ++=+≠;【答案】原方程可化为2(1)(3)20,m x m x -+-+= ∵1,3,2,a m b m c =-=-=∴ 2224(3)8(1)(1)0b ac m m m -=---=+≥,∴ 23(1)3(1),2(1)2(1)m m m m x m m -±+-±+==-- ∴ 122, 1.1x x m==- 2. 用公式法解下列方程: (m-7)(m+3)+(m-1)(m+5)=4m ;【答案与解析】方程整理为224214540m m m m m --++--=,∴ 22130m m --=,∴ a =1,b =-2,c =-13,∴ 224(2)41(13)56b ac -=--⨯⨯-=,∴ 24(2)56221b b ac m a -±---±==⨯22141142±==±, ∴ 1114m =+,2114m =-.【总结升华】先将原方程化为一般式,再按照公式法的步骤去解.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用因式分解法解含字母系数的一元二次方程---例5(3)】【变式】用公式法解下列方程:【答案】∵21,3,2,a b m c m ==-= ∴22224(3)4120b ac m m m -=--⨯⨯=≥ ∴23322m m m m x ±±== ∴122,.x m x m ==类型二、因式分解法解一元二次方程3.(2015•东西湖区校级模拟)解方程:x 2﹣1=2(x+1).【答案与解析】解:∵x 2﹣1=2(x+1),∴(x+1)(x ﹣1)=2(x+1),∴(x+1)(x ﹣3)=0,∴x 1=﹣1,x 2=3.【总结升华】本题主要考查了因式分解法解一元二次方程的知识,左边先平方差公式分解,然后提取公因式(x+1),注意不要两边同除(x+1),这样会漏解.举一反三:【变式】解方程(2015·茂名校级一模)(1)x 2-2x-3=0; (2)(x-1)2+2x(x-1)=0.【答案】解:(1)分解因式得:(x-3)(x+1)=0∴x-3=0,x+1=0∴x 1=3,x 2=-1.(2)分解因式得:(x-1)(x-1+2x )=0∴x-1=0,3x-1=0∴x 1=1,x 2=13.4.如果2222()(2)3x y x y ++-=,请你求出22x y +的值.【答案与解析】设22x y z +=,∴ z(z-2)=3.整理得:2230z z --=,∴ (z-3)(z+1)=0.∴ z 1=3,z 2=-1.∵ 220z x y =+>,∴ z =-1(不合题意,舍去)∴ z =3.即22x y +的值为3.【总结升华】如果把22x y +视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x 、y 的值,然后计算22x y +,但实际上如果把22x y +看成一个整体,那么原方程便可化简求解。
一元二次方程的复习知识精要1.一元二次方程的概念只含有一个未知数,且未知数的最高次数是2的整式方程叫一元二次方程。
2. 一元二次方程的一般形式a x2+bx+c=0(a W0),其中a x2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
3.一元二次方程的解法解法1:直接开平方法解法2:因式分解法:一般步骤:(1)将方程右边化为0(2)将方程左边的二次三项式分解为两个一元一次方程(3)令每一个因式分别为0,得到两个一元一次方程(4)分别解这两个一元一次方程,它们的解就是原方程的解解法3:配方法:一般步骤:(1)先把二次项系数化为1:方程两边同除以二次项的系数(2)移项:把常数项移到方程右边(3)配方:方程两边都加上一次项系数一半的平方,把方程化为x m 2 n当的形式(4)当n>0时,用直接开平方法解变形后的方程。
解法4:公式法:一般步骤是:(1)把方程化为一般形式,进而确定a、b, c的值.(注意符号)(2)求出b2-4ac的值.(先判别方程是否有根)c b b24ac ,,(3)在b2-4ac>0的前提下,把a、b、c的直代入求根公式,求出x= ------------------ 的值,取后与出2a方程的根.4、一元二次方程ax2+bx+c=0 (aw0)的根的判别式△ =b2- 4ac.当△ >0时,?方程有两个不相等的实数*H X 1= b 也 4ac , X 2=b心 4ac;当△ =0时,方程有两个相等实数根X 1=X 2=—上;当2a2a2a△ <0时,方程没有实数根. 5、二次三项式的因式分解:(1)形如ax 2+bx+c (a, b,c 都不为0)的多项式称为二次三项式。
(2)当^ = b 2-4ac>0,先用公式法求出方程ax 2+bx+c=0 (aw0)的两个实数根 x i, X 2再写出分解式ax 2+bx+c=a (x —xi) (x —x2).当^ = b 2-4ac<0,方程ax 2+bx+c=0 (aw0)没有实数根,ax 2+bx+c 在实数范围内不能分解因式。
专题05 一元二次方程的解法(知识点考点串编)【思维导图】例.(2022·重庆涪陵·九年级期末)方程29x =的解是( )A .3x =B .3x =-C .10x =,23x =-D .13x =,23x =- 【答案】D 【解析】 【分析】直接利用开方法求解即可. 【详解】©知识点一:直接开平方法技巧:把方程ax 2+c =0(a ≠这解一元二次方程的方法叫做直接开平方法。
