5
得 dp Fi(e)dt dIi(e)
或
dp dt
F (e) i
称为质点系动量定理的微分形式,即质点系动量的增量
等于作用于质点系的外力元冲量的矢量和;或质点系动 量对时间的导数等于作用于质点系的外力的矢量和.
6
在 t1~ t2 内,
动量 p1 ~ p2 有
n
p2
p1
I (e) i
称为质点系动量定理的积分形i式1 ,即在某一时间间隔内,质点
m1 m2
s)
x 由 C1 xC2 ,
得 s m2 esin
m1 m2
23
16
系统动量沿x, y轴的投影为:
px mvCx mxC 2(m1 m2 )l sin t
py mvCy myC m1l cost
系统动量的大小为:
p
p
2 x
p
2 y
l
4(m1 m2 )2 sin 2 t m12 cos2 t
17
2.质心运动定理
由
d dt
(mvC
)
n
i 1
m1 2
m2
cos
t
应用质心运动定理,解得
Fx
F
r 2
m1 2
m2
cos
t
显然,最大水平约束力为
Fmax
F
r 2 m1
2
m2
21
e 例 11-6 地面水平,光滑,已知 m1, m2 , ,初始静止,
常量.
求:电机外壳的运动.
22
解:设
xC1 a
xC2
m1(a s) m2 (a e sin
量的变化等于作用于质点的力在此段时间内的冲量.