九年级数学上册25.2用列举法求概率同步练习(新版)新人教版
- 格式:doc
- 大小:327.00 KB
- 文档页数:7
25.2用列举法求概率内容提要1.在一次随机实验中可能出现的结果只有有限个,且各种结果出现的可能性大小相等,通过列举实验结果分析出随机事件发生的概率,这一方法叫列举法.2.当一次实验可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法和树状图法.25.2.1列举法基础训练1.随机抛掷一个正方体骰子,朝上的一面是偶数的概率是()A.1 B.12C.13D.162.如图,随机闭合开关1S,2S,3S中的两个,则灯泡发光的概率是()A.34B.23C.13D.123.为支援希望工程“爱心包裹”活动,小慧准备通过热线捐款,他只记得号码的前5位,后三位由5,3,2这三个数字组成,但具体顺序忘记了,他一次就拨通电话的概率是()A.12B.14C.16D.184.如图,甲为三等分数字转盘,乙为四等分数字转盘,同时自由转动两个转盘,当转盘停止活动后(若指针指在边界处则重转),两个转盘指针指向数字都是偶数的概率是.5.学校开展“感恩父母”活动,方同学想为父母做道菜,他发现冰箱里有三种蔬菜(芹菜、洋葱、土豆)、两种肉类(猪肉、牛肉),他想做一道蔬菜炒肉,则可能产生的菜品种类有种.6.已知一元二次方程220x x c++=,随机从2-,1-,1,2四个数中选一个作为c的值,则可以使得该方程有解的概率为.7.将下面的4张牌正面向下放置在桌面上,一次任意抽取两张.(1)用列举法写出抽取的所有可能结果;(2)求抽取两张点数之和为奇数的概率.8.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放入4个完全相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里摸出两个球(第一次摸出球后不放回).商场根据两个小球所标的金额之和返还相应价格的购物券,可以重新在本商场内消费.一天,某顾客刚好消费200元.(1)该顾客至少可得元购物券,至多可得到元购物券;(2)请你用列举法求出该顾客所获得购物券的金额不低于30元的概率.25.2.2列表法和树状图法基础训练1.连续抛掷两次骰子,它们的点数都是4的概率是()A.16B.14C.116D.1362.小浩同学笔袋里有两支红笔和两支黑笔(4支笔的款式相同),上课做笔记时,他随机从笔袋中抽出两支笔,刚好是一红一黑的概率是()A.16B.14C.13D.233.甲、乙、丙、丁四名运动员参加4100米接力赛,甲冲刺能力强,因此跑第四棒.若剩下3人随机排列,那么这四名运动员在比赛过程中的接棒顺序有()A.3种B.4种C.6种D.12种4.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为()A.34B.14C.13D.125.两个正四面体骰子的各面分别标明数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为.6.学校开设了“摄影与欣赏”“英语阅读”“新闻与人生”三类综合实践课程,每位同学可以任选一个课程,则小欣和小姗同学选中同一课程的概率是.7.如图,同学A有3张卡片,同学B有2张卡片,他们分别从自己的卡片中随机抽取一张,则抽取的两张卡片上的数字相同的概率是.8.为迎接体育中考,小雯决定利用寒假进行体能训练,她每天随机完成下表中的两项内容,则训练时不用带体育器材的概率是.项目①快走②跳绳③慢跑④骑自行车训练量20分钟500下30分钟3km9.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为7-,1-,3,乙袋中的三张卡片所标的数值为2-,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点(),A x y的所有情况;(2)求点A落在第三象限的概率.10.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出一位选手获得三位评委评定的各种可能的结果;(2)求一位选手晋级的概率.能力提高1.如图,在22⨯的正方形网格中有9个格点,已经取定点A和B,在余下的7个点任取一点C,使ABC∆为直角三角形的概率是()A.12B.25C.37D.472.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是()A.23B.12C.13D.163.号码锁上有2个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个,任意拨一个号码,能打开锁的概率是()A.19B.110C.181D.11004.在数1-,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数2y x=-图象上的概率是()A.12B.13C.14D.165.在222x xy y□□的两个空格□中,任意填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是.6.某校合唱队有x个男生和y个女生,随机抽取一人做队长,则队长是男生的概率为37,为扩大规模又招入10个男生,此时队长是男生的概率为59,则原总人数x y+等于.7.甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲在心中任选一个数字,记为m,再由乙在心中任选一个数字,记为n,若m,n满足1m n-≤,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是.8.在一个布袋中装有2个红球和2个蓝球,它们除颜色外其他都相同.(1)搅匀后从中摸出一个球记下颜色,放回搅匀再摸出第二个球,求两次都摸到蓝球的概率;(2)搅匀后从中摸出一个球记下颜色,不放回继续摸出第二个球,求两次都摸到蓝球的概率.9.小刚和小强玩飞行棋游戏,要想起飞必须投掷一枚骰子并且得到6,可以起飞之后同时投掷两枚骰子,点数之和即为飞行步数.(1)求投掷一枚骰子可以起飞的概率;(2)如右图,是飞行棋谱的一部分,若小华得到起飞机会,则第一次投掷两枚骰子,到达哪一格的可能性最大?拓展探究1.辨析下列事件(1)小刚做掷硬币的游戏,得到结论:掷均匀的两枚硬币,会出现三种情况:两正,一,他的结论对吗?说说你的理由.正一反,两反,所以出现一正一反的概率是13(2)小刚和父母都想去看恒大的足球比赛,但三人只有一张门票.爸爸建议通过抽签来决定谁去,但他们三人还为先抽和后抽的问题吵得不亦乐乎,你觉得有必要吗?请说明理由.2.某校九年级(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球b0.32推铅球 5 0.10合计50 1(1)求,a b(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.3.不透明的口袋里装有如下图标有数字的三种颜色的小球(大小、形状相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为12.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用树状图法或列表法求两次摸到的都是红球的概率;(3)若小明共摸6次球(每次摸1个球,摸后放回),球面得分之和为20,问小明有哪几种摸法?(只考虑分数的组合,不考虑6个球被摸出的先后顺序)25.2 参考答案:25.2.1 列举法基础训练1.B 2.B 3.C 4.165.6 6.347.(1)(4,5),(4,6),(4,8),(5,6),(5,8),(6,8) (2)12 8.(1)10 50 (2)2325.2.2 列表法和树状图法 基础训练1.D 2.D 3.C 4.D 5.14 6.13 7.138.16 9.(1)如表,点(,)A x y 共9种情况. (2)29数值 7- 1-3 2- 7-,2- 1-,2-3,2- 1 7-,1 1-,13,1 6 7-,6 1-,63,6 10.(1(2)41()82P ==晋级. 能力提高1.D 2.C 3.D 4.D 5.12 6.35 7.588.(1)14 (2)16 9.(1)16 (2)7 拓展探究1.(1)他的结论不正确,应当把两枚硬币标记上A ,B ,则会产生A 正B 正、A 正B 反、A 反B 正、A 反B 反四种情况,所以出现一正一反的概率是12. (2)我认为没有必要,因为不论谁先抽或后抽,三人能够去看比赛的概率都是13.2.(1)0.24a =,16b =;(2)扇形统计图略,3600.1657.6︒⨯=︒;(3)9103.(1)1 (2)16(3)三种摸法,球面分数分别是①5,3,3,3,3,3;②5,5,3,3,3,1;③5,5,5,3,1,1.。
