专项限时集训2 立体几何中的探索性与存在性问题 Word版含答案
- 格式:doc
- 大小:312.50 KB
- 文档页数:6
【名师综述】利用空间向量解决探索性问题立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探索性问题的常见类型及其求解策略,希望读者面对立体几何中的探索性问题时能做到有的放矢,化解自如.1.以“平行、垂直、距离和角”为背景的存在判断型问题是近年来高考数学中创新型命题的一个显著特点,它以较高的新颖性、开放性、探索性和创造性深受命题者的青睐.此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种情况:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法. 求解此类问题的难点在于:涉及的点具有运动性和不确定性.所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简单、解法固定、操作方便.解决与平行、垂直有关的存在性问题的基本策略是:通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.如本题把直二面角转化为这两个平面的法向量垂直,利用两法向量数量积为零,得参数p 的方程.即把与两平面垂直有关的存在性问题转化为方程有无解的问题.2.与“两异面直线所成的角、直线与平面所成的角和二面角”有关的存在性问题,常利用空间向量法解决,可以避开抽象、复杂地寻找角的过程,只要能够准确理解和熟练应用夹角公式,就可以把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.事实说明,空间向量法是证明立体几何中存在性问题的强有力的方法.【精选名校模拟】1. 在四棱锥ABCD E -中,底面ABCD 是正方形,AC 与BD 交于点O ,⊥EC 底面ABCD ,F 为BE的中点.(Ⅰ)求证:DE ∥平面ACF ; (Ⅱ)求证:AE BD ⊥;(Ⅲ)若2,ABCE在线段EO上是否存在点G,使⊥CG平面BDE?若存在,求出EGEO的值,若不存在,请说明理由.O FED C BA【答案】(Ⅰ)(Ⅱ)见解析;(Ⅲ)1.2 EGEO=2.如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,P A ⊥底面ABCD ,P A=AD=CD=2AB =2,M 为PC 的中点。
高考数学复习专题训练—立体几何中的翻折问题及探索性问题1.(2021·山东聊城三模)如图,在平面四边形ABCD中,BC=CD,BC⊥CD,AD⊥BD,沿BD将△ABD折起,使点A到达点P的位置,且PC⊥BC.(1)求证:PD⊥CD;(2)若M为PB的中点,二面角P-BC-D的大小为60°,求直线PC与平面MCD所成角的正弦值.2.(2021·湖南师大附中二模)如图,在四棱锥P-ABCD中,AB∥CD,∠ABC=90°,AB=BC=1,△PDC是边长为2的等边三角形,平面PDC⊥平面ABCD,E为线段PC上一点.(1)设平面PAB∩平面PDC=l,求证:l∥平面ABCD.(2)是否存在点E,使平面ADE与平面ABCD的夹角为60°?若存在,求CE的值;若不存在,请说明理由.CP3.(2021·山东泰安三模)在三棱柱ABC-A1B1C1中,AB=AC=2,BC=2√2,BB1=2,M为CC1的中点.(1)试确定线段AB1上一点N,使AC∥平面BMN;(2)在(1)的条件下,若平面ABC⊥平面BB1C1C,∠ABB1=60°,求平面BMN与平面BB1C1C的夹角的余弦值.4.(2021·福建泉州二模)如图①,在等腰直角三角形ABC中,CD是斜边AB上的高,沿CD将△ACD折起,使点A到达点P的位置,如图②,∠PBD=60°,E,F,H分别为PB,BC,PD的中点,G为CF的中点.图①图②(1)求证:GH∥平面DEF;(2)求直线GH与平面PBC所成角的正弦值.5.(2021·天津二模)如图,在四棱锥E-ABCD中,平面ABCD⊥平面ABE,AB∥CD,AB⊥BC,AB=2BC=2CD=2,AE=BE=√3,M为BE的中点.(1)求证:CM∥平面ADE.(2)求二面角E-BD-C的正弦值.?若存在,求出AN的(3)在线段AD上是否存在一点N,使直线MD与平面BEN所成角的正弦值为4√621长;若不存在,说明理由.6.(2021·湖南长沙长郡中学一模)如图①,在等边三角形ABC中,D,E分别为边AB,AC上的动点,且满足DE∥BC,记DE=λ.将△ADE沿DE翻折到△MDE的位置,使得平面MDE⊥平面DECB,连接MB,MC,如BC图②所示,N为MC的中点.图①图②(1)当EN∥平面MBD时,求λ的值.(2)随着λ值的变化,二面角B-MD-E的大小是否改变?若是,请说明理由;若不是,请求出二面角B-MD-E的正弦值.答案及解析1.(1)证明 因为BC ⊥CD ,BC ⊥PC ,PC ∩CD=C ,所以BC ⊥平面PCD.又PD ⊂平面PCD ,所以BC ⊥PD.由翻折可知PD ⊥BD ,BD ∩BC=B ,所以PD ⊥平面BCD.又CD ⊂平面BCD ,所以PD ⊥CD.(2)解 因为PC ⊥BC ,CD ⊥BC ,所以∠PCD 为二面角P-BC-D 的平面角,即∠PCD=60°.在Rt △PCD 中,PD=CD tan 60°=√3CD.取BD 的中点O ,连接OM ,OC ,则OM ∥PD ,OM=12PD. 因为BC=CD ,所以OC ⊥BD.由(1)知PD ⊥平面BCD ,所以OM ⊥平面BCD ,所以OM ,OC ,OD 两两互相垂直.以O 为原点,OC ,OD ,OM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示.设OB=1,则P (0,1,√6),C (1,0,0),D (0,1,0),M (0,0,√62),CP ⃗⃗⃗⃗⃗ =(-1,1,√6),CD ⃗⃗⃗⃗⃗ =(-1,1,0),CM⃗⃗⃗⃗⃗⃗ =(-1,0,√62).设平面MCD 的法向量为n =(x ,y ,z ), 则{n ·CD ⃗⃗⃗⃗⃗ =0,n ·CM ⃗⃗⃗⃗⃗⃗ =0,即{-x +y =0,-x +√62z =0, 令z=√2,则x=√3,y=√3,所以n =(√3,√3,√2)为平面MCD 的一个法向量. 设直线PC 与平面MCD 所成的角为θ,则sin θ=|cos <CP ⃗⃗⃗⃗⃗ ,n >|=|CP ⃗⃗⃗⃗⃗⃗·n ||CP ⃗⃗⃗⃗⃗⃗ ||n |=√34,所以直线PC 与平面MCD 所成角的正弦值为√34.2.(1)证明 ∵AB ∥CD ,AB ⊄平面PDC ,DC ⊂平面PDC , ∴AB ∥平面PDC.又平面PAB ∩平面PDC=l ,AB ⊂平面PAB ,∴AB ∥l. 又l ⊄平面ABCD ,AB ⊂平面ABCD ,∴l ∥平面ABCD. (2)解 设DC 的中点为O ,连接OP ,OA ,则PO ⊥DC.又平面PDC ⊥平面ABCD ,PO ⊂平面PDC ,平面PDC ∩平面ABCD=DC ,∴PO ⊥平面ABCD.∵AB ∥CD ,AB=OC=1,∴四边形ABCO 为平行四边形, ∴OA ∥BC.由题意可知BC ⊥CD ,∴OA ⊥CD. ∴OA ,OC ,OP 两两互相垂直.以O 为原点,OA ,OC ,OP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示.则A (1,0,0),D (0,-1,0),C (0,1,0),P (0,0,√3).由PO ⊥平面ABCD ,可知m =(0,0,1)为平面ABCD 的一个法向量.假设存在点E ,使平面ADE 与平面ABCD 的夹角为60°,设CE ⃗⃗⃗⃗⃗ =λCP ⃗⃗⃗⃗⃗ (0≤λ≤1),则E (0,1-λ,√3λ),∴DE ⃗⃗⃗⃗⃗ =(0,2-λ,√3λ).