解:29x =,解得:13x =,23x =-, 故选:D . 【点睛】本题考查了一元二次方程的求解,解题的关键是掌握直接开方法求解.练习1.(2022·北京丰台·九年级期末)若关于x 的一元二次方程()22110m x x m -++-=有一个解为0x =,那么m 的值是( ) A .-1 B .0 C .1 D .1或-1【答案】A 【解析】 【分析】将0x =代入方程,得到关于m 的一元二次方程,解方程求解即可,注意二次项系数不为0. 【详解】解:∵关于x 的一元二次方程()22110m x x m -++-=有一个解为0x =,∵210,10m m -=-≠1m ∴=- 故选A 【点睛】本题考查了一元二次方程的解的定义,一元二次方程的定义,解一元二次方程,掌握一元二次方程解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.练习2.(2021·四川南充·一模)方程(9x ﹣1)2=1的解是( )A .1213x x == B .1229x x == C .1220,9x x == D .1220,9x x ==-【答案】C 【解析】 【分析】利用直接开平方法求解即可.【详解】解:2(91)1x-=,911x∴-=或911x-=-,解得10x=,22 9x=,故选:C.【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.练习3.(2021·北京师范大学附属实验中学分校八年级期中)已知三角形的两边长是4和6,第三边的长是方程(x﹣3)2=4的根,则此三角形的周长为()A.17B.11C.15D.11或15【答案】C【解析】【分析】先求出方程的解,然后根据三角形三边关系利用三角形的两边之和大于第三边判断能否构成三角形,选择满足题意的第三边,即可求出三角形的周长.【详解】解:(x﹣3)2=4,x﹣3=±2,解得x1=5,x2=1.若x=5,则三角形的三边分别为4,5,6,其周长为4+5+6=15;若x=1时,6﹣4=2>1,不能构成三角形,则此三角形的周长是15.故选:C.【点睛】本题考查一元二次方程的解法,三角形三边关系,三角形的周长,掌握一元二次方程的解法,三角形三边关系,三角形的周长是解题关键.练习4.(2022·广东白云·九年级期末)解方程:()23250x+-=【答案】x 1=2,x 2=-8 【解析】 【分析】先把方程变形为解(x +3)2=25,然后利用直接开平方法解方程. 【详解】 解:(x +3)2=25, ∵x +3=±5,解得:x 1=2,x 2=-8. 【点睛】本题考查了解一元二次方程-直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.例.(2022·甘肃麦积·九年级期末)将一元二次方程2850x x +-=化成()2x a b+=(,a b 为常数)的形式,则a ,b 的值分别是( ) A .-4,21 B .-4,11C .4,21D .-8,6【答案】C 【解析】 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.©知识点二 配方法技巧:将一元二次方程化成一般形式,如ax 2+bx+c =0(a ≠0);把常数项移到方程的右边,如ax 2+bx =-c ;方程的两边都除以二次项系数,使二次项系数为1,如X ²+解:∵x 2+8x -5=0, ∵x 2+8x =5,则x 2+8x +16=5+16,即(x +4)2=21, ∵a =4,b =21, 故选:C . 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.练习1.(2022·海南海口·九年级期末)用配方法解方程2430x x --=,下列配方正确的是( ) A .()227x -= B .()227x +=C .()223x -=D .()221x -=【答案】A 【解析】 【分析】方程移项后,两边同时加上4,变形即可得到结果. 【详解】方程移项得 243x x -=方程两边同时加上4,得 24434x x -+=+ 即2(2)7x -= 故选:A . 【点睛】本题考查了配方法解一元二次方程,熟练掌握完全平方公式是解题的关键.练习2.(2022·山西山阴·九年级期末)用配方法解方程2650x x --=时,配方后的方程是( ) A .2(3)4x -= B .2(3)14x -= C .2(3)31-=x D .2(3)14x +=【答案】B 【解析】 【分析】直接利用配方法进行配方即可.解:2650--=x x移项得:265-=,x x配方得:26914-+=,x xx-=合并得:()2314故选:B.【点睛】本题考查了配方法,解决本题的关键是牢记配方法的步骤,本题较基础,考查了学生对基础知识的掌握与基本功等.练习3.(2022·广东禅城·九年级期末)一元二次方程x2﹣8x+5=0配方后可化为()A.(x﹣4)=19B.(x+4)=﹣19C.(x﹣4)2=11D.(x+4)2=16【答案】C【解析】【分析】利用配方法求解即可.【详解】解:∵2850-+=x x∵281611-+=x x∵()2411x-=故选C.【点睛】本题考查了配方法.解题的关键在于熟练使用配方法.练习4.(2020·湖南·娄底市第三中学九年级阶段练习)选择合适的方法解方程:(1)x2﹣4x=2;(2)3(x﹣5)=x2﹣25.【答案】(1)x1=6,x2=26(2)x1=5,x2=﹣2【解析】(1)利用配方法直接求解即可; (2)先移项,利用因式分解法求解即可. (1) ∵x 2﹣4x =2∵x 2﹣4x +4=2+4,即(x ﹣2)2=6 ∵x ﹣2=6∵x 1=6x 2=26 (2)∵3(x ﹣5)=x 2﹣25, ∵3(x ﹣5)﹣(x +5)(x ﹣5)=0, ∵(x ﹣5)(3﹣x ﹣5)=0, ∵x ﹣5=0或﹣x ﹣2=0, ∵x 1=5,x 2=﹣2. 