用列举法求概率第1课时 直接列举法求概率 [见B 本P54]1.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一球,两次都摸到黑球的概率是( A ) A.14B.13 C.12D.232.为支援雅安灾区,小慧准备通过爱心热线捐款,她只记得号码的前5位,后三位由5,1,2这三个数字组成,但具体顺序忘记了.她第一次就拨通电话的概率是( C ) A.12 B.14 C.16 D.183.若从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为( A ) A.12 B.34 C.13 D.14【解析】∵从长度分别为3,5,6,9的四条线段中任取三条的可能结果有:3,5,6;3,5,9;3,6,9;5,6,9;能组成三角形的有:3,5,6;5,6,9; ∴能组成三角形的概率为12.4.在一个不透明的口袋中,有3个完全相同的小球,它们的标号分别为2,3,4,从袋中随机地摸取一个小球后,然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是__29__.5.从1,2,3,4,5中任取一个数作为十位上的数,再从2,3,4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是__13__.【解析】 所组成的所有两位数为12,13,14,22,23,24,32,33,34,42,43,44,52,53,54,共15种情形,其中是3的倍数的有12,24,33,42,54,共5种情形,∴P =515=13.6.小红有A ,B ,C ,D 四种颜色的衬衫,又有E ,F 两种颜色的裤子,若他喜欢的是A 衬衫配E 裤子,则黑暗中,她随机拿出一套恰好是她最喜欢的搭配的概率是__18__.7.一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表的方法,求出两次摸出的球上的数字之和为偶数的概率. 解: 列表(如下表所示)∴两次摸出球上的数字之和为偶数的概率为59.8.如图25-2-1,有四张背面相同的纸牌A ,B ,C ,D ,其正面分别是红桃,方块,黑桃,梅花,其中红桃,方块为红色,黑桃,梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.图25-2-1(1)用列表法表示两次摸牌所有可能出现的结果(纸牌用A ,B ,C ,D 表示);(2)求摸出的两张纸牌同为红色的概率.解: (1)列表法:。
2023-2024学年九年级数学上册《第二十五章用列举法求概率》同步练习带答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰2.下列事件中,属于随机事件的是()A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7B.某射击运动员射击一次,命中靶心C.在只装了红球的袋子中摸到白球D.在三张分别标又数字2、4、6的卡片中摸两张,数字和是偶数3.一副扑克牌,去掉大小王,从中任抽一张,恰好抽到的牌是8的概率是A.B.C.D.4.在相同条件下重复试验,若事件A发生的概率是,下列陈述中,正确的是()A.事件A发生的频率是B.反复大量做这种试验,事件A只发生了7次C.做100次这种试验,事件A一定发生7次D.做100次这种试验,事件A可能发生7次5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.6.一个不透明的盒子中装有个红球,个白球和个黄球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是白球的可能性为()A.B.C.D.7.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.8.按小王、小李、小马三位同学的顺序从一个不透明的盒子中随机抽取一张标注“主持人”和两张空白的纸条,确定一位同学主持班级“交通安全教有”主题班会.下列说法中正确的是()A.小王的可能性最大B.小李的可能性最大C.小马的可能性最大D.三人的可能性一样大二、填空题:(本题共5小题,每小题3分,共15分.)9.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.10.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机地选择一条路径,则它获得食物的概率是.11.)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是.12.在六张完全相同的卡片上,分别画有圆、矩形、菱形、等边三角形、直角三角形、正六边形,现从中随机抽取一张卡片,既是中心对称图形又是轴对称图形的概率是.13.从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a,则使关于x的不等式组有解,且使关于x的一元一次方程+1=的解为负数的概率为.三、解答题:(本题共5题,共45分)14.从3名八年级男生和n名九年级男生中任选1名参加市第十二届运动会,其中选出学生为九年级男生的概率为,则n的值是多少?15.如图,用两个相同的转盘(每个圆都平均分成六个扇形)玩配紫色游戏(一个转盘转出“红”,另一个转盘转出“蓝”,则为配成紫色).在所给转盘中的扇形里,分别填上“红”或“蓝”,使得到紫色的概率是 .16.一个不透明的口袋里有5个除颜色外都相同的球,其中有2个红球,3个黄球.(1)若从中随意摸出一个球,求摸出红球的可能性;(2)若要使从中随意摸出一个球是红球的可能性为,求袋子中需再加入几个红球?17.小米准备了五张形状、大小完全相同的不透明卡片,上面分别写有整数﹣5,﹣4,﹣3,﹣2,﹣1,将这五张卡片写有整数的一面向下放在桌面上.(1)从中任意抽取一张,求抽到的卡片数字为偶数的概率(2)从中任意抽取一张,以卡片上的数作为不等式ax+3>0中的系数a,求使该不等式有正整数解的概率.18.大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,游戏工具是一个可绕轴心自由转动的圆形转轮,转轮按圆心角均匀划分为20等份,并在其边缘标记5、10、15、...、100共20个5的整数倍的数.选手依次转动转轮,每个人最多有两次机会,选手转动的数字之和最大且不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.(1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?(2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?参考答案:1.D 2.B 3.B 4.D 5.D 6.B 7.B 8.D9.10.11.12.13.14.由题意得:解得:n=10答:n的值是1015.解:如图,一个转盘的六个扇形都填“红”,另一个转盘的一个扇形填“蓝”,余下的五个扇形不填或填其它色. (注:一个填两个“红”,另一个填三个“蓝”等也可)16.解:(1)∵从中随意摸出一个球的所有可能的结果个数是5随意摸出一个球是红球的结果个数是2∴从中随意摸出一个球,摸出红球的可能性是.(2)设需再加入x个红球.依题意可列:解得x=1检查,将x=1代入分式方程,符合题意。
25.2 用列举法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.342.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.13B.23C.16D.193.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.164.同时掷两枚质地均匀的骰子,两枚骰子点数的和是5的概率是()A.112B.19C.16D.145.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.1166.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.14B.13C.12D.347.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.238.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是.9.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是.10.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法表示出所有可能出现的游戏结果;(2)求张华胜出的概率.剪刀石头布11.周末期间小明和小华到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择同一间放映室看电影的概率是.12.某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签方式,则第一、二位出场选手都是女选手的概率是.13.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为()A.12B.13C.14D.1514.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.在某校运动会4×400 m 接力赛中,甲、乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为 .16.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率是23.(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.17.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为14;(2)若顾客选择方式二,请用列表法列出所有可能,并求顾客享受8折优惠的概率.转盘甲 转盘乙18.如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数y=-x+1图象上的概率.第2课时用树状图法求概率1.