第1章 无人机的结构及飞行原理[31页]
- 格式:pptx
- 大小:1.27 MB
- 文档页数:20
近年來無人機的應用逐漸廣泛,不少愛好者想集中學習無人機的知識,本文從最基本的飛行原理、無人機系統組成、組裝與調試等方面著手,集中講述了無人機的基本知識。
第一章飛行原理本章介紹一些基本物理觀念,在此只能點到為止,如果你在學校已上過了或沒興趣學,請跳過這一章直接往下看。
第一節速度與加速度速度即物體移動的快慢及方向,我們常用的單位是每秒多少公尺﹝公尺/秒﹞ 0加速度即速度的改變率,我們常用的單位是﹝公尺/秒/秒﹞,如果加速度是負數,則代表減速。
第二節牛頓三大運動定律第一定律:除非受到外來的作用力,否則物體的速度(v)會保持不變。
沒有受力即所有外力合力為零,當飛機在天上保持等速直線飛行時,這時飛機所受的合力為零,與一般人想像不同的是,當飛機降落保持相同下沉率下降,這時升力與重力的合力仍是零,升力並未減少,否則飛機會越掉越快。
第二定律:某品質為m的物體的動量(p = mv)變化率是正比於外加力 F 並且發生在力的方向上。
此即著名的F=ma 公式,當物體受一個外力後,即在外力的方向產生一個加速度,飛機起飛滑行時引擎推力大於阻力,於是產生向前的加速度,速度越來越快阻力也越來越大,遲早引擎推力會等於阻力,於是加速度為零,速度不再增加,當然飛機此時早已飛在天空了。
第三定律:作用力與反作用力是數值相等且方向相反。
你踢門一腳,你的腳也會痛,因為門也對你施了一個相同大小的力第三節力的平衡作用於飛機的力要剛好平衡,如果不平衡就是合力不為零,依牛頓第二定律就會產生加速度,為了分析方便我們把力分為X、Y、Z三個軸力的平衡及繞X、Y、Z三個軸彎矩的平衡。
軸力不平衡則會在合力的方向產生加速度,飛行中的飛機受的力可分為升力、重力、阻力、推力﹝如圖1-1﹞,升力由機翼提供,推力由引擎提供,重力由地心引力產生,阻力由空氣產生,我們可以把力分解為兩個方向的力,稱x 及y 方向﹝當然還有一個z方向,但對飛機不是很重要,除非是在轉彎中﹞,飛機等速直線飛行時x方向阻力與推力大小相同方向相反,故x方向合力為零,飛機速度不變,y方向升力與重力大小相同方向相反,故y方向合力亦為零,飛機不升降,所以會保持等速直線飛行。
无人机结构与系统-第一章无人机结构与飞行原理第一章无人机结构与飞行原理无人机是一种没有人员搭乘的飞行器,它由多个组件和系统构成。
本章将详细介绍无人机的结构和飞行原理。
1. 无人机结构无人机的结构可以分为以下几个主要部分:- 机身:无人机的机身是整个飞行器的主体部分,它承载其他组件和系统,并提供稳定性和结构强度。
机身通常由轻质材料如碳纤维复合材料构成,以减轻重量并提高飞行性能。
- 机翼:无人机的机翼负责提供升力,使飞行器能够在空中飞行。
机翼的形状和设计会影响无人机的飞行性能和稳定性。
- 尾翼:尾翼包括水平尾翼和垂直尾翼,用于控制无人机的姿态和方向。
水平尾翼控制俯仰运动,垂直尾翼控制偏航运动。
- 起落架:起落架用于无人机的起降过程,提供地面支撑和保护其他部件。
起落架通常由轮子和避震系统组成。
- 传感器和负载:无人机通常配备各种传感器和负载,如相机、雷达、红外线传感器等。
这些传感器和负载用于收集数据和执行特定任务,如航拍、监测和侦察。
2. 无人机飞行原理无人机的飞行原理与有人飞机类似,都是基于气动力学原理。
无人机的飞行主要依靠以下几个力:- 升力:升力是垂直向上的力,由机翼产生。
当无人机在空中飞行时,机翼产生的升力抵消了重力,使无人机能够保持在空中。
