六年级数学列方程
- 格式:ppt
- 大小:547.00 KB
- 文档页数:17
小学六年级数学列方程解应用题专题训练重点突破例1、有一块长方形土地,周长为186米。
已知长比宽多32米,求这块土地的长和宽。
解答:方法(1)用小学方法解:长方形的宽为(186÷2—32)÷2=30.5(米),长方形的长为30.5+32=62.5(米)。
方法(2)用列方程来解:如果长方形的长为x,那么长方形的宽为x—32,根据题意得,186÷2—x=x—3293—x=x—3293+32—x=x125—x=x125=2xX=62.5X—32=62.5—32=30.5答:长方形的宽为30.5米,长方形的长为62.5米。
例2、大、小两个水池都未注满水。
若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水。
已知大池容量是小池的1.5倍,问:两池中共有多少吨水?【答案】80【分析】这是直接设未知数的应用题①关键量:水的总量——即为题目所求②用水的总量把大池、小池的水量表示出来,根据两池容积的倍数关系建立等量关系③解:设两池共有x吨水④所以两池共有80吨水⑤答:两池中共有80吨水例3、某陶瓷商,为了促销决定卖一只茶壶,赠一只茶杯,某人共付款162元,购得茶壶和茶杯共36只,已知每只茶壶15元,每只茶杯3元,问其中茶壶、茶杯各多少只?【答案】6,30【分析】① 关键量:茶壶的只数——即为题目所求② 利用茶壶的只数把买的茶杯的只数表示出来进而根据所花钱的总数建立等量关系③ 解:设茶壶x只,那么所买茶杯只数为(36-2x)只④ 所以茶壶的只数是6只,茶杯的只数是36-6=30只⑤ 答:茶壶6只,茶杯30只例4、爸爸、哥哥、妹妹三人现在的年龄和是64岁。
当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁;当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁。
现在三人的年龄各是多少岁?【答案】妹妹10岁,哥哥14岁,爸爸40岁【分析】① 关键量:年龄差不变——不是题目所求(直接设显然很麻烦)② 可以设妹妹与哥哥的年龄差,再根据哥哥和爸爸的年龄差不变(或者妹妹与爸爸的年龄差不变)建立等量关系③ 解:哥哥与妹妹的年龄差为x岁所以:当妹妹4岁时,哥哥2×4=8岁,爸爸此时34岁。
列方程解应用题的类型(一)直接设未知数例1.甲的存款是乙的4倍,如果甲取出110元,乙存入110元,那么乙的存款是甲的3倍,问甲乙原来各有存款多少元?解析:这是一道较复杂的和差倍问题.但用方程思维来解,就好理解了.解:设乙原来有存款x元,(直接设未知数,求两个量以上的,一般设最小的那个),那么甲原来的存款数就是4x元(用未知数表示另外的量)根据题中“现在,乙的存款是甲的3倍”这一数量关系式,我们可以列出方程(x+110)=(4x-110)×3(二)间接设未知数例2.盒子里装有白球的个数是红球的3倍.每次取出3个红球和4个白球,取了若干次以后,红球正好取完,白球还有20个,盒子里原来共有多少个球?解析:如果直接设未知数,设原来共有X个球,你就无法用未知数表示出白球和红球的数量,自然也不能用方程列出两种球的数量关系式.所以直接设对这类型题不合适.从题意中我们发现,如果知道取了多少次,这道题就简单多了解:设共取了x次,题目中”盒子里白球的个数是红球的3倍”说出了两者的数量关系式,我们可以列出方程4x+20=3x×3(三).方程在其他题目中的运用例3.计算(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)解析: 如果直接去括号计算,三个数乘以三个数的乘法分配律,还没学.但仔细观察下,发现,算式中有好多数是相同的.我们可以把这些相同的数当成一个数,这样算式就简化了解:设0.12+0.23=x,设1+0.12+0.23=y原式=y×(x+0.34)-(y+0.34)×x=x×y+0.34×y-x×y-0.34×x (式子中的”×”号可不写)=0.34y-0.34x=0.34(y-x)=0.34(提醒:原来,设未知数的目的在于简化计算过程,到最后,含有未知数的全部抵消掉了 )例4. 有一个三位数:十位上的数字是0,其余两位上的数字之和是12。
六年级数学列方程解应用题技巧与学习建议列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。
如何应用方程来解应用题呢?小编今天给大家收集了相关资料,快来看看吧!六年级数学列方程解应用题技巧一、首先是审题,确定未知数。
审题,理解题意。
就是全面分析已知数与已知数、已知数与未知数的关系。
特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。
即用x表示所求的数量或有关的未知量。