【点睛】本题考查了一元二次方程的解法,一元二次方程的解法主要有开平方法、配方法、公式法、因式分解法.例.(2021·河北·金华中学九年级阶段练习)将一元二次方程2850x x --=化成()2x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( )A .4-,21B .4-,69C .4,21D .8-,11【答案】A 【解析】 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案. 【详解】©知识点三:配方法的应用解:∵2850x x --=, ∵285x x -=, 则2816516x x +=+-, 即2()421x -=, ∵4a =-,21b =, 故选A . 【点睛】本题考查了配方法求解一元二次方程,解题的关键是熟练掌握配方法的求解过程. 练习1.(2021·贵州六盘水·九年级阶段练习)代数式x 2﹣4x +5的值( ) A .恒为正 B .恒为负 C .可能为0 D .不能确定【答案】A 【解析】 【分析】直接利用配方法将原式变形,进而得出答案. 【详解】解:2245(2)1x x x -+=-+,2(2)0x -, 2(2)10x ∴-+>,∴代数式245x x -+的值恒为正.故选:A . 【点睛】本题主要考查了配方法的应用,解题的关键是正确配方.练习2.(2021·广东·深圳市龙岗区宏扬学校九年级期中)已知m 是有理数,则m 2﹣2m +4的最小值是( ) A .3 B .5 C .6 D .8【答案】A 【解析】 【分析】根据配方法对式子进行配方,利用非负性求解最小值即可.【详解】解:2224(1)3m m m -+=-+∵2(1)0m -≥,当1m =时,2(1)0m -= ∵2(1)33m -+≥,当1m =时,2(1)33m -+= 1m =,为有理数,224m m -+的最小值为3故选A 【点睛】本题考查了配方法的应用,然后根据非负性求出最小值,解题的关键是掌握配方法.练习3.(2021·湖北省水果湖第一中学九年级阶段练习)已知关于x 的多项式24x mx -++的最大值为5,则m 的值可能为( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】先把多项式配方,从而得244m +=5,进而即可得到结论. 【详解】解:∵24x mx -++=22424m m x ⎛⎫--++ ⎪⎝⎭,又∵关于x 的多项式24x mx -++的最大值为5, ∵244m +=5,解得:m =±2, ∵m 的值可能为2. 故选B . 【点睛】本题主要考查多项式的最值问题,掌握配方法是解题的关键.练习4.(2021·甘肃会宁·九年级期中) “a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∵(x +2)2+1≥1,∵x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:因为x 2-4x +6=(x _____)2+______,所以当x =_____时,代数式x 2-4x +6有最_____(填“大”或“小”)值,这个最值为_______; (2)比较代数式x 2-1与2x -3的大小.【答案】(1)-2;2;2;小;2;(2)2123x x ->- 【解析】 【分析】(1)根据题干的例子配方即可;(2)通过作差法比较大小,根据偶次方的非负性即可. 【详解】解:(1)246x x -+ 2442x x =-++ 2(2)2x =-+,当2x =时,代数式246x x -+有最小值, 这个最值为2.故答案为:2-;2;2;小; (2)2(1)(23)x x --- 2123x x =--+2211x x =-++ 2(1)1x =-+,2(1)0x -,2(1)10x ∴-+>,2123x x ->-∴.【点睛】本题考查了配方法的应用,解题的关键是利用作差法比较大小.例.(2022·上海市建平实验中学八年级期末)下列方程中,有实数解的是( ) A .430x += B .333x x x --= C 130x -= D .222310x y ++=【答案】B 【解析】 【分析】判断方程有无实数解,就是看方程的解是否是能满足方程的左右两边相等的实数. 【详解】A 、∵430x +>,故A 错误,不符合题意;B 、333x x x --=, ()2333x x x -=-,2333x x x -=-, 2630x x -+=,627x ±=,1633x +=2633x -=,经检验,1633x +=,2633x -=均是原方程的解,故B 正确,符合题意; C 130x ->,故无实数解,故C 错误,不符合题意; D 、222310x y ++>,故无实数解,故D 错误,不符合题意; 故选:B . 【点睛】本题考查了无理方程、高次方程、分式方程的解法,二次根式的性质,解题的关键是掌握方程的解的概念,是能满足方程的左右两边相等的实数.练习1.(2021·广东·深圳市龙岗区宏扬学校九年级期中)用公式法解方程4y 2﹣12y ﹣3=0,得到( )©知识点四:公式法技巧:一元二次方程ax 2+bx+c =0(a ≠0,用配方法所求出的两个根x =−b±√b 2−4ac2a(b ²-4ac ≥0)只要是有实数根的一元二次方程,均可将a ,b ,c 的值代入两根公式中直接解出,所以把这种方法称为公式法,而把x =−b±√b 2−4ac2a(b ²-4ac ≥0)叫做一元二次方程ax ²+bx +c =0(a ≠0)的求根公式。