- 阻力:阻力是与飞行方向相反的力,由空气对无人机的阻碍产生。
阻力会减少无人机的速度,并消耗能量。
- 推力:推力是沿着飞行方向的力,由发动机或电动机产生。
推力推动无人机向前飞行。
- 重力:重力是向下的力,由地球的引力产生。
重力作用下,无人机需要产生足够的升力才能保持在空中。
无人机的飞行控制主要通过调整姿态和推力来实现。
姿态调整通过控制尾翼的运动来改变无人机的姿态,从而实现俯仰和偏航运动。
推力调整通过调整发动机或电动机的输出来改变无人机的速度。
总结:本章详细介绍了无人机的结构和飞行原理。
无人机的结构包括机身、机翼、尾翼、起落架和传感器等组件。
无人机的飞行原理主要依靠升力、阻力、推力和重力等力的作用。
无人机的构造及飞行原理简析(一)不同无人机的构造是不一样的,上期我们大概讲了四种比较常见的无人机类型:多旋翼无人机、无人直升机、固定翼无人机、垂直起降固定翼无人机。
本期我们将先为大家讲解多旋翼无人机的构造及飞行。
多旋翼无人机,顾名思义就是由多个旋翼组成的无人机啦。
现今多旋翼无人机应用于多个行业领域,常见的有森林防火、电力巡线、航拍航测、影视拍摄、土地规划、农业飞防喷洒、环保检查、现场救援、交通疏导等行业都用到了无人机。
在无人机采购中多旋翼无人机又有四旋翼、六旋翼、八旋翼这3款不同类型在稳定性、外形尺寸上都有着不同之处。
下面让我们看一下四旋翼无人机的基本构造图:四旋翼无人机的构成基本硬件有:飞行控制计算机(飞行控制器)、飞机支架、电机、旋翼。
无人机的飞行控制计算机是无人机的核心,在飞机中的作用相当于“人”的大脑,对无人机的稳定性、数据传输的可靠性、精确度、实时性等都有重要影响,对其飞行性能起决定性的作用。
其系统一般由又由传感器、机载计算机和伺服作动设备三大部分,实现的功能主要有无人机姿态稳定和控制、无人机任务设备管理和应急控制三大类。
传感器:多轴无人机机身大量装配的各种传感器,包括GPS、气压计、陀螺仪、指南针以及地磁感应等,可以采集角速率、姿态、位置、加速度、高度和空速等,是飞控系统的基础。
机载计算机:机载计算机作为无人机的CPU,是飞控的中枢系统,类似于人体大脑的中枢神经,负责整个无人机姿态的运算和判断;同时,也操控着传感器和伺服作动设备。
伺服作动设备:人机执行机构都是伺服作动设备,是导航飞控系统的重要组成部分。
其主要功能是根据飞控计算机的指令,按规定执行动作。
对于固定翼无人机来说,主要通过调整机翼角度和发动机运转速度,实现对无人机的飞行控制。
飞行原理说完多旋翼无人机的基本构造,那么我们就好开始介绍其的飞行原理是怎么样的了,还是以四旋翼无人机为例。
如下图所示,三角形箭头表示飞机的机头朝向,螺旋桨M1、M3的旋转方向为逆时针,螺旋桨M2、M4的旋转方向为顺时针。
目录第一章飞机的基本结构 (1)第一节固定翼飞机主要组成部分 (1)一、机身 (1)二、机翼 (1)三、尾翼 (4)四、起降装置 (6)第二节翼型................................... 错误!未定义书签。