设平面ADE 的法向量为n =(x ,y ,z ),DA ⃗⃗⃗⃗⃗ =(1,1,0),则{n ·DA ⃗⃗⃗⃗⃗ =0,n ·DE ⃗⃗⃗⃗⃗ =0,即{x +y =0,(2-λ)y +√3λz =0,取x=1,则y=-1,z=√3λ,∴n =(1,-1√3λ)为平面ADE 的一个法向量.由题意可知|cos <m ,n >|=|m ·n ||m ||n |=2-λ√3λ√12+12+(2-λ√3λ)=12,整理得λ2+4λ-4=0,解得λ=2(√2-1),故存在点E ,使平面ADE 与平面ABCD 的夹角为60°,此时CECP =2(√2-1). 3.解 (1)当AN=13AB 1时,AC ∥平面BMN.证明:如图,设BM ∩B 1C=E ,连接EN ,则CEB 1E =CMBB 1=12.由AN=13AB 1,得ANB 1N =12,∴AC ∥NE.又AC ⊄平面BMN ,NE ⊂平面BMN ,∴AC ∥平面BMN.(2)取BC 的中点O ,连接AO ,B 1O.∵AC=AB=2,∴AO ⊥BC.又BC=2√2,∴AO=BO=√2.∵平面ABC ⊥平面BB 1C 1C ,平面ABC ∩平面BB 1C 1C=BC ,AO ⊂平面ABC ,∴AO ⊥平面BB 1C 1C.∵AB=BB 1=2,∠ABB 1=60°,∴AB 1=2,O B 12=A B 12-AO 2=2,∴OB 1=√2,O B 12+OB 2=B B 12,∴OB 1⊥OB.以O 为原点,OB ,OB 1,OA 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示,则A (0,0,√2),B (√2,0,0),C (-√2,0,0),C 1(-2√2,√2,0),B 1(0,√2,0),M (-3√22,√22,0),∴BA ⃗⃗⃗⃗⃗ =(-√2,0,√2),AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,√2,-√2),BM ⃗⃗⃗⃗⃗⃗ =(-5√22,√22,0),AN ⃗⃗⃗⃗⃗⃗ =13AB 1⃗⃗⃗⃗⃗⃗⃗ =(0,√23,-√23),BN ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AN⃗⃗⃗⃗⃗⃗ =(-√2,√23,2√23). 设平面BMN 的法向量为n =(x ,y ,z ),则{BN⃗⃗⃗⃗⃗⃗ ·n =0,BM ⃗⃗⃗⃗⃗⃗ ·n =0,即{-√2x +√23y +2√23z =0,-5√22x +√22y =0,解得{y =5x ,z =-x ,令x=1,则y=5,z=-1,∴n =(1,5,-1)为平面BMN 的一个法向量. 由题意可知m =(0,0,1)为平面BB 1C 1C 的一个法向量.设平面BMN 与平面BB 1C 1C 的夹角为θ,则cos θ=|cos <m ,n >|=|m ·n ||m ||n |=√39, 故平面BMN 与平面BB 1C 1C 的夹角的余弦值为√39.4.(1)证明 如图,连接BH ,交DE 于点M ,连接MF.因为△ABC 是等腰直角三角形,CD 是斜边AB 上的高,所以AD=DB ,即PD=DB. 因为∠PBD=60°,所以△PBD 是等边三角形.因为E ,H 分别为PB ,PD 的中点,所以M 是等边三角形PBD 的中心,所以BM=23BH.因为F 为BC 的中点,G 为CF 的中点,所以BF=23BG. 所以MF ∥GH.又MF ⊂平面DEF ,GH ⊄平面DEF ,所以GH ∥平面DEF.(2)解 如图,建立空间直角坐标系,设PD=DB=DC=2,则C (0,2,0),B (2,0,0),P (1,0,√3),H (12,0,√32),G (12,32,0),所以BC ⃗⃗⃗⃗⃗ =(-2,2,0),BP ⃗⃗⃗⃗⃗ =(-1,0,√3),HG⃗⃗⃗⃗⃗⃗ =(0,32,-√32). 设平面PBC 的法向量为n =(x ,y ,z ),则{n ·BC ⃗⃗⃗⃗⃗ =0,n ·BP ⃗⃗⃗⃗⃗ =0,即{-2x +2y =0,-x +√3z =0,令x=√3,则y=√3,z=1,所以n =(√3,√3,1)为平面PBC 的一个法向量. 设直线GH 与平面PBC 所成的角为θ, 则sin θ=|cos <n ,HG ⃗⃗⃗⃗⃗⃗ >|=|n ·HG ⃗⃗⃗⃗⃗⃗⃗||n ||HG ⃗⃗⃗⃗⃗⃗⃗ |=√3√3×√7=√77, 故直线GH 与平面PBC 所成角的正弦值为√77. 5.(1)证明 取AE 的中点P ,连接MP ,PD (图略).∵P ,M 分别为AE ,BE 的中点,∴PM ∥AB ,PM=12AB. 又CD ∥AB ,CD=12AB ,∴PM ∥CD ,PM=CD ,∴四边形PMCD 为平行四边形,∴CM ∥PD.又CM ⊄平面ADE ,PD ⊂平面ADE ,∴CM ∥平面ADE. (2)解 取AB 的中点O ,连接OD ,OE.又CD ∥AB ,CD=12AB ,∴CD ∥OB ,CD=OB ,∴四边形BCDO 为平行四边形,∴OD ∥BC. 又AB ⊥BC ,∴OD ⊥AB.又平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE=AB ,OD ⊂平面ABCD ,∴OD ⊥平面ABE.∵AE=BE ,O 为AB 的中点,∴OE ⊥AB.以O 为坐标原点,OE ,OB ,OD 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系如图所示,则E (√2,0,0),B (0,1,0),C (0,1,1),D (0,0,1).设平面BDE 的法向量为m =(x ,y ,z ),BE ⃗⃗⃗⃗⃗ =(√2,-1,0),BD ⃗⃗⃗⃗⃗⃗ =(0,-1,1), 由{m ·BE ⃗⃗⃗⃗⃗ =0,m ·BD⃗⃗⃗⃗⃗⃗ =0,得{√2x -y =0,-y +z =0,取y=√2,则x=1,z=√2,∴m =(1,√2,√2)为平面BDE 的一个法向量. 易知n =(1,0,0)为平面BCD 的一个法向量. 设二面角E-BD-C 的平面角为θ, 则|cos θ|=|cos <m ,n >|=|m ·n ||m ||n |=√55,∴sin θ=√1-cos 2θ=2√55. 故二面角E-BD-C 的正弦值为2√55.(3)解 假设在线段AD 上存在一点N ,使得直线MD 与平面BEN 所成角的正弦值为4√621.由(2)知M (√22,12,0),A (0,-1,0),D (0,0,1),BE⃗⃗⃗⃗⃗ =(√2,-1,0),则MD ⃗⃗⃗⃗⃗⃗ =(-√22,-12,1),AD ⃗⃗⃗⃗⃗ =(0,1,1),BA ⃗⃗⃗⃗⃗ =(0,-2,0). 设AN⃗⃗⃗⃗⃗⃗ =λAD ⃗⃗⃗⃗⃗ =(0,λ,λ),其中0≤λ≤1, ∴BN ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AN ⃗⃗⃗⃗⃗⃗ =(0,λ-2,λ). 设平面BEN 的法向量为u =(x 1,y 1,z 1),由{u ·BE ⃗⃗⃗⃗⃗ =0,u ·BN⃗⃗⃗⃗⃗⃗ =0,得{√2x 1-y 1=0,(λ-2)y 1+λz 1=0,取y 1=√2λ,则x 1=λ,z 1=2√2−√2λ,∴u =(λ,√2λ,2√2−√2λ)为平面BEN 的一个法向量.由题意可知|cos <MD ⃗⃗⃗⃗⃗⃗ ,u >|=|MD⃗⃗⃗⃗⃗⃗⃗⃗ ·u ||MD ⃗⃗⃗⃗⃗⃗⃗⃗||u |=√2-√2λ√72×5λ2-8λ+8=4√621.整理得16λ2-34λ+13=0,解得λ=12或λ=138(舍去).∴AN=√22.故在线段AD 上存在一点N ,使直线MD 与平面BEN 所成角的正弦值为4√621,此时AN=√22.6.(1)证明 如图,取MB 的中点P ,连接DP ,PN ,又N 为MC 的中点,所以NP ∥BC ,NP=12BC. 