在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。
二、寻找等量关系,列出方程是关键。
“含有未知数的等式称为方程”,因而“等式”是列方程必不可少的条件。
所以寻找等量关系是解题的关键。
如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。
仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。
上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数得值。
解方程时应当注意把等号对齐。
如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。
2x=4482x÷2=448÷2x=224四、检验也是列方程解应用题中必不可少的。
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。
如果左右两边相等,说明方程解正确了。
如上题的检验过程为:检验:把x=224代入原方程。
左边=2×224+47 右边=495=495因为左边=右边,所以x=224是方程2x+47=495的解。
列方程解应用题(一)同学们在解答数学问题时,经常遇到一些数量关系较复杂的,或较隐蔽的逆向问题。
用算术方法解答比较困难,如果用方程解就简便得多。
它可以进一步培养我们分析问题和解决问题的能力,抽象思维能力,列方程解应用题一般分为五步:(一)审题;(弄清已知数和未知数以及它们之间的关系)(二)用字母表示未知数;(通常用“x”表示)(三)根据等量关系列出方程;(四)解方程求出未知数的值;(五)验算并答题。
例1. 金台小学学生参加申奥植树活动,六年级共植树252棵,比五年级植树总数的114倍少8棵,五年级植树多少棵?思路分析:六年级比五年级植树总数的114倍少8棵,就是六年级的114倍的数少8,等于六年级植树的总数。
等量关系是:五年级的114倍-8=六年级的植树总数。
解:设五年级植树x棵,根据题意列方程,得1148252x-=1142528x=+114260x=xx=÷=260114208验算:把x=208代入原方程左边=⨯-=1142088252右边=252左边=右边x=208是原方程的解。
答:五年级植树208棵。
例2. 一瓶农药700克,其中水比硫磺粉的6倍还多25克,含硫磺粉的重量是石灰的2倍,这瓶农药里,水、硫磺粉和石灰粉各多少克?思路分析:这是道比较复杂的“和倍应用题”,硫磺粉和水有直接关系,硫磺粉和石灰也有直接关系,因此应设未知数硫磺粉为x克。
水的重量是硫磺的6倍还多25克,也就是(6x+25)克,石灰的重量就是硫磺粉的重量除以2,也就是12x 克。
等量关系式表示为:水+硫磺粉+石灰=农药重量解:设硫磺粉的重量是x 克,那么,水的重量是(625x +)克,石灰重量是12x克。
根据题意列方程,解。
62512700x x x +++= 71270025x =-75675.x = x =90 验算:把x =90代入原方程左边=⨯+++⨯=69025901290700右边=700左边=右边x =90是原方程的解。
同学们学习了用字母表示数和解简易方程,还开始试着运用简易方程来解决一些实际问题。
列方程解应用题是一个难点,这一部分内容融入了等式的性质,以及四则运算各部分的关系,有助于同学们对所学的算术知识进行巩固和加深理解。
如何应用方程来解应用题呢?同学们不妨看看下面的一些技巧。
一、首先是审题,确定未知数。
审题,理解题意。
就是全面分析已知数与已知数、已知数与未知数的关系。
特别要把牵涉到的一些概念术语弄清,如同向、相向、增加到、增加了等,并确立未知数。
即用x表示所求的数量或有关的未知量。
在小学阶段同学们遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数,如:“学校图书馆里科技书的本数比文艺书的2倍多47本,科技书有495本,文艺书有多少本?”在这道题目中只有“文艺书的数量”不知道,所以只要设“文艺书的数量”为未知数x就可以了。
二、寻找等量关系,列出方程是关键。
“含有未知数的等式称为方程”,因而 “等式”是列方程必不可少的条件。
所以寻找等量关系是解题的关键。
如上题中“科技书得本数比文艺书的2倍多47本”这是理解本题题目意思的关键。
仔细审题发现“文艺书本数的2倍加上47本就是科技书的本数”故本题的等量关系为:文艺书本数的2倍+47=科技书的本数。
上题中的方程可以列为:“2x+47=495”三、解方程,求出未知数得值。
解方程时应当注意把等号对齐。
如:2x+47=4952x+47-47=495-47 ←应将“2x”看做一个整体。
2x=4482x÷2=448÷2x=224四、检验也是列方程解应用题中必不可少的。