在一个不透明的口袋中装有2个白球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,放回后再随机摸出一个球,两次摸到都是白球的概率是()A.112B.16C.14D.122.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.123.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是()A.13B.49C.59D.234.经过某十字路口的汽车,可直行,也可向左转或向右转.如果这三种可能性大小相同,那么两辆汽车经过该十字路口时都直行的概率是.5.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.6.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5.现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.7.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用画树状图的方法表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.8.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法求出他恰好买到雪碧和奶汁的概率.9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为()A.23B.12C.13D.1图1 图210.用m,n,p,q四把钥匙去开A,B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则取一把钥匙恰能打开一把锁的概率是()A.18B.16C.14D.1211.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.12.有3张背面完全相同的卡片,正面分别印有如图的几何图形.现将这3张卡片正面朝下摆放并洗匀,从中任意抽取一张记下卡片正面的图形;放回后再次洗匀,从中任意抽取一张,两次抽到的卡片正面的图形都是中心对称图形的概率是.13.(遵义中考)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.14.在四边形ABCD中,有下列条件:①AB綊CD;②AD綊BC;③AC=BD;④AC⊥BD.(1)从中任选一个作为已知条件,能判定四边形ABCD是平行四边形的概率是;(2)从中任选两个作为已知条件,请用画树状图法表示能判定四边形ABCD是矩形的概率,并判断能判定四边形ABCD是矩形和是菱形的概率是否相等?15.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,那么小颖答对第一道题的概率是13;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?参考答案:25.2 用列举法求概率第1课时用列表法求概率1.A2.A3.B4.B5.D6.B7.C8.14.9.14.10.解:(1)列表如下:(2)由表可知,张华胜出的结果有3种,∴P (张华胜出)=39=13.11.14.12.16.13.C 14. 13.15. 12.16.解:(1)设袋子中白球有x 个,根据题意,得 x x +1=23.解得x =2. 经检验,x =2是所列方程的根,且符合题意. 答:袋子中有白球2个. (2)列表:∴两次都摸到相同颜色的小球的概率为59.17.(1)14;(2)解:列表如下:由表格可知共有其中指针指向每个区域的字母相同的有2种, 所以P (顾客享受8折优惠)=212=16.18.解:(1)列表如下:所以|m +n|>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.第2课时 用树状图法求概率1.C 2.B 3.C 4. 19.5. 25.6. 59.7.解:(1)画树状图如下:可能出现的结果共6种,分别是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),它们出现的可能性相等.(2)∵两个数字之和能被3整除的情况共有2种, ∴P (两个数字之和能被3整除)=26=13.8.(1)14;(2)解:画树状图如下:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16.9.A 10.C 11. 16.12. 49.13.(1)14;(2)解:画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好取到两个白粽子的结果有4种. ∴P (小明恰好取到两个白粽子)=416=14.14.(1)12;(2)解:画树状图如下:由树状图可知,从中任选两个作为已知条件共有12种等可能的结果,能判定四边形ABCD 是矩形的有4种,能判定四边形ABCD 是菱形的有4种. ∴能判定四边形ABCD 是矩形的概率为412=13,能判定四边形ABCD 是菱形的概率为412=13.∴能判定四边形ABCD 是矩形和是菱形的概率相等.15.(1)13;解:(2)用Z 表示正确选项,C 表示错误选项,画树状图如下:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第二道题使用“求助”时,P (小颖顺利通关)=19.(3)若小颖将“求助”留在第一道题使用,画树状图如下:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第一道题使用“求助”时,P (小颖顺利通关)=18.∵18>19,∴建议在答第一道题时使用“求助”.。
练习题 试25.2用列举法求概率附参考答案◆随堂检测1.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中.随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)2.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数)_______P (奇数)(填“>”“<”或“=”).3.有形状、大小和质地都相同的四张卡片,正面分别写有A 、B 、C 、D 和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.416:±=A 42:2=-B 33323:x x x C =- )0(:235≠=÷b b b b D(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A 、B 、C 、D 表示); (2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?◆典例分析把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.分析:游戏规则公平与否的问题是概率在生活中的一个重要应用.解决这类问题,关键要看双方获胜的概率是否相等,若双方获胜的概率相等,则公平,否则就不公平.所以首先要分别计算牌面数字相同和牌习题面数字不同的概率值,再比较其大小即可. 解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,故3193)(==牌面数字相同P , 3296)(==牌面数字不同P . ∵31<32, ∴此游戏规则不公平,小李赢的可能性大.◆课下作业●拓展提高1.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A .45 B .35 C .25 D .152.一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球.摸出的2个球都是红球的概率是( ) A .35 B .310 C .425 D .9253.如图,将点数为2,3,4的三张牌按从左到右的方式排列,并且按从左到右的牌面数字记录排列结果为234.现在做一个抽放牌游戏:从上述左、中、右的三张牌中随机抽取一张,然后把它放在其余两张牌的中间,并且重新记录排列结果.例如,若第1次抽取的是左边的一张,点数是2,那么第1次抽放后的排列结果是324;第2次抽取的是中间的一张,点数仍然是2,则第2次抽放后的排列结果仍是324.照此游戏规则,两次抽放后,这三张牌的排列结果仍然是234的概率为_________.练习题4.小华和小丽设计了A 、B 两种游戏:游戏A 的规则是:用3张数字分别是2、3、4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字,若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则是:用4张数字分别是5、6、8、8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌,若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜,否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.5.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.●体验中考1.(2009年,台湾)甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少? A.31 B.21C.125D.127 2.