又DE ∥BC ,所以NP ∥DE ,即N ,E ,D ,P 四点共面.又EN ∥平面MBD ,EN ⊂平面NEDP ,平面NEDP ∩平面MBD=DP ,所以EN ∥PD ,即四边形NEDP 为平行四边形,所以NP=DE ,即DE=12BC ,即λ=12.(2)解 取DE 的中点O ,连接MO ,则MO ⊥DE.又平面MDE ⊥平面DECB ,平面MDE ∩平面DECB=DE ,MO ⊂平面MDE ,所以MO ⊥平面DECB.如图,建立空间直角坐标系,不妨设BC=2,则M (0,0,√3λ),D (λ,0,0),B (1,√3(1-λ),0),所以MD ⃗⃗⃗⃗⃗⃗ =(λ,0,-√3λ),DB ⃗⃗⃗⃗⃗⃗ =(1-λ,√3(1-λ),0). 设平面MBD 的法向量为m =(x ,y ,z ),则{MD ⃗⃗⃗⃗⃗⃗ ·m =λx -√3λz =0,DB ⃗⃗⃗⃗⃗⃗ ·m =(1-λ)x +√3(1-λ)y =0,即{x =√3z ,x =-√3y ,令x=√3,则y=-1,z=1,所以m =(√3,-1,1)为平面MBD 的一个法向量.由题意可知n =(0,1,0)为平面MDE 的一个法向量. 设二面角B-MD-E 的平面角为θ,则|cos θ|=|cos <m ,n >|=|m ·n ||m ||n |=√55,易知θ为钝角,所以二面角B-MD-E 的大小不变.sin θ=√1-cos 2θ=2√55,所以二面角B-MD-E 的正弦值为2√55.。
第68题立体几何中的探索性问题I .题源探究·黄金母题【例1】【2016高考北京文数】如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F , 使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析; (III )存在.理由见解析.【解析】分析:(Ⅰ)利用线面垂直判定定理证明;(Ⅱ)利用面面垂直判定定理证明;(III )取PB 中点F ,连结F E ,则F//E PA ,根据线面平行定理则//PA 平面C F E .解析:(I )因为C P ⊥平面CD AB ,所以C DC P ⊥.又因为DC C ⊥A ,所以DC ⊥平面C PA .(II )因为//DC AB ,DC C ⊥A ,所以C AB ⊥A . 因为C P ⊥平面CD AB ,所以C P ⊥AB . 所以AB ⊥平面C PA . 所以平面PAB ⊥平面C PA .(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下:取PB 中点F ,连结F E ,C E ,CF .又因为E 为AB 的中点,所以F//E PA . 又因为PA ⊄平面C F E ,所以//PA 平面C F E .【名师点睛】在解决立体几何探索性问题时,常常先通过空间观察和条件分析(中点)假设存在符合条件的点,然后进行推理论证。
II .考场精彩·真题回放【例2】【2015高考安徽文19】如图,三棱锥P -ABC 中,PA ⊥平面ABC ,1,1,PA AB ==2,60AC BAC =∠=o .(Ⅰ)求三棱锥P -ABC 的体积;(Ⅱ)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值.【答案】(Ⅱ)13PM MC = 【解析】(Ⅰ)解:由题设AB =1,,2=AC60=∠BAC可得ABC S ∆︒⋅⋅⋅=60sin 21AC AB 23=.由⊥PA 面ABC ,可知PA 是三棱锥ABC P -的高,又1=PA所以三棱锥ABC P -的体积6331=⋅⋅∆PA S V ABC = (Ⅱ)证:在平面ABC 内,过点B 作AC BN ⊥, 垂足为N ,过N 作PA MN //交PC 于M ,连接BM.由⊥PA 面ABC 知AC PA ⊥,所以AC MN ⊥.由于N MN BN =⋂,故⊥AC 面MBN ,又⊂BM 面MBN ,所以BM AC ⊥.在直角BAN ∆中,21cos =∠⋅=BAC AB AN ,从而23=-=AN AC NC .由PA MN //,得31=NC AN MC PM =. 【名师点睛】本题将正弦定理求三角形的面积巧妙地结合到求锥体的体积之中,本题的第(Ⅱ)问需要学生构造出线面垂直,进而利用性质定理证明出面面垂直,本题考查了考生的空间想象能力、构造能力和运算能力.【例3】【2016高考四川文科】如图,在四棱锥P-ABCD 中,PA⊥CD ,AD∥BC ,∠ADC=∠PAB=90°,12BC CD AD ==. DCB AP(I )在平面PAD 内找一点M ,使得直线CM∥平面PAB ,并说明理由; (II )证明:平面PAB⊥平面PBD.【答案】(Ⅰ)取棱AD 的中点M ,证明详见解析;(Ⅱ)证明详见解析.【解析】分析:(Ⅰ)探索线面平行,根据是线面平行的判定定理,先证明线线平行,再得线面平行,只要在平面ABCD 上作//CM AB 交AD 于M 即得;(Ⅱ)要证面面垂直,先证线面垂直,也就要证线线垂直,本题中有PA BD ⊥(由线面垂直的性质或定义得),另外可以由平面几何知识证明BD AB ⊥,从而有线面垂直,再有面面垂直. 试题解析:MDCB AP(I )取棱AD 的中点M (M∈平面PAD ),点M 即为所求的一个点.理由如下:因为AD‖BC,BC =12AD ,所以BC‖AM , 且BC =AM . 所以四边形AMCB 是平行四边形,从而CM‖AB . 又AB ⊂ 平面PAB ,CM ⊄ 平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(II )由已知,PA ⊥AB , PA ⊥CD ,因为AD ∥BC,BC =12AD ,所以直线AB 与CD 相交,所以PA ⊥平面ABCD . 从而PA ⊥ BD .因为AD ∥BC,BC =12AD , 所以BC ∥MD,且BC =MD. 所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A,所以BD ⊥平面PAB .又BD ⊂ 平面PBD,所以平面PAB ⊥平面PBD . 【例4】【2015高考湖北,文20】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马P A B C D -中,侧棱PD ⊥底面A B C D ,且P D C D =,点E 是PC 的中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是 否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.【答案】(Ⅰ)四面体EBCD 是一个鳖臑; (Ⅱ)124.V V = 【解析】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC . 由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠ (Ⅱ)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE是鳖臑D B C E -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC中,因为PD CD =,点E 是PC 的中点,所以DE CE ==, 于是 12123 4.16BC CD PD V CD PDV CE DE BC CE DE ⋅⋅⋅===⋅⋅⋅【名师点睛】以《九章算术》为背景,给予新定义,增添了试题的新颖性,但其实质仍然是考查线面垂直与简单几何体的体积计算,其解题思路:第一问通过线线、线面垂直相互之间的转化进行证明,第二问关键注意底面积和高之比,运用锥体的体积计算公式进行求解. 结合数学史料的给予新定义,不仅考查学生解题能力,也增强对数学的兴趣培养,为空间立体几何注入了新的活力.【例5】【2014四川文18】在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形。