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解.1)将求得的方程的解代入原方程中检验。
如果左右两边相等,说明方程解正确了。
如上题的检验过程为:检验:把x=224代入原方程。
六年级上册解方程算式
在六年级上册的数学学习中,解方程是一个重要内容。
以下是一些常见的解方程算式示例:一元一次方程
示例1:2x + 3 = 11
示例2:5x - 7 = 8
示例3:x / 2 = 4
含有未知数的等式
示例1:3x = 2x + 5
示例2:x + 2y = 10
示例3:2x - y = 5
方程组的解法
示例1:
x + y = 7
x - y = 1
示例2:
2x + y = 10
3x - 2y = 7
解这些方程的基本步骤包括:
移项:将含有未知数的项移到等式的一边,常数项移到另一边。
合并同类项:将等式两边的相同项合并。
未知数系数化为1:通过除法或乘法,使未知数的系数为1,从而得到未知数的值。
对于方程组,需要消元法或代入法来求解。
例如,解方程2x + 3 = 11 的步骤如下:
移项:2x = 11 - 3
合并同类项:2x = 8
未知数系数化为1:x = 8 / 2
得到解:x = 4
在六年级上册的数学学习中,掌握这些基本的解方程方法是非常重要的。
通过大量的练习,学生可以提高自己的计算能力和解题技巧。
列方程解应用题综合练习题(50道)1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。
还要运几次才能运完?2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?3、某车间计划四月份生产零件5480个。
已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米?5、某校六年级有两个班,上学期级数学平均成绩是85分。
已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6、甲乙两人同时从同一地点向相反方向行走,3.5小时后两人相距38.5千米。
甲每小时行走5千米,乙每小时行走多少千米?7、5个足球比5个排球贵62.5元,已知每个排球52.5元,每个足球多少元8、一批煤,每天烧3.6吨,可以烧30天,如果每天烧2.4吨,可以烧多少天?9、一只足球46.8元,比一只排球价钱的3倍少1.2元,一只排球的价钱是多少元?10、果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?11、王阿姨买空11个暖瓶,付了200元,找回35元,每个暖瓶多少元?12、一个长方形的周长是35米,长是12.5米,它的宽是多少米?13、李明和王军共有邮票54张,王军的张数是李明张数的2倍,李明和王军各有邮票多少张?14、两袋大米共重104千克,甲袋重量是乙袋的3倍,两袋面粉各多少千克?15、学校买一台电脑和一台彩电共用去8860元,已知一台电脑的价格是彩电的2倍,一台电脑和一台彩电各是多少元?16、同学们植树,五六年级一共植了560棵,六年级植的棵数是五年级的1.5倍,两个年级各植多少棵?17、两袋面粉共88千克,甲袋的重量是乙袋的3倍,两袋各多少千克?18、两袋面粉,甲比乙重34千克,甲袋是乙袋的3倍,两袋各多少?19、少先队员在果园,上午摘了18筐苹果,比下午少摘了100千克,下午摘了22筐,平均每筐苹果重多少千克?20、今年10月份李明家用电131度,王强家用电120度,王强家少缴电费5.5元。
162.5%-x=15/16x+70%x=3402x/3+75%x=1/6 70%X + 20%X = 3.6 X - 15%X = 68 40%x+21=372x+20%x=3.30.5+50%x=360%x+25=4024-120%x=18x – 25%x = 60x – 60%x = 10x + 20%x = 360x + 30%x = 78 25%x + 35%x = 6 35%x - 25%x = 1x + 20%x = 48x - 20%x = 36 140%x - x = 40x - 75%x = 6x + 60%x = 48 40%X+25%X=130 x+20%x=6x+70%x=34 x-15%x=10.2(1-25%)X=45x+50%x=30x-40%x=122/3x-45%x=2.4x-40%x=3.625%x-16=2430%x+90=117x-20%x=2814%x-9.1=0.735%x+x=13.5x-75%x=0.5x-45%x=11075%x-50=2260%+4x=27.63X=83X÷72=167125÷X=3104X=30%53X =7225X-0.25=41X×53=20×4150% X +54X = 3.625% X + 15%X =54X - 15%X = 68X-27X =43X+83X=121X+87X=4321X +61X = 4X+41X=206X+5 =13.44 X-6=3843X+41=834 X-3 ×9 = 295X-3×215=750.36×5-34X =35X - 0.8 X = 16+623( X - 4.5) = 7 32X ÷41=12 2(X-2.6)=8 25 X-13 X=310 X ×( 16 + 38 )=1312X -0.375 X =6520 X – 8.5= 1.5 X - 45X -4= 214+0.7X=102 12X - 25% X = 10 1. 