一、翼型的发展 (8)二、翼型的几何参数 (9)三、翼型的选择 (9)第三节机翼的平面形状 (10)一、机翼的俯视投影形状 (10)二、机翼的展弦比 (10)三、机翼的梢根比 (11)四、机翼的后掠角 (11)五、机翼的平均气动弦长 (11)六、上反角 (11)七、机翼扭转 (12)八、机翼的安装角 (12)第二章大气 (12)第一节大气的成分和分层 (12)第二节大气的压强 (13)第三节空气的密度 (14)第四节空气的黏性 (14)第五节国际标准大气和非标准大气 (15)第三章空气动力 (16)第一节气流特性 (16)一、气流、相对气流和流线谱 (16)二、连续性定理 (17)三、伯努利定律 (17)第二节牛顿的三大定律 (18)一、牛顿第一定律 (18)二、牛顿第二定律 (18)三、牛顿第三定律 (18)第三节升力及升力系数曲线 (18)一、升力的产生 (18)二、升力公式 (19)三、升力系数曲线 (19)四、迎角 (20)五、气动中心(焦点) (20)六、压力中心 (20)七、雷诺数 (21)第四节阻力 (22)一、摩擦阻力 (22)二、压差阻力 (23)三、诱导阻力 (23)四、干扰阻力 (25)五、阻力公式 (25)六、升阻比 (25)第四章飞机的安定性和操纵性 (26)第一节飞机的重心和三轴 (26)一、飞机的平动和转动 (26)二、飞机的重心 (26)三、飞机的坐标轴 (27)第二节飞机的平衡 (27)一、飞机的俯仰平衡 (27)二、飞机的横测平衡 (29)三、飞机的方向平衡 (29)第三节飞机的安定性 (29)一、纵向安定性 (29)二、横向安定性 (30)三、方向安定性 (31)四、飞机纵向稳定性的调整 (32)第四节飞机的操纵性 (33)一、飞机的俯仰操纵性 (33)二、飞机的方向操纵性 (34)三、飞机的横测操纵性 (35)四、影像飞机操纵性的因素 (35)第六节飞行动作分析 (35)一、平飞 (35)二、爬升 (38)三、转弯、盘旋 (39)四、侧滑 (41)五、失速 (42)六、螺旋 (43)第五章螺旋桨基本原理 (44)第一节螺旋桨一般介绍 (44)一、螺旋桨有关名词和术语 (44)二、螺旋桨拉力的产生 (46)三、螺旋桨的有效功率和效率 (46)四、影响螺旋桨拉力和旋转阻力的因素 (46)第二节螺旋桨的桨叶角与几何螺距 (47)第三节螺旋桨几何尺寸和翼型 (48)一、螺旋桨直径 (48)二、螺旋桨桨叶的宽度 (48)三、桨叶剖面的翼型 (49)第四节螺旋桨的副作用 (49)一、螺旋桨的进动 (49)二、螺旋桨的反作用力矩 (50)三、螺旋桨滑流的扭转作用 (51)四、螺旋桨的不对称拉力 (51)第六章多旋翼飞机介绍 (52)第一节多旋翼飞行器总述 (52)第二节四旋翼飞行器结构和原理 (52)一、结构形式 (52)二、工作原理 (53)第三节四旋翼无人飞行器的机架 (54)第四节飞行控制器(飞控系统) (54)第五节电调、电机和螺旋桨 (56)一、电调 (56)二、电机 (57)三、螺旋桨 (57)第六节电池 (57)第七节遥控器的使用 (58)第八节旋翼飞行器的调试 (59)一、无桨调试 (59)二、有桨调试 (60)第九节基本操作要求和日常维护 (60)第一章飞机的基本结构第一节固定翼飞机主要组成部分小型固定翼飞机的主要部件包括机体、起落装置和动力装置。
无人机结构与系统-第一章无人机结构与飞行原理引言无人机(Unmanned Aerial Vehicle, UAV)作为一种重要的航空器,具有广泛的应用前景。
无人机的结构和飞行原理是理解和操作无人机的基础。
本章将介绍无人机的结构和飞行原理,包括无人机的基本构件和组成部分,以及无人机的飞行原理和控制方式。
无人机结构1. 机翼无人机的机翼是支撑无人机飞行的主要部件。
机翼一般采用翼型结构,具有升力产生的功能。
翼型的选择和设计是影响无人机性能的关键因素之一。
2. 机身无人机的机身是无人机的主要结构框架,承载着各个部件,并提供支撑和保护。