(2009年,常德市)甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )A .甲B .乙C .丙D .不能确定3.(2009年,云南省)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.参考答案: ◆随堂检测1.不公平. 甲获胜的概率是49,乙获胜的概率是59,两个概率值不相等,故这个游戏不公平.2.<.3.解:(1)树状图或列表略.所有情况有12种:AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC. (2)游戏不公平.这个规则对小强有利.理由如下: ∵P (小明)=61122=,P (小强)=651210=,P (小明)<P(小强) ∴这个规则对小强有利. ◆课下作业 ●拓展提高 1.B. 2.D.3.13. 4.答:选游戏B ,小丽获胜的可能性较大.理由如下:按游戏A ,416(936P ==小丽胜),而按游戏B ,721(1236P ==小丽胜). 5.解:这个游戏不公平,游戏所有可能出现的结果如下表:表中共有16∴63168P ==(甲获胜),105168P ==(乙获胜).∵8583≠,∴这个游戏不公平.●体验中考 1.C. 2.C.3.解:树状图为:或列表为:由上述树状图或表格知:所有可能出现的结果共有16种.∴P (小明赢)=63168=,P (小亮赢)=105168=. ∴此游戏对双方不公平,小亮赢的可能性大.开始红 红 黄 蓝 红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (7)第一章有理数 (7)第二章整式的加减 (9)第三章一元一次方程 (10)第四章图形的认识初步 (11)七年级数学(下)知识点 (11)第五章相交线与平行线 (12)第六章平面直角坐标系 (13)第七章三角形 (14)第八章二元一次方程组 (16)第九章不等式与不等式组 (17)第十章数据的收集、整理与描述 (18)八年级数学(上)知识点 (19)第十一章全等三角形 (19)第十二章轴对称 (20)第十三章实数 (21)第十四章一次函数 (21)第十五章整式的乘除与分解因式 (22)八年级数学(下)知识点 (23)第十六章分式 (23)第十七章反比例函数 (24)第十八章勾股定理 (25)第十九章四边形 (26)第二十章数据的分析 (27)九年级数学(上)知识点 (28)第二十一章二次根式 (28)第二十二章一元二次根式 (28)第二十三章旋转 (29)第二十四章圆 (30)第二十五章概率 (32)九年级数学(下)知识点 (34)第二十六章二次函数 (34)第二十七章相似 (35)第二十八章锐角三角函数 (36)第二十九章投影与视图 (37)人教版数学九年级上册教案七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一.知识框架二.知识概念 1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
25.2用列举法求概率同步练习(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、甲、乙两名同学在一次用频率去估计概率的实验中,统一用了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A. 从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 拍一枚正六面的骰子,出现点的概率2、在一个口袋中装有个完全相同的小球,它们的标号分别为,,,,从中随机摸出一个小球记下标号放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于的概率为()A.B.C.D.3、鹰城中学“春雨文学社”为了便于开展工作,社长将全部社员随机分成组进行活动,则小明和小华被分在一组的概率是().A.B.D.4、小强要给刚结识的朋友小林打电话,他只记住了电话号码的前位,后位是、、这三个数字的某一种排列顺序,但具体顺序忘记了,那么小强第一次就拨通电话的概率是.A.B.C.D.5、如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为().A.B.C.D.6、经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是().A.B.C.7、哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分別标有数字,,,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜,该游戏对双方而言赢的机会大,游戏(填“公平”或“不公平”).A. 哥哥,不公平B. 弟弟,不公平C. 哥哥和弟弟,公平D. 不能确定8、如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘指针落在每个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为().A.B.C.D.9、—只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路经,则它获得食物的概率为().B.C.D.10、现有、两个大小,质地均匀的小正方体(正方体的每个面上分别标有、、、、、、),用娜娜抛掷正方体朝上的数字为,用莉莉抛掷正方体朝上的数字为,且点的坐标为(,),则她们各投掷一次后,点在一次函数的图像上的概率是().A.B.C.D.11、有两双大小、质地相同,仅有颜色不同的拖鞋(分左右脚,可用、表示一双,用、表示另一双)放置在卧室地板上,若从这四只拖鞋中随机取出两只,恰好配成形同颜色的一双拖鞋的概率是().A.B.C.D.12、书架上有本小说,本散文,从中随机抽取本都是小说的概率为().A.B.C.D.13、质地均匀的骰子六个面分别刻有到的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A. 点数都是偶数B. 点数的和为奇数C. 点数的和小于D. 点数的和小于14、小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.15、一个布袋内只装有个黑球和个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是() A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,用红、蓝、黄三色将图中区域、、、着色,要求的公共边界的相邻区域不能涂相同的颜色,满足恰好涂蓝色的概率为.17、从、、三个数字中任取个不同的数作为点的坐标,该点在第三象限的概率是.18、从名男同学和名女同学中任选人参加志愿者活动,所选人中恰好是一名男同学和一名女同学的概率是.19、小红、小芳做游戏时约定用“石头、剪刀、布”的方式确定游戏的先后顺序,两个人都出“石头”的概率是.20、在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,洗匀后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为.三、解答题(本大题共有3小题,每小题10分,共30分)21、在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有个,黄球有个,蓝球有个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸次球,先由小明从纸箱里随机摸出个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.22、小红、小明、小芳在一起做游戏时,需要确定游戏的先后顺序,他们约定用“剪子、锤子、布”的方式确定,问:在一个回合中三个人出手互不相同的情况有哪几种?在一个回合中三个人都出剪子的概率是多少?在一个回合中三个人出手互不相同的情况有多少种?在一个回合中三个人都出剪子的概率是多少?23、一个袋子里装有质地等完全相同的个白球和个黑球,现随意从袋子里摸出一个小球,然后放回,再随意摸出一个,求两次摸的都是白球的概率是多少?25.2用列举法求概率同步练习(二) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、甲、乙两名同学在一次用频率去估计概率的实验中,统一用了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A. 从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 拍一枚正六面的骰子,出现点的概率【答案】A【解析】解:根据统计图可知,实验结果在附近波动,及其概率,计算所给的实验概率约为的是正确答案.①从一个装有个白球和个红球的袋子里任取两球,画树形图得:取得两个白球的概率为;故为正确答案.②任意写一个整数,它能被整除的概率为,故错误.③抛一枚硬币实验的基本事件列表如下:连续出现正面向上的概率为,故错误.④抛一枚正六面体的骰子,出现点的概率为,故错误.故正确答案为:从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率.2、在一个口袋中装有个完全相同的小球,它们的标号分别为,,,,从中随机摸出一个小球记下标号放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于的概率为()A.B.C.D.