12与45 的积减去23的倒数,差是多少? 2. 甲数的13刚好等于乙数的30%,已知乙数是60,那么甲数是多少? 3. 2.5与1.4的差乘0.6,加上1.48,所得的和再除以5,商是多少? 4.52 与34 的差,除32 与0.3的和,商是多少? 5. 3个49 除18的19,商是多少?6. 一个数的3.5倍加上它本身是45,求这个数。
小学六年级数学教案列方程解应用题9篇列方程解应用题 1列方程解的应用题教学目标1.使学生初步学会分析稍复杂的两步计算的应用题的数量关系,正确列出方程.2.学生会找出应用题中相等的数量关系.教学重点训练学生用方程解“已知比一个数的几倍多(少)几是多少,求这个数”的应用题.教学难点分析应用题等量关系,并会列出方程.教学过程一、复习准备(一)写出下面各题的式子.1.比的3倍多152.比的4倍少23.2个与34的和4.5个与0.6的3倍的差(二)解答复习题少年宫舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人.合唱队有多少人?(学生独立解答)23×3+15=69+15=84(人)答:合唱队有84人.二、新授教学(一)导入新课(改复习为例4)少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?1.比较:例4与复习题有什么相同点和不同点?相同点:“合唱队的人数比舞蹈队的3倍多15人”这句话没有变;不同点:复习题已知舞蹈队人数求合唱队人数,例4是已知合唱队人数求舞蹈队人数.2.教师说明:例4就是我们以前见过的“已知比一个数的几倍多几是多少,求这个数”的应用题.今天我们学习用方程解答这类应用题.教师板书:列方程解应用题(二)教学例41.画线段图分析题意2.看图思考:舞蹈队人数和合唱队人数有什么关系?3.学生汇报讨论结果:舞蹈队人数的3倍加上15正好等于合唱队人数.(根据:合唱队人数比舞蹈队人数的3倍多15人)4.列方程解答教师板书:解:设舞蹈队有人.答:舞蹈队有23人.5.思考:还可以怎样列方程?(或)引导:例题的方法最简单,解题时要用简单的方法解.(三)变式练习少年宫合唱队有84人,合唱队的人数比舞蹈队的人数的4倍少8人,舞蹈队有多少人?三、课堂小结今天这节课你学到了什么知识?在学习中你有什么感想?四、巩固练习(一)只列式不计算.1.图书室有文艺书180本,比科技书的2倍多20本,科技书本.2.养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡只.(二)学校饲养小组今年养兔25只,比去年养的只数的3倍少8只.去年养兔多少只?(三)一个等腰三角形的周长是86厘米,底是38厘米.它的腰是多少厘米?五、课后作业(一)地球绕太阳一周要用365天,比水星绕太阳一周所用时间的4倍多13天.水星绕太阳一周要用多少天?(二)买3枝钢笔比买5枝圆珠笔要多花0.9元.每枝圆珠笔的价钱是2.6元,每枝钢笔的价钱是多少钱?六、板书设计列方程解应用题例4.少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?解:设舞蹈队有人.答:舞蹈队有23人.教案点评:分析数量之间的等量关系,学生已有一定的基础,本节主要训练学生掌握根据题目所给的不同条件,找等量关系的方法。
小学六年级数学列方程解应用题(训练题)六年级数学应用题一)列方程解应用题的特点1.列方程解应用题时,先用字母(例如x)表示应用题里某个未知量,再根据题中的等量关系列出方程,然后通过解方程求得问题的答案。
2.找出等量关系:可以借助线段图、计算公式等来找到数量问的相等关系。
例如,根据“篮球比足球多5个”依照简单应用题可得出数量间相等关系是:足球的个数+5=篮球的个数。
以下是更多例子:1) 男生人数是女生人数的2倍。
2) 梨树比苹果树的3倍少15棵。
3) 已知大人衣服用布料是儿童的2倍,做8件大人衣服和10件儿童衣服共用布31.2米。
4) 两根一样长的铁丝,一根围成长方形,一根围成正方形。
3.列方程式并求解。
4.检验。