机身一般由轻质材料制造,可以是金属、塑料或复合材料等。
3. 推进系统无人机的推进系统用于提供动力,驱动无人机前进。
推进系统可以采用多种方式,如螺旋桨、发动机、电动机等。
推进系统的选择和设计直接影响无人机的速度、续航能力和负载能力。
4. 起落架无人机的起落架用于在地面起飞和着陆时提供支撑和保护。
起落架一般由弹性材料制成,能够吸收和减轻着陆冲击。
无人机飞行原理1. 升力和重力平衡在无人机飞行过程中,机翼产生的升力和重力之间需要保持平衡,以保持无人机的稳定飞行状态。
升力产生的主要物理原理是空气动力学中的伯努利方程和牛顿第三定律。
2. 推力和阻力平衡无人机的推进系统产生的推力和飞行时空气阻力之间需要保持平衡。
推力产生的主要物理原理是牛顿第三定律,而空气阻力是无人机运动过程中的主要阻力源。
3. 控制与稳定无人机的飞行过程中需要进行控制和稳定,以保持飞行方向和姿态的稳定。
无人机的控制方式一般包括遥控操作和自动驾驶控制。
稳定性保持是通过各个部件的设计和控制算法实现的。
结论无人机的结构和飞行原理是了解和操作无人机的基础。
理解无人机的结构组成和飞行原理可帮助我们更好地设计和操作无人机,提高无人机的性能和安全性。
通过掌握无人机的结构和飞行原理,我们可以更好地应用无人机技术,为各行各业提供更多的机会和解决方案。
无人机的结构、飞行原理、系统组成、组装与调试目录第一章初步认识无人机的基本构成第二章无人机的飞行原理第三章飞行操作:模拟—电动—油动第四章无人机的发动机第五章无人机的系统组成第六章无人机的组装第七章无人机的调试第一章初步认识无人机的基本构成无人机最早出现于第二次世界大战时,直至近几年有厂商逐步把军用无人机技术转移至电子消费品的生产之上,制成定价较平、操作较易的无人机,始令无人机在消费者市场大热起来。
今次Lock Sir便为大家讲解无人机的运作结构及飞行原理。
一般来说,无人机有飞行器机架、飞行控制系统、推进系统、遥控器、遥控信号接收器和云台相机等6大构成部分。
1. 飞行器机架飞行器机架(Flying Platform)的大小,取决于桨翼的尺寸及电机(马达/马达)的体积:桨翼愈长,马达愈大,机架大小便会随之而增加。
机架一般采用轻物料制造为主,以减轻无人机的负载量(Payload)。
2. 飞行控制系统飞行控制系统(Flight Control System)简称飞控,一般会内置控制器、陀螺仪、加速度计和气压计等传感器。
无人机便是依靠这些传感器来稳定机体,再配合GPS 及气压计数据,便可把无人机锁定在指定的位置及高度。
3. 推进系统无人机的推动系统(Propulsion System)主要由桨翼和马达所组成。
当桨翼旋转时,便可以产生反作用力来带动机体飞行。
系统内设有电调控制器(Electronic Speed Control),用于调节马达的转速。
4. 遥控器这是指Remote Controller或Ground Station,让航拍玩家透过远程控制技术来操控无人机的飞行动作。
5. 遥控信号接收器主要作用是让飞行器接收由遥控器发出的遥控指令信号。
4轴无人机起码要有4条频道来传送信号,以便分别控制前后左右4组旋轴和马达。
6. 云台相机目前无人机所用的航拍相机,除无人机厂商预设于飞行器上的相机外,有部分机型容许用户自行装配第三方相机,例如GoPro Hero 4运动相机或Canon EOS 5D系列单眼相机,惟近年亦有厂商提倡采用M4 /3无反单眼(如:Panasonic LUMIX GH4)作航拍用途。