2018-2019学年河南省洛阳市伊川县七年级(上)期中数学试卷
- 格式:pdf
- 大小:252.61 KB
- 文档页数:5
七年级数学 第1页 共6页 七年级数学 第2页 共6页学校 班级 姓名 考号密 封 线 内 不 要 答 题2018-2019学年第一学期期中检测试卷七年级 数学满分:120分 考试时间:120分钟一、选择题(每小题3分,共30分)1.有理数﹣2的相反数是( ) A .2 B .﹣2C .D .﹣2.在﹣,0,,﹣1这四个数中,最小的数是( )A.﹣ B .0 C . D .﹣13.下列各式中正确的是( )A .22)2(2-= B .33)3(3-= C .22)2( 2-=- D .|3| 333=- 4. 有理数a , b 在数轴上的对应点如图所示,则下面式子中正确的是( ) b <0<a ; |b | < |a |;●ab >0;❍a -b >a +b . A . B . ❍ C . ● D .●❍ 5.若x 的相反数是3,︱y ︱=5,则x +y 的值为( )A .-8B . 2C . 8或-2D .-8或26.若-3x m+1y 2 017与2x 2 015y n 是同类项,则|m-n|的值是( )A.0B.1C.2D.3 7.下列运算正确的是( ) A.3x 3-5x 3=-2x B.6x 3-2x 3=3xC.3x (x-4)=3x 2-12xD.-3(2x-4)=-6x-128.若多项式2x 2+3y+7的值为8,则多项式6x 2+9y+8的值为( ) A.1 B.11 C.15 D.239.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=?1+8+16=?1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 210.单项式-3224c ab 的系数与次数分别是( )A. -2, 6B.2, 7C.-32, 6D.-32, 7二、填空题。
(每小题3分,共24分)11.比较大小 32-76-12.A 、B 两地相距6987000m ,用科学记数法表示为_____________m .13.在数轴上,若点P 表示-2,则距P 点3个单位长的点表示的数是_____________.14.绝对值不大于2的所有整数为____ ______.15.若a <0,b >0 ,且| a |>| b | ,则a+b ________0. (填“<”或“>”“=”) 16.多项式223x x -+是_______次________项式.17.如果-13m x y 与221n x y +是同类项,则m=_______,n=________.18.张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入__________元.三、计算题(共30分)19.计算下列各式.(每题4分,共12分)(1))61163245(481+-⨯--( 密 封 线 内 得 答 题 ) …………………………密……………………………封…………………………………线……………………………………七年级数学 第3页 共6页 七年级数学 第4页 共6页密 封 线 内 不 要 答 题(2)2342(3)()(2)3⎡⎤---⨯---⎢⎥⎣⎦(3))69()3(522x x x +--++-20.先化简,再求值.(每题6分,共计18分)(1))22()(3)2(2222222b a ab b a ab b a ab -+---其中:1,2==b a(2))]21(3)13(2[22222x x x x x x -------其中:21=x(3))(3)(3)22(22222222y y x x y x y x +++--,其中1-=x ,2=y .四、解答题(本题3小题,共计36分)21. (10分)东为正,他这天下午的行程记录如下:(单位:千米) +15,-3,+14,-11,+10,-18,+14(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少? (2)离开下午出发点最远时是多少千米? (3) 若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?22.(8分)一位同学做一道题:已知两个多项式A 、B ,计算2A+B ,他误将“2A+B•”看成“A+2B ”求得的结果为2927x x -+,已知232B x x =+-,求2A+B 的正确答案.23.(10分) ,b a c b a >所示,且在数轴上的对应点如图、、已知有理数________,_______,_______,_________,=-=+=+=-c b c a b a b a 则 a b a c -+-+-化简.02328.242=+++)(是有理数,并且有、是最小的正整数,分)已知(c a b c b a的值。
河南省洛阳市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果(x+y﹣5)2与|3x﹣2y+10|互为相反数,则x,y的值为()A . x=3,y=2B . x=2,y=3C . x=0,y=5D . x=5,y=02. (2分)下列说法中,正确的是()A . 存在最小的有理数B . 存在最大的负有理数C . 存在最小的正有理数D . 存在最大的负整数3. (2分)下列式子中不是代数式的是()A . 3a+2bB . 5+2C . a+b=1D .4. (2分) (2019七上·天台期中) 下列结论中正确的是()A . 单项式的系数是,次数是4B . 单项式m的次数是1,没有系数C . 多项式﹣3a2b+7a2b2﹣2ab+1是三次四项式D . 