一、分数的应用题1.一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?2.一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?3.修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?4.师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?5.仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?6.甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快2/7,两车经过多少小时相遇?7.一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?8.饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?9.学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?二、比的应用题1.一个长方形的周长是24厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?2.一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?3.一个长方体棱长总和为96厘米,高为4厘米,长与宽的比是3∶2,这个长方体的体积是多少?4.某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4∶3,男生有多少人?5、已知甲筐水果重32千克,乙筐取出20%后,甲乙两筐水果的重量比是4:3.求原来两筐水果共有多少千克?解析:设乙筐原来有x千克水果,则甲筐原来有32+x千克水果。
【同步教育信息】一、本周主要内容:列方程解决实际问题二、本周学习目标:1、在解决实际问题的过程中,理解并掌握形如ax ±b=c 、ax ÷b=c 、ax ±bx=c 等方程的解法,会列上述方程解决需要两、三步计算的实际问题。
2、在观察、分析、抽象、概括和交流的过程中,提高分析数量关系的能力,培养学生思维的灵活性3、在积极参与数学活动的过程中,树立学好数学的信心。
三、考点分析:掌握形如ax ±b=c 、ax ÷b=c 、ax ±bx=c 等方程的解法以及列方程解应用题的基本方法, 在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。
四、典型例题例1. 看图列方程,并求出方程的解。
x 棵松树:15棵 杉树: x 棵 x 棵 x 棵75棵科技书: x 本x 本 x 本 186 本文艺书:例2.解方程:4+ 6x = 40 4x + 6x = 40分析与解:4+ 6x = 40这是一道“a+bx=c”的方程,解答时先根据等式的性质在方程的两边同时减去a,再同时除以b,求出x的值。
4x + 6x = 40这是一道“ax+bx=c”的方程,解答时先根据乘法分配律把方程左边的ax+bx进行化简,再根据等式的性质在方程的两边同时除以(a+b)的和,求出x的值。
4+ 6x = 40 4x + 6x = 406x + 4 - 4 = 40 - 4 (4 + 6)x = 406x = 36 10x = 406x ÷ 6 = 36 ÷ 6 10x ÷ 10 = 40 ÷ 10x = 6 x = 4点评:这两题同学们容易产生混肴,产生错误解法的原因是很典型”的学新知忘旧知“,这也是同学们学习时经常犯的错误。
如果能认真分析题目,并仔细思考,正确解答这类题目并不是难事。
例3. (1)甲、乙两地相距1000米,小华从甲地、小明从乙地同时相向而行,小华每分钟走60米,小明每分钟走65米。
列方程解应用题综合练习题(50道)1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。
还要运几次才能运完?2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?3、某车间计划四月份生产零件5480个。
已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米?5、某校六年级有两个班,上学期级数学平均成绩是85分。
已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6、甲乙两人同时从同一地点向相反方向行走,3.5小时后两人相距38.5千米。