数学科考试大纲指出,通过考试,让学生提高多种能力,其中空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.立体几何中的探索性与存在性问题实质是对线面平行与垂直性质定理的考查.探究性与存在性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性与存在性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.1对命题条件的探索探索条件,即探索能使结论成立的条件是什么.对命题条件的探索常采用以下三种方法:1、先猜后证,即先观察与尝试给出条件再给出证明;2、先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;3、把几何问题转化为代数问题,探索出命题成立的条件.例1【2016年高考四川理数】(本小题满分12分)如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD,E为边AD的中点,异面直线PA与CD所成的角为90°.(Ⅰ)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;【答案】(Ⅰ)详见解析【解析】从而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)点评:这类探索性题型通常是找命题成立的一个充分条件,所以解这类题采用下列二种方法:⑴通过各种探索尝试给出条件;⑵找出命题成立的必要条件,也证明充分性.2对命题结论的探索探索结论,即在给定的条件下命题的结论是什么.对命题结论的探索,常从条件出发,探索出要求的结论是什么,另外还有探索的结论是否存在.求解时,常假设结论存在,再寻找与条件相容还是矛盾的结论.例2【2016高考北京文数】(本小题14分)如图,在四棱锥中,平面,(I)求证:;(II)求证:;(III)设点E为AB的中点,在棱PB上是否存在点F,使得平面?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III)存在.理由见解析.【解析】所以.又因为,所以平面.(II)因为,,所以.因为平面,所以.所以平面.所以平面平面.(III)棱上存在点,使得平面.证明如下:取中点,连结,,.又因为为的中点,所以.又因为平面,所以平面.对于立体几何的探索性与存在性问题一般都是条件开放性的探究问题,采用的方法一般是执果索因的方法,假设求解的结果存在,寻找使这个结论成立的充分条件,运用方程的思想或向量的方法转化为代数的问题解决.如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在.。
专项限时集训(二)立体几何中的探索性与存在性问题(对应学生用书第115页)(限时:60分钟)1.(本小题满分14分)(南京市、盐城市2017届高三第一次模拟)如图3,在直三棱柱ABC-A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.图3(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.[证明](1)因为D,E分别是AB,AC的中点,所以DE∥BC,2分又因为在三棱柱ABC-A1B1C1中,B1C1∥BC,所以B1C1∥DE. 4分又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE. 6分(2)在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE.8分又BC⊥AC,DE∥BC,所以DE⊥AC,10分又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1.12分又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1. 14分2.(本小题满分14分)如图4所示,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB =2.图4(1)求证:DB⊥平面B1BCC1;(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.[解](1)因为AB∥DC,AD⊥DC,所以AB⊥AD,在Rt△ABD中,AB=AD=1,所以BD=2,易求BC=2,4分因为CD=2,所以BD⊥BC.又BD⊥BB1,B1B∩BC=B,所以BD⊥平面B1BCC1. 6分(2)DC的中点为E点.如图所示,连接BE,因为DE∥AB,DE=AB,所以四边形ABED是平行四边形. 8分所以AD∥BE.又AD∥A1D1,所以BE∥A1D1,10分所以四边形A1D1EB是平行四边形,所以D1E∥A1B. 12分因为D1E⊄平面A1BD,所以D1E∥平面A1BD.14分3.(本小题满分14分)(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)如图5, 在正三棱柱ABC -A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:图5(1)直线A1E∥平面ADC1;(2)直线EF⊥平面ADC1.【导学号:56394093】[证明](1)连接ED,因为D,E分别为BC,B1C1的中点,所以B1E∥BD且B1E=BD,所以四边形B 1BDE 是平行四边形,2分所以BB 1∥DE 且BB 1=DE ,又BB 1∥AA 1且BB 1=AA 1, 所以AA 1∥DE 且AA 1=DE , 所以四边形AA 1ED 是平行四边形,4分所以A 1E ∥AD ,又因为A 1E ⊄平面ADC 1,AD ⊂平面ADC 1, 所以直线A 1E ∥平面ADC 1.7分(2)在正三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC , 又AD ⊂平面ABC ,所以AD ⊥BB 1,又△ABC 是正三角形,且D 为BC 的中点,所以AD ⊥BC , 9分又BB 1,BC ⊂平面B 1BCC 1,BB 1∩BC =B , 所以AD ⊥平面B 1BCC 1,又EF ⊂平面B 1BCC 1,所以AD ⊥EF ,11分又EF ⊥C 1D ,C 1D ,AD ⊂平面ADC 1,C 1D ∩AD =D , 所以直线EF ⊥平面ADC 1.14分4.(本小题满分14分)(镇江市2017届高三上学期期末)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =EC =12AA 1.图6(1)求证:AC 1∥平面BDE ; (2)求证:A 1E ⊥平面BDE .[证明] (1)连接AC 交BD 于点O ,连接OE .在长方体ABCD -A 1B 1C 1D 1中,四边形ABCD 为正方形,点O 为AC 的中点,2分AA 1∥CC 1且AA 1=CC 1,由EC =12AA 1,则EC =12CC 1,即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE . 4分 又因为OE ⊂平面BDE ,AC 1⊄平面BDE .所以AC 1∥平面BDE .6分(2)连接OA 1,根据垂线定理,可得OA 1⊥DB ,OE ⊥DB ,OA 1∩OE =O ,∴平面A 1OE ⊥DB . 可得A 1E ⊥DB . 8分∵E 为CC 1的中点,设AB =BC =EC =12AA 1=a ,∴BE =2a ,A 1E =3a ,A 1B =5a , ∵A 1B 2=A 1E 2+BE 2, ∴A 1E ⊥EB .12分∵EB ⊂平面BDE ,BD ⊂平面BDE ,EB ∩BD =B , ∴A 1E ⊥平面BDE .14分 5.