【答案】A【解析】解:画树状图为:共有种等可能的结果数,其中两次摸出的小球的标号之和大于的结果数为,所以两次摸出的小球的标号之和大于的概率.故正确答案是:.3、鹰城中学“春雨文学社”为了便于开展工作,社长将全部社员随机分成组进行活动,则小明和小华被分在一组的概率是().A.B.C.D.【答案】D【解析】解:设四个小组分别记作、、、,画树状图如图:由树状图可知,共有种等可能结果,其中小明、小华被分到同一个小组的结果有种,小明和小华同学被分在一组的概率是.故答案为:.4、小强要给刚结识的朋友小林打电话,他只记住了电话号码的前位,后位是、、这三个数字的某一种排列顺序,但具体顺序忘记了,那么小强第一次就拨通电话的概率是.A.B.C.D.【答案】B【解析】解:画树状图为:由树状图可得,三个数排列顺序的总共有种,而能打通的只有种,所以一次能打通的概率为.正确答案是:.5、如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为().A.B.C.D.【答案】D【解析】解:列表得:共有种情况,两个指针同时落在标有奇数扇形内的情况有种情况:和,和,和,和.两个指针同时落在标有奇数扇形内的概率是.故答案选:.6、经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是().A.B.C.D.【答案】B【解析】解:“列表”列举出这两辆汽车行驶方向所有可能的结果如图所示:由“列表格”知,两辆汽车一辆左转,一辆右转的结果有种,且所有结果的可能性相等,(两辆汽车一辆左转,一辆右转).故答案选:.7、哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分別标有数字,,,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜,该游戏对双方而言赢的机会大,游戏(填“公平”或“不公平”).A. 哥哥,不公平B. 弟弟,不公平C. 哥哥和弟弟,公平D. 不能确定【答案】A【解析】解:列树状图得:共有种情况,和为偶数的有种,哥哥赢的概率是,弟弟赢的概率是,该游戏对双方而言,哥哥赢得机会大,游戏不公平.故答案应选:哥哥,不公平.8、如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘指针落在每个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为().A.B.C.D.【答案】D【解析】解:根据题意,通过列表可得:、、、、、、、、、、、、、、、、、两个指针同时落在标有奇数扇形内的概率为.故正确答案为.9、—只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路经,则它获得食物的概率为().A.B.C.D.【答案】C【解析】解:根据题意得,蚂蚁寻觅食物的路径共有条,其中有条路径可以获得食物.蚂蚁获得食物的概率为.故正确答案为.10、现有、两个大小,质地均匀的小正方体(正方体的每个面上分别标有、、、、、、),用娜娜抛掷正方体朝上的数字为,用莉莉抛掷正方体朝上的数字为,且点的坐标为(,),则她们各投掷一次后,点在一次函数的图像上的概率是().A.B.C.D.【答案】A【解析】解:如图所示:两个小正方体上的数字一共有种等可能结果,其中在函数图像上的只有,,种等可能结果,所以在函数上的概率为,即,故答案为:.11、有两双大小、质地相同,仅有颜色不同的拖鞋(分左右脚,可用、表示一双,用、表示另一双)放置在卧室地板上,若从这四只拖鞋中随机取出两只,恰好配成形同颜色的一双拖鞋的概率是().A.B.C.D.【答案】B【解析】解:画树状图得:共有种等可能结果,配成一双颜色相同的等可能结果有四种,所以配成一双颜色相同的概率是,即.故答案为:.12、书架上有本小说,本散文,从中随机抽取本都是小说的概率为().A.B.C.D.【答案】A【解析】解:如图所示:所以两次取到都是小说的概率是:,故答案为:.13、质地均匀的骰子六个面分别刻有到的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A. 点数都是偶数B. 点数的和为奇数C. 点数的和小于D. 点数的和小于【答案】C【解析】解:画树状图为:共有种等可能的结果数,其中点数都是偶数的结果数为,点数的和为奇数的结果数为,点数和小于的结果数为,点数和小于的结果数为,所以点数都是偶数的概率为, 点数的和为奇数的概率为,点数和小于的概率为,点数和小于的概率为,所以发生可能性最大的是点数的和小于.14、小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为( ) A. B. C. D. 【答案】C 【解析】解:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:由表格可知,共有种等可能情况.其中平局的有种:(石头,石头)、(剪刀,剪刀)、(布,布).小明和小颖平局的概率为.15、一个布袋内只装有个黑球和个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.【答案】A【解析】解:列表得:共种等可能的结果,两次都是黑色的情况有种,两次摸出的球都是黑球的概率为.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,用红、蓝、黄三色将图中区域、、、着色,要求的公共边界的相邻区域不能涂相同的颜色,满足恰好涂蓝色的概率为.【答案】【解析】解:画树状图为:由图可知要使有公共边界的相邻区域不能涂相同的颜色,所有可能情况共有种,涂蓝共有种情况.所以恰好涂蓝色的概率为.故正确答案为:.17、从、、三个数字中任取个不同的数作为点的坐标,该点在第三象限的概率是.【答案】【解析】解:画树状图如图,由树状图可得,从这三个数中任取个不同数作为点坐标共有个点,而点在第三象限的有:和,共有个点,故它的概率为.正确答案是:.18、从名男同学和名女同学中任选人参加志愿者活动,所选人中恰好是一名男同学和一名女同学的概率是.【答案】由表格可得,选得的所有可能结果共有种,恰好是一名男同学和一名女同学的有种,所以恰好选一名男同学和一名女同学的概率为.正确答案是:.19、小红、小芳做游戏时约定用“石头、剪刀、布”的方式确定游戏的先后顺序,两个人都出“石头”的概率是.【答案】【解析】解:画树状图为:由树状图得,所有可能的结果共有种情况,而两人同时出“石头”的可能只有种情况,所以两人同时出“石头”的概率为.正确答案是:.20、在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,洗匀后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为.【答案】1/2【解析】解:四种图形中等腰三角形、菱形和圆是轴对称图形,分别用、、、表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有$12$种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有$6$种情况,∴抽到卡片上印有的图案都是轴对称图形的概率为:.故正确答案是:三、解答题(本大题共有3小题,每小题10分,共30分)21、在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有个,黄球有个,蓝球有个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸次球,先由小明从纸箱里随机摸出个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.【解析】解:此游戏不公平.理由如下:列树状图如下.由上述树状图或表格知:所有可能出现的结果共有种.(小明赢),(小亮赢).所以此游戏对双方不公平,小亮赢的可能性大.答:此游戏对双方不公平,小亮赢的可能性大.22、小红、小明、小芳在一起做游戏时,需要确定游戏的先后顺序,他们约定用“剪子、锤子、布”的方式确定,问:在一个回合中三个人出手互不相同的情况有哪几种?在一个回合中三个人都出剪子的概率是多少?在一个回合中三个人出手互不相同的情况有多少种?在一个回合中三个人都出剪子的概率是多少?【解析】解:画树状图如图所示,由树状图可知三个人出手情况共有种,在一个回合中三个人出手互不相同的有种,在一个回合中三个人都出剪子情况有种,所以在一个回合中三个人都出剪子的概率为.答:在一个回合中三个人出手互不相同的有种,在一个回合中三个人都出剪子的概率为.23、一个袋子里装有质地等完全相同的个白球和个黑球,现随意从袋子里摸出一个小球,然后放回,再随意摸出一个,求两次摸的都是白球的概率是多少?【解析】解:摸两次所有可能的结果共有(白,白),(白,黑),(黑,白),(黑,黑)种情况,两次摸的都是白球的只有一种,这四种出现的可能性相同,故(两次摸的都是白球).故答案为:.。