甲每小时行走5千米,乙每小时行走多少千米?7、5个足球比5个排球贵62.5元,已知每个排球52.5元,每个足球多少元8、一批煤,每天烧3.6吨,可以烧30天,如果每天烧2.4吨,可以烧多少天?9、一只足球46.8元,比一只排球价钱的3倍少1.2元,一只排球的价钱是多少元?10、果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?11、王阿姨买空11个暖瓶,付了200元,找回35元,每个暖瓶多少元?12、一个长方形的周长是35米,长是12.5米,它的宽是多少米?13、李明和王军共有邮票54张,王军的张数是李明张数的2倍,李明和王军各有邮票多少张?14、两袋大米共重104千克,甲袋重量是乙袋的3倍,两袋面粉各多少千克?15、学校买一台电脑和一台彩电共用去8860元,已知一台电脑的价格是彩电的2倍,一台电脑和一台彩电各是多少元?16、同学们植树,五六年级一共植了560棵,六年级植的棵数是五年级的1.5倍,两个年级各植多少棵?17、两袋面粉共88千克,甲袋的重量是乙袋的3倍,两袋各多少千克?18、两袋面粉,甲比乙重34千克,甲袋是乙袋的3倍,两袋各多少?19、少先队员在果园,上午摘了18筐苹果,比下午少摘了100千克,下午摘了22筐,平均每筐苹果重多少千克?20、今年10月份李明家用电131度,王强家用电120度,王强家少缴电费5.5元。
【同步教育信息】一、本周主要内容:列方程解决实际问题二、本周学习目标:1、在解决实际问题的过程中,理解并掌握形如ax ±b=c 、ax ÷b=c 、ax ±bx=c 等方程的解法,会列上述方程解决需要两、三步计算的实际问题。
2、在观察、分析、抽象、概括和交流的过程中,提高分析数量关系的能力,培养学生思维的灵活性3、在积极参与数学活动的过程中,树立学好数学的信心。
三、考点分析:掌握形如ax ±b=c 、ax ÷b=c 、ax ±bx=c 等方程的解法以及列方程解应用题的基本方法, 在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。
四、典型例题例1. 看图列方程,并求出方程的解。
x 棵松树:15棵 杉树: x 棵 x 棵 x 棵75棵科技书: x 本x 本 x 本 186 本文艺书:例2.解方程:4+ 6x = 40 4x + 6x = 40分析与解:4+ 6x = 40这是一道“a+bx=c”的方程,解答时先根据等式的性质在方程的两边同时减去a,再同时除以b,求出x的值。
4x + 6x = 40这是一道“ax+bx=c”的方程,解答时先根据乘法分配律把方程左边的ax+bx进行化简,再根据等式的性质在方程的两边同时除以(a+b)的和,求出x的值。
4+ 6x = 40 4x + 6x = 406x + 4 - 4 = 40 - 4 (4 + 6)x = 406x = 36 10x = 406x ÷ 6 = 36 ÷ 6 10x ÷ 10 = 40 ÷ 10x = 6 x = 4点评:这两题同学们容易产生混肴,产生错误解法的原因是很典型”的学新知忘旧知“,这也是同学们学习时经常犯的错误。
如果能认真分析题目,并仔细思考,正确解答这类题目并不是难事。
例3. (1)甲、乙两地相距1000米,小华从甲地、小明从乙地同时相向而行,小华每分钟走60米,小明每分钟走65米。
列方程解应用题综合练习题(50道)
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。
还要运几次才能运完?
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
3、某车间计划四月份生产零件5480个。
已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
ﻫ4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米?ﻫ5、某校六年级有两个班,上学期级数学平均成绩是85分。
已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
ﻫ6、甲乙两人同时从同一地点向相反方向行走,3.5小时后两人相距38.5千米。
甲每小时行走5千米,乙每小时行走多少千米?
ﻫ7、5个足球比5个排球贵62.5元,已知每个排球52.5元,每个足球多少元
ﻫ8、一批煤,每天烧3.6吨,可以烧30天,如果每天烧2.4吨,可以烧多少天?
9、一只足球46.8元,比一只排球价钱的3倍少1.2元,一只排球的价钱是多少元?
ﻫ10、果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?
ﻫ11、王阿姨买空11个暖瓶,付了200元,找回35元,每个暖瓶多少元?
12、一个长方形的周长是35米,长是12.5米,它的宽是多少米?
13、李明和王军共有邮票54张,王军的张数是李明张数的2倍,李明和王军ﻫ各有邮票多少张?
14、两袋大米共重104千克,甲袋重量是乙袋的3倍,两袋面粉各多少千克?。