(本小题满分16分)(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)如图7,在四棱锥E -ABCD 中,平面EAB ⊥平面ABCD ,四边形ABCD 为矩形,EA ⊥EB ,点M ,N 分别是AE ,CD 的中点.图7求证:(1)直线MN ∥平面EBC ; (2)直线EA ⊥平面EBC .[证明] (1)取BE 中点F ,连接CF ,MF , 又M 是AE 的中点,所以MF 綊12AB ,又N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形, 4分所以MN ∥CF ,又MN ⊄平面EBC ,CF ⊂平面EBC , 所以MN ∥平面EBC .8分(2)在矩形ABCD 中,BC ⊥AB ,又平面EAB ⊥平面ABCD ,平面ABCD ∩平面EAB =AB ,BC ⊂平面ABCD , 所以BC ⊥平面EAB ,12分又EA ⊂平面EAB ,所以BC ⊥EA ,又EA ⊥EB ,BC ∩EB =B ,EB ,BC ⊂平面EBC ,所以EA⊥平面EBC. 16分6.(本小题满分16分)(无锡市2017届高三上学期期末)在四棱锥P-ABCD中,底面ABCD为矩形,AP⊥平面PCD,E,F分别为PC,AB的中点.求证:图8(1)平面PAD⊥平面ABCD;(2)EF∥平面PAD.[证明](1)∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD.∵ABCD为矩形,∴AD⊥CD,2分又∵AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,∴CD⊥平面PAD,4分∵CD⊂平面ABCD,∴平面PAD⊥平面ABCD. 6分(2)连接AC、BD交于O,连接OE,OF.∵ABCD为矩形,∴O为AC中点,∵E为PC中点,∴OE∥PA.∵OE⊄平面PAD,PA⊂平面PAD,∴OE∥平面PAD,10分同理OF∥平面PAD,12分∵OE∩OF=O,∴平面OEF∥平面PAD,14分∵EF⊂平面OEF,∴EF∥平面PAD. 16分7.(本小题满分16分)(扬州市2017届高三上学期期末)如图9,在四棱锥P-ABCD中,底面ABCD是矩形,点E、F分别是棱PC和PD的中点.图9(1)求证:EF∥平面PAB;(2)若AP=AD,且平面PAD⊥平面ABCD,证明:AF⊥平面PCD.【导学号:56394094】[证明](1)因为点E、F分别是棱PC和PD的中点,所以EF∥CD,又在矩形ABCD中,AB∥CD,所以EF∥AB,3分又AB⊂平面PAB,EF⊄平面PAB,所以EF∥平面PAB. 6分(2)在矩形ABCD中,AD⊥CD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,又AF⊂面PAD,所以CD⊥AF.①因为PA=AD且F是PD的中点,所以AF⊥PD,②由①②及PD⊂平面PCD,CD⊂平面PCD,PD∩CD=D,所以AF⊥平面PCD. 16分。
立体几何中的探索性问题(总12页)-CAL-FENGHAI.-(YICAI)-Company One 1■CAL■本页仅作为文档封面.使用请直接删除立体几何中的探索性问题一、探索平行关系1.[2016 •枣强中学模拟]如图所示,在正四棱柱凡Q中,E, F, G,〃分别是棱CG, GD、D.D、兀的中点,川是虑的中点,点"任四边形叭¥及其内部运动,则M只需满足条件,就有〃平而Ba*(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)答案:M位于线段FH上(答案不唯一)[解析]连接HX, FH, FM,则FH〃DD“ HN〃BD, FHnHN=H, DD2BD=D, 平而FHN〃平面B】BDD” 故只要MeFH,则MNu 平而FHN,且MN〃平而B;BDD:.2.如图所示,在正方体ABCD-A^aa中,E是棱勿:的中点.(1)求直线亦和平而ABBA所成的角的正弦值;(2)在棱GA上是否存在一点F,使氏尸〃平面凡庞证明你的结论.解:⑴如图所示,取的中点M连接册翩因为疋是皿的中点,四边形迦凡为正方形,所以EM//AD.(2分)又在正方体ABCD AxB.GD中,血?丄平而ABBA,所以則丄平而ABBA从而血为直线亦在平而磁儿上的射影,AEBM为庞用1平而邂凡所成的角.(4分)设正方体的棱长为2,则EM=AD=2.亦=费+2讦尸=3・EM 9于是,在Rt△宓#中,sinZ旳片亦=亍(5分)2即直线亦和平而磁也所成的角的正弦值为亍(6分)(2)在棱GA上存在点尸,使3尸〃平而4眩事实上,如图(b)所示,分别取和G?的中点尸,G、连接5只EG、BG. Cg FG.因AD"B3BC、且凡2=BC,所以四边形A..BCD、是平行四边形,因此RC//AiB.又E G分别为AQ,少的中点,所以EG” DC从而EG" Ab这说明凡,B, G,尸四点共面.所以瑟平而应宓(8分)因四边形GCDD、呂B..BCC:皆为正方形,F, G分别为GA和Q的中点,所以FG//GC//&.B.且FG=GC=RB.因此四边形3财是平行四边形,所以&FHBG、(10 分)而5丙平而入BE. BGci平而A,BE.故氏尸〃平而凡宓(12分)Ai D,3・如图,四棱锥P-ABCD中,刊丄平而ABCD.底而ABCD为矩形,PD=DC=\> AD= 2,疋为FC的中点.(1)求三棱锥A-PDE的体积:(2)£Q边上是否存在一点必使得用〃平而皿了若存在,求出的长;若不存在,请解析:(1):•刃丄平而救P, :.PDLAD.又•: ABCD是矩形,:.ADLCD.•: PDQCD=D.:.ADL平而PCD、:.出?是三棱锥ArPDE的高.•••£为PC的中点,且PD=DC=\.S:\ne= :\rx=E X X 1 X 4j = 4. 又AD=2.1 1 8⑵取M中点•也连接則,DM, YE为PC的中点,〃是M的中点…••曰〃用. 又V£Jit=平而EDM.Q1G平而ED如化用〃平而EDM.:.AM=^AC=^i.即在川Q边上存在一点%使得丹〃平而旦必川/的长为仗.4.如图所示,在三棱锥尸・磁中,点刀,E分别为丹,證的中点.在线段川6•上是否存在AF斤使得出?〃平而PEF,连接%交朋于G连接尬点尸,使得肋〃平而财若存在,求出丘的值;若不存在,请说明理由.9:AD//平而昭;平而ADCn平而PEF= FG,:.AD//FG.又•.•点Q, E分别为丹,BC的中点、:.G为△磁的重心,.:芬=券=*・故在线段上存月尸1在点斤使得初〃平面亦且丘 =了・5.[2016 •北京卷]如图,在四棱锥户・月万e中,FC丄平而ABCD, AB//DC. DCLAC.(1)求证:ZT丄平而用C(2)求证:平面用3丄平而QIC(3)设点£为初的中点,在棱丹上是否存在点尸,使得用〃平而狞说明理由.解:(D证明:因为尸Q丄平而馭D 所以PCLDC.又因为DCLAC.所以%丄平面用C(2)证明:炭为 AB〃 DC, DC LAC. 所以AB±AC.因为PQ丄平面所以PC丄肋.所以曲丄平而用G所以平而加丄平而QIC(3)棱丹上存在点尸,使得刊〃平而亦证明如下: 取丹的中点斤连接朋CE、CE因为疋为曲的中点,所以EF//PA.又因为加平面亦所以刃〃平而狞6.[2016 •四川卷]如图,在四棱锥P・丽CD中,PA丄CD, AD//BC. ZADC= ZPAB= 90°, BC=CD=^AD.(1)在平而验内找一点M,使得直线G/〃平而并说明理由;(2)证明:平面用万丄平而磁・解:⑴取棱肋的中点肌胆平而加?),点“即为所求的一个点.理由如卜•:因为肋〃处BC^-AD.所以BC//AM.且證=&肌所以四边形汽畑是平行四边形,从而CM//AB.又邂平而PAB.平而PAB.