(五年级数学)相遇问题课件奥数
- 格式:pptx
- 大小:10.56 MB
- 文档页数:184
一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求知识框架多次相遇与追及问题数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?例题精讲【例 2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D 点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【例 3】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 4】A、B两地相距2400米,甲从A地、乙从B地同时出发,在A、B间往返长跑。
相遇问题【知识导航】行程问题是研究路程、速度、时间这三者之间数量关系的问题。
基本的数量关系式是:速度×时间=路程。
相遇问题一般是两个物体从两个地点相向而行(运动的方向相反),经过一段时间在两地之间的某一点相遇的问题。
如果两个物体同时出发在途中相遇,两地相距的距离实际就是两个物体所走的路程和。
甲所走的路程+乙所走的路程=甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间因此相遇问题常常要考虑速度和。
【精典例题1】甲、乙两车分别从A、B两地相向而行,甲车每小时行80千米,乙车每小时行68千米。
两车相遇时,距全程的中点30千米,A、B两地相距多少千米?思路导航:相遇时,甲车比乙车多行30×2=60(千米),而甲车每小时比乙车多行12千米,要多行60千米需要几小时呢?这个时间就是相遇时间。
解:30×2=60(千米)60÷(80-68)=5(小时)(80+68)×5=740(千米)答:A、B两地相距740千米。
解这类题的关键是求出相遇时间,还要注意相遇点距中点a千米,快车比慢车就多行2a千米。
多行的路程÷速度差=相遇时间相遇路程=速度和×相遇时间【小试身手】1.客、货两车分别从A、B两城相向而行,客车每小时行70千米,货车每小时行60千米,相遇时两车距两城的中点20千米,A、B两城相距多少千米?2.兄弟两人同时从A、B两地相向而行,哥哥每分钟行120米,弟弟每分钟行100米,当哥哥到达两地中点时,弟弟离中点还有60米,A、B两地相距多少米?3.快车每小时行75千米,比慢车每小时多行10千米,两车同时从甲、乙两地相向而行,在距中点15千米处相遇,求甲、乙两地的路程。
【精典例题2】甲、乙两车同时从A、B两地相向而行,两车在距A地30千米处第一次相遇,相遇后两车继续行驶,在到达对方出发点后立即沿原路返回,第二次相遇点距B 地20千米,A、B两地的距离是多少?思路导航:第一次相遇,甲、乙两车共行一个全程,第二次相遇,两车共走完3个全程,这时甲走30×3=90(千米),90千米比一个全程还多20千米千米,全程是90-20=70(千米)。
行程问题之相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1:甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解: “两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
例2:甲、乙两辆汽车分别以不同的速度同时从A、B两地相对而行,途中相遇,相遇点距A地60千米。
相遇后两车以原速前进,到底目的地后,两车立即返回,在途中又第二次相遇,这时距A地40千米。
问第一次相遇点距B地多少千米?【解析】:甲、乙两辆汽车同时从A、B两地相对而行,行驶情况如下图:蓝色线条表示甲车行驶路线,红色线条表示乙车行驶路线;细线条是第一次相遇前两车行驶路程,粗线条表示两车从第一次相遇到第二次相遇之间行使的路程。
从图中可以看出,从出发到第一次相遇,两车合走了1个全程(细线条);从第一次相遇到第二次相遇,两车合走了2个全程(粗线条);两车总共合走了3个全程。
每辆汽车的速度是一定的,所以它们各自行驶的路程与时间成正比例。
解法一:如上图,第一次相遇时,即两车合走1个全程的时间里,甲走了60千米。
两车总共合走了3个全程,则甲车从A地出发,经过B地到达第二次相遇地点,总共行驶了3个60千米(蓝色线条全长),加上第二次相遇地点到A地40千米,共2个全程。
所以A、B两地的距离为:(60×3+40)÷2=110(千米)。