2022-2023学年九年级数学上册章节同步实验班培优题型变式训练(人教版)25.2 用列举法求概率【题型1】列举法求概率1.(2022·全国·九年级课时练习)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(反,反)的概率是( )A .13B .34C .12D .14【点睛】本题考查了列举法求概率,解本题的关键在熟练掌握概率公式.概率=所求情况数与总情况数之比.【变式1-1】2.(2021·四川·平昌县中小学教学研究室九年级期末)如图所示的电路中,当随机闭合开关123,,S S S 中的两个时,能够让灯泡发光的概率为_________.【题型2】列表法或树状图法求概率1.(2022·山西吕梁·九年级期末)第十四届全国运动会会徽吉祥物发布,吉祥物朱朱、熊熊、羚羚、金金的设计方案是以陕西秦岭独有的四种国宝级动物“鹮朱、大熊猫、羚牛、金丝猴”为创意原型.小明和小彬各从四个吉祥物中选择一个制作成绘画作品,参与学校举办的绘画展,则他们选中“朱朱”和“金金”的概率为( )A.12B.16C.18D.112【变式2-1】2.(2022·全国·九年级单元测试)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是__.共有9种等可能的结果,其中第一辆车向左转,第二辆车向右转的结果有∴第一辆车向左转,第二辆车向右转的概率为19,故答案为:19.【题型3】游戏的公平性1.(2022·全国·九年级单元测试)甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5D.游戏公平【变式3-1】2.(2022·全国·九年级专题练习)如图,有8张标记数字1-8的卡片.甲、乙两人玩一个游戏,规则是:甲、乙两人轮流从中取走卡片;每次可以取1张,也可以取2张,还可以取3张卡片(取2张或3张卡片时,卡片上标记的数字必须连续);最后一个将卡片取完的人获胜.若甲先取走标记2,3的卡片,乙又取走标记7,8的卡片,接着甲取走两张卡片,则________(填“甲”或“乙”)一定获胜;若甲首次取走标记数字1,2,3的卡片,乙要保证一定获胜,则乙首次取卡片的方案是________.(只填一种方案即可)【答案】甲取走标记5,6,7的卡片(答案不唯一)【分析】由游戏规则分析判断即可作出结论.【详解】解:若甲先取走标记2,3的卡片,乙又取走标记7,8的卡片,接着甲取走两张卡片,为4,5或5,6,则剩余的卡片为1,6或1,4,然后乙只能取走一张卡片,最后甲将一张卡片取完,则甲一定获胜;若甲首次取走标记数字1,2,3的卡片,乙要保证一定获胜,则乙首次取卡片的方案5,6,7,理由如下:乙取走5,6,7,则甲再取走4和8中的一个,最后乙取走剩下的一个,则乙一定获胜,故答案为:甲;5,6,7(答案不唯一).【点睛】本题考查游戏公平性,理解游戏规则是解答的关键.一.选择题1.(2022·全国·九年级单元测试)掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是()A.1B.56C.23D.16【点睛】本题考查简单随机事件的概率,理解概率的意义是正确解答的前提,列举出所有等可能出现的结果情况是解决问题的关键.2.(2021·辽宁大连·一模)把标号为1,2,3的三个小球放入一个不透明的口袋中,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球的标号的和大于3的概率是()A.13B.49C.59D.233.(2021·辽宁阜新·中考真题)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()A.12B.23C.16D.56则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16.故选:C.【点睛】本题考查了简单事件的概率,常用列表法或画树状图来求解.4.(2022·全国·九年级单元测试)甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5D.游戏公平5.(2022·广东广州·中考真题)为了疫情防控,某小区需要从甲、乙、丙、丁4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是()A.12B.14C.34D.512故选:A.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.6.(2022·全国·九年级专题练习)某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为()A.2081B.1081C.5243D.10243二、填空题7.(2021·天津东丽·九年级期末)一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球(1)用画树状图或列表的方法表示出可能出现的所有结果;(1)求两次抽出数字之和为奇数的概率.8.(2022·全国·九年级单元测试)不透明的袋子中有两个小球,上面分别写着数字“1”、“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是______.由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为21 42 =.故答案为:12.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.9.(2018·山西·九年级专题练习)小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方_____.(填“公平”或“不公平”).由图可知:共有四种等可能结果出现,其中小明获胜的有两种,小亮获胜的也有两种,∴P(小明获胜)=2142=,P(小亮获胜)=2142=,∴P(小明获胜)=P(小亮获胜),∴该游戏是“公平”的.故答案为公平.点睛:本题的解题要点有两点:(1)能够画出符合题意的树状图;(10.(2018·湖南娄底·中考真题)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还想从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为___________.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.11.(2022·内蒙古兴安盟·模拟预测)疫情期间,进入学校都要进入测温通道,体温正常才可进入学校.某校有3个测温通道,分别记为A,B,C通道.学生可随机选取其中的一个通道测温进校园,某日早晨,小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是_____________.12.(2022·湖南永州·模拟预测)现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同,若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是____.共有6种情况,两张卡片标号恰好相同有2种情况,所以,两张卡片标号恰好相同的概率是P=21 63 =.故答案为1 3【点睛】本题考核知识点:求概率.解题关键点:列表求出所有情况.三、解答题13.(2022·江苏·星港学校八年级期末)2022年冬奥会在北京举办.现有如图所示“2022·北京冬梦之约”的四枚邮票供小明选择,依次记为A,B,C,D,背面完全相同.将这四枚邮票背面朝上,洗匀放好(1)小明从中随机抽取一枚,恰好抽到是B(冰墩墩)概率是 (2)小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B(冰墩墩)和C(雪容融)的概率.14.(2022·全国·九年级单元测试)一个箱子里共3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是______;(2)从箱子中任意摸出一个球后,放回箱子,搅匀后再摸出一个球,请画树状图或列表求2次摸出的球都是白球的概率.(3)小明向箱中放入n个红球后搅匀,然后从箱子中随机摸出一个球是白球的概率为14,求n的值.根据表格可知:总的可能情况有6种,两次都是白球的情况有即两次都是摸出白球的概率为:2÷6=13;(3)加入红球后球的总个数:1284¸=,则加入红球的个数为:n=8-3=5,即n值为5.15.(2021·吉林·中考真题)第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.共有6种等可能出现的结果情况,其中两球都是白球的有1种,所以取出的2个球都是白球的概率为16.答:取出的2个球都是白球的概率为16.【点睛】本题考查简单事件的概率,正确列表或者画树状图是解题关键.16.(2022·江苏·九年级专题练习)某校计划在下个月第三周的星期一至星期四开展社团活动.(1)若甲同学随机选择其中的一天参加活动,则甲同学选择在星期三的概率为______;(2)若乙同学随机选择其中的两天参加活动,请用画树状图(或列表)的方法求其中一天是星期二的概率.总的可能情况数为12种,含星期二(B)的情况有则乙同学选的两天中含星期二的概率为:6÷12=.即所求概率为12【点睛】本题考查了基本的概率公式和用树状图或列表法求解概率的知识.明确题意准确的作出列表是解答本题的关键.17.(2022·辽宁沈阳·中考真题)为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是________;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.18.(2022·江苏宿迁·中考真题)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).所有所有的等可能的情况数有12种,符合条件的情况数有6种,所以一定有乙的概率为:61=. 122【点睛】本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键.。