所以平而PAB.(说明:取棱刃的中点用则所找的点可以是直线JfV上任意一点)P(2)证明:由已知,用丄用丄m因为AD//BC,證=£肋,所以直线AB与切相交,所以丹丄平而ABCD,从而PAJLBD. 因为肋〃必BC=^AD.所以證〃J偽且BC=MD,所以四边形万GW是平行四边形,所以B.V=CD=^AD,所以助丄又ABOAP=A.所以加丄平而加又平面PBD.所以平而用5丄平而PBD.7.[2016 •阳泉模拟]如图7-41-10,在四棱锥P-ABCD中,BC//AD. 5(7=1,初=3, AC LCD.且平而加丄平而MGZ(1)求证:ACA-PD.PF(2)在线段用上是否存在点E使氐•〃平而加若存在,求出吕的值;若不存在,请PA说明理由.解:(1)证明:•••平面尸G?丄平而ABCD.平而pea平而ABCD= CD、AC LCD. Mt平而ABCD, :.ACL 平而•: Pg平而PCD、:.ACLPD.PE 1(2)在线段刃上存在点仅使亦〃平而加,且士=#下而给岀证明:^AD=Z, BC=1.•••在△用Z?中,分别取用,刃靠近点尸的三等分点伐尺连接丽BE. CF.•翌 =丄=匹•叼=空=看 :.HE//SA.又S 幻平而PE PF 11 ':盲苛勺:・EF 〃也且吩严1.又 9:BC//AD.:・BC 〃 EF 、RBC=EF\•••四边形心是平行四边形,:・BE 〃 CF 、又TS 皮平PCD. G 匕平而RD:.BE//平而尸GZ8. (10分)[2016 •河南中原名校联考]如图所示,在四棱锥S ■馭P 中,平而旳门丄平面 ABCD. AB//DC. △S3是等边三角形,且 SD=2、ED=2© AB=2CD=4.(1) 证明:平而如丄平而5>切・(2) 若疋是SC 上的一点,当厅点位于线段SC 上什么位置时,旳〃平面磁请证明你的 结论.(3)求四棱锥&ABCD 的体积.解:(1)证明HSAD 是等边三角形,:.AD=SD=2,又 BD=2品 J5=4,:.AD^BD=AB,:・BD 丄AD,又I 平而SADL 平面ABCD.平而SADC\平而ABCD=AD. :・BDL 平而SAD.又BX 平而SBD 、•••平而迦丄平面SAD.⑵当疋为SC 的三等分点,即厉=2炉时,结论成立. 证明如下:连接川Q 交助于点忆连接皿1V CD//AB. CD=:AB,•• SA// 平而 EBD.3)过S 作S0丄肋,交AD 于点0・••△SQ 为等边三角形,••0为出?的中点,:.SO=\(3•易证得SO 丄平而ABCD. _1 ―*. V I 'MKW s ASO )=^S ABCD • SO.•* -S'«fiu-^cx»=0 X (2+4) X 寸3 = 3寸2,:y PUWW $・如>=3.二.探索垂直关系1.如图所示,在三棱锥磁中,已知刃丄底而MG AB±BC. E>尸分别是线段丹, FQ上的动点,则下列说法错误的是()A.当肚丄丹时,HAEF—氾为直角三角形B・当处丄PQ时,HAEF—能为直角三角形C.当疔〃平而磁时,\AEFTE为直角三角形D.当尸C丄平而遁■时.HAEF—矩为直角三角形答案:B [解析]已知用丄底而则用丄反;又AB丄BC. PAC\AB=A. 则必7丄平而如,BCLAE.当AELPB时,又PBCBC=B,则肚丄平而丹G则血丄〃;A正确.当刃%平而月氏时,又决平而丹G平而PBCn平而月必=万G则疔〃万G故疗丄平而用万,则月尸丄也故C正确.当PC1平而月时,PCLAE.又BCLAE. PCC\BC=C.则血丄平面PBC.则AELEF. 故D正确.用排除法可知选B.2. ____________________________________________________________________ 如图所示,在三棱柱ABGA^G中,侧棱必丄底而馭;底而是以/遊为直角的等腰直角三角形,AC=2a,脛= 3a,。
专题4.5 立体几何中探索性问题一.方法综述立体几何在高考中突出对考生空间想象能力、逻辑推理论证能力及数学运算能力等核心素养的考查。
考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法。
对于探索性问题(是否存在某点或某参数,使得某种线、面位置关系成立问题)是近几年高考命题的热点,问题一般有三种类型:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型。
现进行归纳整理,以便对此类问题有一个明确的思考方向和解决办法。
二.解题策略类型一 空间平行关系的探索【例1】(2020·眉山外国语学校高三期中(理))在棱长为1的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的动点(点M 与1A C 、不重合),则下列结论正确的是__________①存在点M ,使得平面1A DM ⊥平面1BC D ; ②存在点M ,使得平面DM 平面11B CD ; ③1A DM ∆的面积可能等于36;④若12,S S 分别是1A DM ∆在平面1111A B C D 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S【答案】①②③④【解析】①如图所示,当M 是1AC 中点时,可知M 也是1A C 中点且11B C BC ⊥,111A B BC ⊥,1111A B B C B =,所以1BC ⊥平面11A B C ,所以11BC A M ⊥,同理可知1BD A M ⊥, 且1BC BD B =,所以1A M ⊥平面1BC D ,又1A M ⊂平面1A DM ,所以平面1A DM ⊥平面1BC D ,故正确;②如图所示,取1AC 靠近A 的一个三等分点记为M ,记1111AC B D O =,1OC AC N =,因为11AC AC ,所以1112OC C N AC AN ==,所以N 为1AC 靠近1C 的一个三等分点, 则N 为1MC 中点,又O 为11A C 中点,所以1A M NO ,且11A DB C ,111A MA D A =,1NOB C C =,所以平面1A DM平面11B CD ,且DM ⊂平面1A DM ,所以DM 平面11B CD ,故正确;③如图所示,作11A M AC ⊥,在11AA C 中根据等面积得:12633A M ==, 根据对称性可知:16A M DM ==,又2AD =1A DM 是等腰三角形, 则12216232232A DMS⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故正确;④如图所示,设1AM aAC =,1A DM ∆在平面1111D C B A 内的正投影为111A D M ∆,1A DM ∆在平面11BB C C 内的正投影为12B CM ∆,所以1111122222A D M aS S a ∆==⨯⨯=,122121222222B CM a S S a ∆-==⨯-⨯=,当12S S 时,解得:13a =,故正确.故答案为 ①②③④【点评】.探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论。