学科培优数学“相遇与追及问题初步”学生姓名授课日期教师姓名授课时长知识定位在今天这节课中,我们来研究行程问题中的相遇与追及问题.这一讲就是通过例题加深对行程问题三个基本数量关系的理解,使学生养成画图解决问题的好习惯!在行程问题中涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.知识梳理一、相遇甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即【重点难点解析】1.直线上的相遇与追及2.环线上的相遇与追及tv S差差【竞赛考点挖掘】1. 多人多次相遇与追及例题精讲【试题来源】【题目】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?【试题来源】【题目】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米?【试题来源】【题目】两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?【试题来源】【题目】甲、乙二人都要从北京去天津,甲行驶10千米后乙才开始出发,甲每小时行驶15千米,乙每小时行驶10千米,问:乙经过多长时间能追上甲?【试题来源】【题目】南辕与北辙两位先生对于自己的目的地s城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?.【试题来源】【题目】军事演习中,“我”海军英雄舰追击“敌”军舰,追到A岛时,“敌”舰已在10分钟前逃离,“敌”舰每分钟行驶1000米,“我”海军英雄舰每分钟行驶1470米,在距离“敌”舰600米处可开炮射击,问“我”海军英雄舰从A岛出发经过多少分钟可射击敌舰?【试题来源】【题目】小红和小蓝练习跑步,若小红让小蓝先跑20米,则小红跑5秒钟就可追上小蓝;若小红让小蓝先跑4秒钟,则小红跑6秒钟就能追上小蓝.小红、小蓝二人的速度各是多少?【试题来源】【题目】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?【试题来源】【题目】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【试题来源】【题目】甲车每小时行40千米,乙车每小时行60千米。
第5讲相遇问题2知识装备我们在四年级已经学习了相遇问题的基本类型,初步掌握了相遇问题的基本数量关系及一般的解决问题的思路。
下面我们再把相遇问题的基本数量关系整理出来,并研究较复杂的相遇问题。
1、相遇问题的基本数量关系:(1)速度和×相遇时间=共走的路程(2)共走的路程÷速度和=相遇时间(3)要求其中一个运动物体的速度则是:共走的路程÷相遇时间-甲(乙)的速度=乙(甲)的速度2、解决较复杂的相遇问题时,一定要弄清下面关系:(1)两个运动物体的运动模式:如:同时相向运动、同时相背运动、先后出发、相遇后继续向前运动、是否相遇等。
(2)数量之间的对应关系:如:相遇时间与共走路程的对应关系,先出发时间与已走路程的对应关系等。
(3)借助线段图弄清题意。
初级挑战1南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,乙每小时走4千米,甲比乙每小时多行2千米,两人几小时后相遇?【思路点拨】甲每小时行()千米。
相遇问题中,相遇时间=()。
答案:4+2=6(千米/时),90÷(6+4)=9(小时)。
能力探索11、甲、乙两车分别同时从相距372千米的A、B两城相向行驶。
甲车的速度是45千米/时,乙车的速度是48千米/时,两车经过几小时可以相遇?答案:372÷(45+48)=4(小时)2、一辆客车和一辆货车分别从甲、乙两城同时出发,相向而行,已知客车的速度是每小时65千米,货车每小时比客车少行驶10千米。
两车出发后3小时相遇,问甲、乙两城相距多少千米?答案:货车速度:65-10=55(千米/小时)甲乙两地的距离:(65+55)×3=120×3=360(千米)初级挑战2一辆汽车和一辆摩托车同时从相距860千米的两地相向开出。
汽车的速度是50千米/时,摩托车的速度是65千米/时,6小时后两车相距多少千米?10小时后呢?【思路点拨】6小时后两车相遇没有?10小时后呢?答案:(1)6小时共同走的路程:(50+65)×6=690(千米)两车6小时后相距的路程:860-690=170(千米)(2)10小时共同走的路程:(50+65)×10=1150(千米)两车10小时后相距的路程:1150-860=290(千米)能力探索2甲、乙两人骑车同时从相距120千米的东西两地相向而行,甲每小时行15千米,乙每小时行18千米,3小时后两人相距多少千米?5小时后呢?答案:(1)3小时共同走的路程:(15+18)×3=99(千米)两人3小时后相距的路程:120-99=21(千米)(2)5小时共同走的路程:(15+18)×5=165(千米)两人5小时后相距的路程:165-120=45(千米)中级挑战1甲、乙两地相距576千米,一辆客车和一辆货车分别从两地同时相向开出,客车的速度是56千米/时,货车的速度是48千米/时,途中货车停车修理1小时,求共经过几小时两车相遇?【思路点拨】途中货车停车修理1小时,可看成是客车先出发1小时,货车再出发。