人教版九年级数学上册《25.2用列举法求概率》练习题(附带答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.看了《田忌赛马》故事后,数学兴趣小组用数学模型来分析:齐王与田忌的上中下三个等级的三匹马综合指标数如表,每匹马只赛一场,综合指标的两数相比,大数为胜,三场两胜则赢,已知齐王的三匹马出场顺序为6、4、2,若田忌的三匹马随机出场,则田忌能赢得比赛的概率为()马匹等级下等马中等马上等马齐王246田忌135A.13B.16C.19D.1122.本学期我们做过“抢30“的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30,谁就获胜”.改为“每次最多可以连说三个数,谁先抢到33,谁就获胜.”那么采取适当策略,其结果是()A.先说数者胜B.后说数者胜C.两者都能胜D.无法判断3.在一个不透明纸箱中放有除了数字不同外,其它完全相同2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.14B.13C.12D.344.如图所示,正六边形ABCDEF,任意选择其中三个顶点作为三角形的三个顶点,所得到的三角形恰好是等腰三角形的概率是()A.920B.35C.310D.255.生物学家研究发现,人体许多特征都是由基因决定的.如人的卷舌性状由常染色体上的一对基因决定,决定能卷舌的基因R是显性的,不能卷舌的基因r是隐性的,因此决定能否卷舌的一对基因有RR,Rr,rr 三种,其中基因为RR和Rr的人能卷舌,基因为r r的人不能卷舌,父母分别将他们一对基因中的一个基因446.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A.B.C.D.7.下列说法错误的是()8.甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5D.游戏公平9.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.10.学生甲手中有4,6,8三张扑克牌,学生乙手中有3,5,10三张扑克牌,现每人从各自手中随机取出一张牌进行比较,数字大者胜,在该游戏中()A.甲获胜的概率大B.乙获胜的概率大C.两人获胜概率一样大D.不能确定二、填空题11.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是.12.现有四张完全相同的刮刮卡,涂层下面的文字分别是“我”、“爱”、“中”、“国”.小亮从中随机抽取两张并刮开,则这两张刮刮卡上的文字恰好是“爱”和“国”的概率是.13.夏天到了,天气炎热,零陵区某学校4月份举行一次“珍爱生命,预防溺水”的知识竞赛活动,该校九年级从预选表现优秀的一位男生和两位女生中任选两位同学参加学校知识竞赛,选中的两位同学恰好是一男一女的概率是.14.从2-,0,2这三个数中,任取两个不同的数分别作为a,b的值,恰好使得关于x的方程20+-=x ax b有实数解的概率为.15.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.16.小军与小王一起玩“石头、剪刀、布”的游戏,两同学同时出“石头”的概率是.17.如图所示,用图中一个可自由转动的转盘做“配紫色”游戏:自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,转动无效,重新转动)的颜色,若其中一次转出红色,另一次转出蓝色即可配成紫色,那么可配成紫色的概率为.18.甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为.19.小兰和小青两人做游戏,有一个质量分布均匀的六面体骰子,骰子的六面分别标有1,2,3,4,5,6,如果掷出的骰子的点数是偶数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢,那么游戏规则对有利.20.现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同,若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是.三、解答题21.为了了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试.并将测试成绩分为A B C D四个成绩,绘制了如下不完整的统计图表.,,,成绩等级频数分布表根据图表信息解答下列问题:()1填空:x=_____,y=_____,扇形统计图中表示A的扇形的圆心角度数为____度;()2甲、乙、丙是A等级中的3名学生.学习决定从这3名学生中随机抽取2名来介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙2学生的概率.22.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.23.某公司在羊年春节晚会上举行一个游戏,规则如下:有4张背面相同的卡片,正面分别是喜羊羊、美羊羊、慢羊羊、懒羊羊的头像,分别对应1000元、600元、400元、200元的奖金,现将4张纸牌洗匀后背面朝上摆放到桌上,让员工抽取,每人有两次抽奖机会,两次抽取的奖金之和作为公司发的年终奖金.现有两种抽取的方案:①小芳抽取方案是:直接从四张牌中抽取两张.①小明抽取的方案是:先从四张牌中抽取一张后放回去,再从四张中再抽取一张.你认为是小明抽到的奖金不少于1000元的概率大还是小芳抽取到的奖金不少于1000元的概率大?请用树形图或列表法进行分析说明.24.小英和小明姐弟二人准备一起去观看端午节龙舟赛.但因家中临时有事,必须留下一人在家,于是姐弟二人采用游戏的方式来确定谁去看龙舟赛.游戏规则是:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同.游戏时先由小英从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色.如果姐弟二人摸到的乒乓球颜色相同.则小英赢,否则小明赢.(1)请用树状图或列表的方法表示游戏中所有可能出现的结果.(2)这个游戏对游戏双方公平吗?请说明理由.25.现有3张正面分别写有数字1,2,3的卡片,将3张卡片的背面朝上洗匀.(1)若从中任意抽取1张,抽到的卡片上的数字恰好为3的概率是_____;(2)若先从中任意抽取1张(不放回),再从余下的2张中任意抽取1张,求抽得的2张卡片上的数字之和是3的倍数的概率.参考答案:1.B2.A3.C4.D5.D6.B7.C8.C9.C10.A11.2 9。
25.2 用列举法求概率同步练习一、选择题1.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球以后不放回布袋,再摸第二个球,这时获得的两个球的颜色中有“一红一黄”的概率是 ()A. 1B. 2C. 1D. 269332.同时投掷三枚质地平均的硬币,起码有两枚硬币正面向上的概率是()A. 3B.5C. 2D. 188323.如图是一次数学活动课制作的一个转盘,盘面被平分红四个扇形地区,并分别标有数字 - 1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指地区的数字 (当指针恰巧指在分界限上时,不记,重转 ),则记录的两个数字都是正数的概率为 ()A. 1B. 1C. 1D. 186424.小明和他的爸爸妈妈共 3 人站成一排摄影,他的爸爸妈妈相邻的概率是 ()A. 1B. 1C. 1D. 263235.三名初三学生坐在仅有的三个座位上,起身后从头就坐,恰巧有两名同学没有坐回原座位的概率为()第1页/共7页A. )19B. )16C. )14D. )126.从九年级一班 3 名优异班干部和九二班 2 名优异班干部中随机抽取两名学生担当升旗手,则抽取的两名学生恰巧一个班的概率为()A. 1B. 2C. 3D. 455557.从长为 3,5,7,10 的四条线段中随意选用三条作为边,能构成三角形的概率是 ()A. 1B. 1C. 3D. 14248.小王家新锁的密码是 6 位数,他记得前两位数是 23,后两位数是 32,中间两位数忘了,那么他一次按对的概率是()A. 1B. 1C. 1D. 12050901009.某校高一年级今年计划招四个班的重生,并采纳随机摇号的方法分班,小明和小红既是该校的高一重生,又是好朋友,那么小明和小红分在同一个班的时机是 ()A. 41B. 31C. 21D. 4310. 若一个袋子中装有形状与大小均完整同样有 4 张卡片, 4 张卡片上分别标有数字 - 2,- 1,2,3,现从中随意抽出此中两张卡片分别记为 x,y,并以此确立点 ??( ??,??),那么点 P 落在直线??= - ??+ 1上的概率是 ()A.1B.1C.1D.12346二、填空题11. 有 5 张看上去无差其他卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取 2 张,抽出的卡片上的数字恰巧是两个连续整数的概率是______ .12.箱子里放有 2 个黑球和 2 个红球,它们除颜色外其他都同样,现从箱子里随机摸出两个球,恰巧为 1 个黑球和 1 个红球的概率是 ______ .13.假如随意选择一对有序整数 ( ??,??),此中 |??| ≤ 1,|??| ≤3,每一对这样的有序整数被选择的可能性是相等的,那么对于 x 的方程2有两个相等实数根的概率是 ______ .??+ ????+ ??= 014. 从- 1,- 2,1,2四个数中,任取一个数记为k,再从余下的三23个数中,任取一个数记为??.则一次函数 ??= ????+ ??的图象不经过第四象限的概率是 ______ .15.从- 1,0,2,3 这四个数中,任取两个数作为 a,b,分别代入一元二次方程2中,那么全部可能的一元二次???? + ????