【最新整理,下载后即可编辑】立体几何存在性问题未命名一、解答题1.在多面体中,底面是梯形,四边形是正方形,,,面面,..(1)求证:平面平面;(2)设为线段上一点,,试问在线段上是否存在一点,使得平面,若存在,试指出点的位置;若不存在,说明理由?(3)在(2)的条件下,求点到平面的距离.2.如图,四棱锥中,底面是直角梯形,,,,侧面是等腰直角三角形,,平面平面,点分别是棱上的点,平面平面(Ⅰ)确定点的位置,并说明理由;(Ⅱ)求三棱锥的体积.3.如图,在长方体中,,点在棱上,,点为棱的中点,过的平面与棱交于,与棱交于,且四边形为菱形.(2)确定点的具体位置(不需说明理由),并求四棱锥的体积.4.如图2,已知在四棱锥中,平面平面,底面为矩形.(1)求证:平面平面;(2)若,试求点到平面的距离.5.如图,三棱锥的三条侧棱两两垂直,,,分别是棱,的中点.(1)证明:平面平面;(2)若四面体的体积为,求线段的长.6.如图,在四棱锥中,,,,.(1)求证:;(2)若,,为的中点.(i)过点作一直线与平行,在图中画出直线并说明理由;(ii)求平面将三棱锥分成的两部分体积的比.7.如图1所示,在梯形中,//,且,,分别延长两腰交于点,点为线段上的一点,将沿折起到的位置,使,如图2所示.(1)求证:;(2)若,,四棱锥的体积为,求四棱锥的表面积.8.如图,在四棱锥中,底面为矩形,平面平面,.(1)证明:平面平面;(2)若,为棱的中点,,,求四面体的体积.是矩形,且平面平面,点在线段上.(1)求证:平面;(2)当为何值时,平面?证明你的结论. 10.10.如图,已知菱形的对角线交于点,点为的中点.将三角形沿线段折起到的位置,如图2所示.图1 图2(Ⅰ)求证:平面;(Ⅱ)证明:平面平面;(Ⅲ)在线段上是否分别存在点,使得平面平面?若存在,请指出点的位置,并证明;若不存在,请说明理由.参考答案1.(1)见解析.(2)见解析.(3).【解析】分析:(1)在梯形中,过点作作于,可得,所以,由面面,可得出,利用线面垂直的判定定理得平面,进而可得平面平面;(2)在线段上取点,使得,连接,先证明与相似,于是得,由线面平行的判定定理可得结果;(3)点到平面的距离就是点到平面的距离,设到平面的距离为,利用体积相等可得,,解得.详解:(1)因为面面,面面,,所以面,.故四边形是正方形,所以.在中,,∴.,∴,∴∴.因为,平面,平面.∴平面,平面,∴平面平面.(2)在线段上存在点,使得平面在线段上取点,使得,连接.在中,因为,所以与相似,所以又平面,平面,所以平面.(3)点到平面的距离就是点到平面的距离,设到平面的距离为,利用同角相等可得,,可得.点睛:证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.2.(Ⅰ)见解析(Ⅱ)【解析】试题分析:(1)根据面面平行的性质得到,,根据平行关系和长度关系得到点是的中点,点是的中点;(2),因为,所以,进而求得体积.详解:(1)因为平面平面,平面平面,平面平面,所以,又因为,所以四边形是平行四边形,所以,即点是的中点.因为平面平面,平面平面,平面平面,所以,又因为点是的中点,所以点是的中点,综上:分别是的中点;(Ⅱ)因为,所以,又因为平面平面,所以平面;又因为,所以.点睛:这个题目考查了面面平行的性质应用,空间几何体的体积的求法,求椎体的体积,一般直接应用公式底乘以高乘以三分之一,会涉及到点面距离的求法,点面距可以通过建立空间直角坐标系来求得点面距离,或者寻找面面垂直,再直接过点做交线的垂线即可;当点面距离不好求时,还可以等体积转化.3.(1)见解析(2)为棱上靠近的三等分点,为棱中点,【解析】分析:(1)要证平面平面,即证平面,即证,;(2)为棱上靠近的三等分点,为棱中点,利用等体积法即可求得结果.详解:(1)在矩形中,,.又平面,.,平面.又平面,平面平面.(2)为棱上靠近的三等分点,为棱中点,,所以的面积.于是四棱锥的体积.点睛:求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法. ①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.4.(1)见解析;(2)【解析】分析:(1)由平面平面,根据面面垂直的性质可得平面,由面面垂直的判定定理可得结论;(2)取AD 的中点O,则平面,由,从而利用棱锥的体积公式可得结果.详解:(1)证明:.(2)解:取AD的中点O,则,,则.又易知,所以,解出.点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.5.(1)证明见解析;(2).【解析】分析:(1)推导出BE⊥CD,AB⊥CD,从而CD⊥平面ABE,由此能证明平面ABE⊥平面ACD;(2)取BD的中点G,连接EG,则EG∥BC.推导出BC⊥平面ABD,从而EG⊥平面ABD,由此能求出线段AE的长.详解:(1)证明:因为,是棱的中点,所以.又三棱锥的三条侧棱两两垂直,且,所以平面,则.因为,所以平面,又平面,所以平面平面.(2)解:取的中点,连接,则.易证平面,从而平面,所以四面体的体积为,则,在中,,.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.6.(1)见解析;(2)见解析,【解析】分析: (1) 取中点,连接,,先证明面,再证明.(2) (i)取中点,连接,,则,即为所作直线,证明四边形为平行四边形即得证. (ii)先分别计算出两部分的体积,再求它们的比.详解:(1)证明:(1)取中点,连接,,为中点,又,为中点,又,面又面,(2)(i)取中点,连接,,则,即为所作直线,理由如下:在中、分别为、中点,且又,且,四边形为平行四边形.(ii),,,面又在中,,,又,面,.:(1)本题主要考查空间平行垂直位置关系的证明,考查空间几何体体积的计算,意在考查学生对这些基础知识的掌握能力和空间想象转化能力.(2)对于空间平行垂直位置关系的证明有几何法和向量法两种方法,空间几何体体积的计算有公式法、割补法和体积变换法三种方法.7.(1)见解析;(2)【解析】分析:(1)先利用直角三角形和线线平行的性质得到线线垂直,再利用线面垂直的判定定理和性质得到线面垂直和线线垂直;(2)分析四棱锥的各面的形状,利用相关面积公式进行求解.详解:(1)因为∠C=90°,即AC⊥BC,且DE∥BC,所以DE⊥AC,则DE⊥DC,DE⊥DA1,又因为DC∩DA1=D,所以DE⊥平面A1DC.因为A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又因为BE⊂平面BCDE,所以A1F⊥BE.(2)由已知DE∥BC,且DE=BC,得D,E分别为AC,AB 的中点,在Rt△ABC中,,则A1E=EB=5,A1D=DC=4,则梯形BCDE的面积S1=×(6+3)×4=18,四棱锥A1—BCDE的体积为V=×18×A1F=12,即A1F=2,在Rt△A1DF中,,即F是CD的中点,所以A1C=A1D=4,因为DE∥BC,DE⊥平面A1DC,所以BC⊥平面A1DC,所以BC⊥A1C,所以,在等腰△A1BE中,底边A1B上的高为,所以四棱锥A1—BCDE的表面积为S=S1++++=18+×3×4+×4×2+×6×4+×2×2=36+4+2.点睛:本题考查空间中的垂直关系的转化、空间几何体的表面积等知识,意在考查学生的空间想象能力和数学转化能力.8.(1)见解析;(2)【解析】分析:(1)由面面垂直的性质定理得到⊥平面,即,进而得到平面平面,(2)由等体积法求解,。
专项限时集训(二)
立体几何中的探索性与存在性问题
(对应学生用书第115页)
(限时:60分钟)
1.(本小题满分14分)(南京市、盐城市2017届高三第一次模拟)如图3,在直三棱柱ABC-A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.
图3
(1)求证:B1C1∥平面A1DE;
(2)求证:平面A1DE⊥平面ACC1A1.
[证明](1)因为D,E分别是AB,AC的中点,所以DE∥BC,2分
又因为在三棱柱ABC-A1B1C1中,B1C1∥BC,所以B1C1∥DE. 4分
又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE. 6分
(2)在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,
又DE⊂底面ABC,所以CC1⊥DE.8分
又BC⊥AC,DE∥BC,所以DE⊥AC,10分
又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1.
12分又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1. 14分2.(本小题满分14分)如图4所示,已知在直四棱柱ABCD-A1B1C1D1中,AD⊥DC,AB∥DC,DC=DD1=2AD=2AB=2.
图4
(1)求证:DB⊥平面B1BCC1;
(2)设E是DC上一点,试确定E的位置,使得D1E∥平面A1BD,并说明理由.
[解](1)因为AB∥DC,AD⊥DC,
所以AB⊥AD,在Rt△ABD中,AB=AD=1,
所以BD=2,易求BC=2,4分
因为CD=2,所以BD⊥BC.
又BD⊥BB1,B1B∩BC=B,
所以BD⊥平面B1BCC1. 6分
(2)DC的中点为E点.
如图所示,连接BE,
因为DE∥AB,DE=AB,
所以四边形ABED是平行四边形. 8分
所以AD∥BE.
又AD∥A1D1,所以BE∥A1D1,10分
所以四边形A1D1EB是平行四边形,所以D1E∥A1B. 12分
因为D1E⊄平面A1BD,
所以D1E∥平面A1BD.14分
3.(本小题满分14分)(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)如图5, 在正三棱柱ABC-A1B1C1中,已知D,E分别为BC,B1C1的中点,点F在棱CC1上,且EF⊥C1D.求证:
图5
(1)直线A1E∥平面ADC1;
(2)直线EF⊥平面ADC1.
【导学号:56394093】[证明](1)连接ED,因为D,E分别为BC,B1C1的中点,
所以B 1E ∥BD 且B 1E =BD , 所以四边形B 1BDE 是平行四边形,
2分
所以BB 1∥DE 且BB 1=DE ,又BB 1∥AA 1且BB 1=AA 1, 所以AA 1∥DE 且AA 1=DE , 所以四边形AA 1ED 是平行四边形,
4分 所以A 1E ∥AD ,又因为A 1E ⊄平面ADC 1,AD ⊂平面ADC 1, 所以直线A 1E ∥平面ADC 1.7分
(2)在正三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC , 又AD ⊂平面ABC ,所以AD ⊥BB 1,
又△ABC 是正三角形,且D 为BC 的中点,所以AD ⊥BC , 9分 又BB 1,BC ⊂平面B 1BCC 1,BB 1∩BC =B , 所以AD ⊥平面B 1BCC 1,
又EF ⊂平面B 1BCC 1,所以AD ⊥EF ,
11分 又EF ⊥C 1D ,C 1D ,AD ⊂平面ADC 1,C 1D ∩AD =D , 所以直线EF ⊥平面ADC 1.14分
4.(本小题满分14分)(镇江市2017届高三上学期期末)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =EC =1
2
AA 1.
图6
(1)求证:AC 1∥平面BDE ; (2)求证:A 1E ⊥平面BDE .
[证明] (1)连接AC 交BD 于点O ,连接OE .
在长方体ABCD -A 1B 1C 1D 1中,四边形ABCD 为正方形,点O 为AC 的中点,2分
AA 1∥CC 1且AA 1=CC 1,由EC =12AA 1,则EC =12
CC 1,
即点E 为CC 1的中点,于是在△CAC 1中,AC 1∥OE . 4分 又因为OE ⊂平面BDE ,AC 1⊄平面BDE .所以AC 1∥平面BDE .
6分
(2)连接OA 1,根据垂线定理,可得OA 1⊥DB ,OE ⊥DB ,OA 1∩OE =O ,∴平面A 1OE ⊥DB . 可得A 1E ⊥DB . 8分
∵E 为CC 1的中点, 设AB =BC =EC =1
2
AA 1=a ,
∴BE =2a ,A 1E =3a ,A 1B =5a , ∵A 1B 2
=A 1E 2
+BE 2
, ∴A 1E ⊥EB .
12分
∵EB ⊂平面BDE ,BD ⊂平面BDE ,EB ∩BD =B , ∴A 1E ⊥平面BDE .
14分 5.(本小题满分16分)(苏北四市(徐州、淮安、连云港、宿迁)2017届高三上学期期末)如图7,在四棱锥E -ABCD 中,平面EAB ⊥平面ABCD ,四边形ABCD 为矩形,
EA ⊥EB ,点M ,N 分别是AE ,CD 的中点.
图7
求证:(1)直线MN ∥平面EBC ; (2)直线EA ⊥平面EBC .
[证明] (1)取BE 中点F ,连接CF ,MF , 又M 是AE 的中点,所以MF 綊1
2AB ,
又N 是矩形ABCD 边CD 的中点,
所以NC 綊1
2AB ,所以MF 綊NC ,
所以四边形MNCF 是平行四边形, 4分
所以MN ∥CF ,
又MN ⊄平面EBC ,CF ⊂平面EBC , 所以MN ∥平面EBC .
8分 (2)在矩形ABCD 中,BC ⊥AB ,
又平面EAB ⊥平面ABCD ,平面ABCD ∩平面EAB =AB ,BC ⊂平面ABCD , 所以BC ⊥平面EAB ,
12分 又EA ⊂平面EAB ,所以BC ⊥EA ,
又EA ⊥EB ,BC ∩EB =B ,EB ,BC ⊂平面EBC , 所以EA ⊥平面EBC .
16分 6.(本小题满分16分)(无锡市2017届高三上学期期末)在四棱锥P -ABCD 中,底面ABCD 为矩形,
AP ⊥平面PCD ,E ,F 分别为PC ,AB 的中点.求证:
图8
(1)平面PAD ⊥平面ABCD ; (2)EF ∥平面PAD .
[证明] (1)∵AP ⊥平面PCD ,CD ⊂平面PCD ,∴AP ⊥CD . ∵ABCD 为矩形,∴AD ⊥CD ,
2分
又∵AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD ,∴CD ⊥平面PAD ,4分 ∵CD ⊂平面ABCD ,∴平面PAD ⊥平面ABCD . 6分 (2)连接AC 、BD 交于O ,连接OE ,OF . ∵ABCD 为矩形,∴O 为AC 中点,
∵E为PC中点,∴OE∥PA.
∵OE⊄平面PAD,PA⊂平面PAD,∴OE∥平面PAD,10分
同理OF∥平面PAD,12分
∵OE∩OF=O,∴平面OEF∥平面PAD,14分
∵EF⊂平面OEF,∴EF∥平面PAD. 16分7.(本小题满分16分)(扬州市2017届高三上学期期末)如图9,在四棱锥P-ABCD中,底面ABCD 是矩形,点E、F分别是棱PC和PD的中点.
图9
(1)求证:EF∥平面PAB;
(2)若AP=AD,且平面PAD⊥平面ABCD,证明:AF⊥平面PCD.
【导学号:56394094】[证明](1)因为点E、F分别是棱PC和PD的中点,所以EF∥CD,又在矩形ABCD中,AB ∥CD,所以EF∥AB,3分
又AB⊂平面PAB,EF⊄平面PAB,所以EF∥平面PAB. 6分
(2)在矩形ABCD中,AD⊥CD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平
面ABCD,所以CD⊥平面PAD,
又AF⊂面PAD,所以CD⊥AF.①
因为PA=AD且F是PD的中点,所以AF⊥PD,②
由①②及PD⊂平面PCD,CD⊂平面PCD,PD∩CD=D,所以AF⊥平面PCD. 16分。