+ 2 = 0方程中有实数解的一元二次方程的概率为______ .三、计算题16.一袋中装有形状大小都同样的四个小球,每个小球上各标有一个数字,分别是 1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;而后将小球放回袋中并搅拌平均,再任取一个小球,对应的数字作为这个两位数的十位第3页/共7页数.(1)写出按上述规定获得全部可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于 4 且小于 7的概率.17.最近几年来,手机微信红包快速流行起来 .昨年春节,小米的爷爷也试试用微信发红包,他分别将 10 元、30 元、60 元的三个红包发到只有爷爷、爸爸、妈妈和小米的微信群里,他们每人只好抢一个红包,且抢就任何一个红包的时机均等 (爷爷只发不抢,红包里钱的多少与抢红包的先后次序没关 ).(1)求小米抢到 60 元红包的概率;(2)假如小米的奶奶也加入“抢红包”的微信群,他们四个人中将有一个人抢不到红包,那么这类状况下,求小米和妈妈两个人抢到红包的钱数之和许多于 70 元的概率.18.若 n 是一个两位正整数,且 n 的个位数字大于十位数字,则称 n为“两位递加数”(如 13,35,56 等).在某次数学兴趣活动中,每位参加者需从由数字 1,2,3,4,5,6 组成的全部的“两位递加数”中随机抽取 1 个数,且只好抽取一次.(1)写出全部个位数字是 5 的“两位递加数”;(2)请用列表法或树状图,求抽取的“两位递加数”的个位数字与十位数字之积能被 10 整除的概率.第5页/共7页【答案】1. C2. D3. C4. D5. D6. B7. B8. D9. A10. B11.2512.2313.1714.1615.1416.解: ( 1) 画树状图:共有 16 种等可能的结果数,它们是:11, 41,71,81,14,44,74,84,17,47,77,87, 18,48,78, 88;( 2)算术平方根大于 4 且小于 7 的结果数为 6,因此算术平方根大于 4 且小于 7 的概率 = 166 = 38.17.解: ( 1) 小米抢到 60 元红包的概率 = 1;3( 2)画树状图为:共有 24 种等可能的结果数,此中小米和妈妈两个人抢到红包的钱数之和许多于70 元的结果数为 8,因此小米和妈妈两个人抢到红包的钱数之和许多于70 元的概率 = 8= 1.24318. 解:(1)依据题意全部个位数字是 5 的“两位递加数”是 15、25、35、45 这 4 个;( 2)画树状图为:共有 15 种等可能的结果数,此中个位数字与十位数字之积能被10整除的结果数为 3,因此个位数字与十位数字之积能被10 整除的概率 = 3= 1.155第7页/共7页。
概率的求法及应用
一、用列举法求概率
(一) 两步概率
1.(2014·扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是__14___; (2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
解:画树状图(略),∵共有12种可能的结果,他恰好买到雪碧和奶汁的有2种等可能情况,
∴P(他恰好买到雪碧和奶汁)=212=16
2.如图,管中放置着三根同样的绳子AA 1,BB 1,CC 1.
(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?
(2)小明先从左端A ,B ,C 三个绳头中随机选两个打一个结,再从右端A 1,B 1,C 1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳的概率.
解:(1)P(恰好选中绳子AA 1)=13
(2)画树状图(略),可知分别在两端随机任选两个绳头打结,总共有9种等可能情况,其中能连接成一根长绳的有6种,故P(这三根绳子连接成一根长绳)=69=23
3.在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取了不同的摸取方法,分别是:
小明:随机摸取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号;
小强:随机摸取一个小球记下标号,不放回,再随机地摸取一个小球,记下标号.
(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;
(2)分别求出小明和小强两次摸球的标号之和等于5的概率.
解:(1)略(2)由树状图可知:小明摸取小球,可能出现的结果有16个,它们出现的可能性相等,其中满足标号之和为5(记为事件A)的结果有4个,即(1,4),(2,3),(3,2),(4,
1),所以P(A)=4
16=
1
4
;小强摸取小球,可能出现的结果有12个,它们出现的可能性相等,
其中满足标号之和为5(记为事件B)的结果有4个,即(1,4),(2,3),(3,2),(4,1),所
以P(B)=4
12=1 3
4.(2014·黄冈)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.
(1)请用树状图或列表法列举出各种可能选派的结果;
(2)求恰好选派一男一女两位同学参赛的概率.
解:(1)画树状图(略),一共有12种选派方案
(2)恰有一男一女参赛,共有8种可能,
∴P(一男一女)=8
12=
2
3
(二) 三步概率
5.如图,用红、蓝两种颜色随机地对A ,B ,C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A ,C 两个区域所涂颜色不相同的概率.
解:画树状图(略),所有等可能的情况有8种,其中A ,C 两个区域所涂颜色不相同的有4
种,则P =48=12
6.两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,两人采用了不同的乘车方案:
甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.
如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:
(1)三辆车按出现的先后顺序共有哪几种不同的可能? (2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大?为什么? 解:(1)略 (2)对于乙,共有6种等可能结果,乘上等车的有3种,所以乙乘上等车的可能
性为36=12,而甲乘上等车的可能性为13,故乙乘上等车的可能性大
二、概率的应用
7.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.
(1)求转动一次转盘获得购物券的概率;
(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?
解:(1)P(转动一次转盘获得购物券)=1020=12
(2)200×120+100×320+50×620
=40(元).∵40元>30元,∴选择转转盘对顾客更合算
8.(2014·怀化)甲、乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.
(1)求从袋中随机摸出一个球,标号是1的概率;
(2)从袋中随机摸出一个球然后放回,摇匀后再随机摸出一个球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜.试分析这个游戏公平吗?请说明理由.
解:(1)P(标号是1)=13 (2)这个游戏不公平,理由如下:列表(略),P(和为偶数)=59
,P(和为奇数)=49
,二者不相等,说明游戏不公平
三、统计与概率
9.某校九年级有10个班,每班50名学生,为调查该校九年级学生一学期课外书籍的阅读情况,准备抽取50名学生作为一个样本进行分析,并规定如下:设一个学生一学期阅读课外书籍本数为n ,当0≤n <5时为一般读者;当5≤n <10时为良好读者;当n ≥10时为优秀读者.
(1)下列四种抽取方法最具有代表性的是__B ___;
A .随机抽取一个班的学生
B .随机抽取50名学生
C .随机抽取50名男生
D .随机抽取50名女生
(2)由上述最具代表性的抽取方法抽取50名学生一学期阅读本数的数据如下:
8 10 6 9 7 16 8 11
0 13 10 5 8 2 6 9
7 5 7 6 4 12 10 11
6 8 14 15
7 12 13 8
9 7 10 12 11 8 13 10 4 6 8 13 6 5 7 11
12 9
根据以上数据回答下列问题:
①求样本中优秀读者的频率;
②估计该校九年级优秀读者的人数;
③在样本为一般读者的学生中随机抽取2人,用树状图或列表法求抽得2人的课外书籍阅读本数都为4的概率.
解:①25 ②200人 ③16
10.每年3月12日,是中国的植树节.某街道办事处为进一步改善人居环境,准备在街道两边种植行道树,行道树的树种选择取决于居民的喜爱情况.为此,街道办事处的人员随机调查了部分居民,并将结果绘成如图中扇形统计图,其中∠AOB=126°.
请根据扇形统计图,完成下列问题:
(1)本次调查了多少名居民?其中喜爱“香樟”的居民有多少人?
(2)请将条形统计图补全;(在图中完成)
(3)某中学的一些同学也参与了投票,喜爱“小叶榕”的有四人,其中一名男生;喜爱“黄葛树”的也有四人,其中三名男生.若街道办事处准备分别从这两组中随机选出一名同学参与到街道植树活动中去,请你用列表或画树状图的方法求出所选两名同学恰好一名女生和一名男生的概率.
解:(1)800人;40人(2)补图略(3)错误!。