在,2x+y,,,,0中整式有4个5. (2分) (2019七上·绿园期中) 某种水果的售价为每千克元,用面值为50元的人民币购买了3千克这种水果,应找回的钱数是(用含的代数式表示)()A . 元B . 元C . 元D . 元6. (2分)玲玲利用电脑调整两张相同尺寸照片的大小:第一张照片缩小了60%后感觉偏大,第二张照片缩小了80%后正合适,为使第一张照片也合适,则玲玲将这张照片再缩小的百分比是()A . 20%B . 30%C . 40%D . 50%7. (2分) (2016七上·高台期中) 若a、b互为相反数,c为最大的负整数,d的倒数等于它本身,则2a+2b ﹣cd的值是()A . 1B . ﹣2C . ﹣1D . 1或﹣18. (2分)下列运算正确的是()A . a8÷a2=a4B . a5﹣(﹣a)2=a3C . a3•(﹣a)2=a5D . 5a+3b=8ab9. (2分)在数轴上点A、B对应的数为a、b,则a+b+3的和为()A . 正数B . 负数C . 0D . 不确定10. (2分)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A . 21个交点B . 18个交点C . 15个交点D . 10个交点二、填空题 (共10题;共21分)11. (1分) (2016七上·萧山期中) 若a,b互为相反数,x,y互为倒数,p的绝对值为2,则代数式 +xy ﹣p2的值为________12. (2分)单项式的系数是________,次数是________ .13. (1分)(2017·徐州模拟) 2016年12月30日,我市召开的全市经济工作会议预计2016年徐州实现地区生产总值5750亿元,比去年增长8.5%.5750亿元用科学记数法可表示为________元.14. (1分)(2019·嘉兴) 数轴上有两个实数,,且>0,<0, + <0,则四个数,,,的大小关系为________(用“<”号连接).15. (1分) (2018九上·永康期末) 若,则 ________16. (2分) (2015七上·市北期末) “x平方的3倍与﹣5的差”用代数式表示为:________.当x=﹣1时,代数式的值为________.17. (1分) (2018七上·大丰期中) 当m=________时,- x3bm与 x3b是同类项.18. (1分)若单项式2xym﹣1与﹣x2n﹣3y3和仍是单项式,则m﹣n的值是________19. (1分) (2020七上·温州月考) 一家三口准备参加一个旅游团外出旅游,甲旅行社告知:“父母买全票,女儿半价优惠.”乙旅行社告知:“家庭旅游按团体计价,即每人均按全价的80%收费.”假定两个旅行社每人的原票价相同,均为300元,小敏一家人从中选择了较便宜的一个旅游团参加了这次旅游,他们这次旅游付出了________元的旅游团费.20. (10分) (2018七上·南昌期中) 若|a|=4,|b|<2,且b为整数.(1)求a,b的值;(2)当a,b为何值时,a+b有最大值或最小值?此时,最大值或最小值是多少?三、解答题 (共5题;共62分)21. (20分)(2016七上·下城期中) 计算.(1)-9+6÷(-2)(2)(3)用简便方法计算:(4)22. (10分)化简:(1)(2)23. (10分) (2018七上·沙洋期末) 已知代数式,(1)当时,求的值;(2)若的值与x的取值无关,求y的值.24. (11分) (2018七上·唐河期末) “十一”黄金周期间,某动物园在7天假期中每天旅游的人数变化如表:(正数表示比前一天多的人数,负数表示比前一天少的人数)日期(10月)1日2日3日4日5日6日7日8日人数变化单位:万+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2﹣0.5人(1)若9月30日的游客人数记为a万人,则10月1日的游客人数为________万人.(请用含a的代数式表示)(2)请问八天内游客人数最多的是哪天?最少的是哪天?(请说明理由)(3)若9月30日的游客人数为2万人,门票为每人10元,则黄金周期间该动物园门票收入是多少万元?25. (11分)对于平面直角坐标系中的动点P和图形N,给出如下定义:如果Q为图形N上一个动点,P,Q两点间距离的最大值为,P,Q两点间距离的最小值为,我们把的值叫点P和图形N 间的“和距离”,记作(P,图形N).(1)如图,正方形的中心为点O, .点O到线段的“和距离”d(O,线段AB)=________;(2)设该正方形与y轴交于点E和F,点P在线段上,d(P,正方形)=7,求点P的坐标.(3)如图2,在(1)的条件下,过,两点作射线,连接,点M是射线上的一个动点,如果(M,线段),直接写出M点横坐标t取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共21分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、20-2、三、解答题 (共5题;共62分) 21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
2018-2019学年七年级(上)期中数学试卷(四)一、选择题:(本题共12小题,每小题3分,共36分.注意:在每小题给出的四个选项中,只有一个是符合题目要求的.)1.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.2.若(k﹣1)x|k|+20=0是一元一次方程,则k的值是()A.1 B.﹣1 C.0 D.±13.解方程﹣=1,去分母正确的是()A.2(2x+1)﹣3(5x﹣3)=1 B.2x+1﹣5x﹣3=6C.2(2x+1)﹣3(5x﹣3)=6 D.2x+1﹣3(5x﹣3)=6 4.已知a﹣7b=﹣2,则4﹣2a+14b的值是()A.0 B.2 C.4 D.85.下列说法中正确的是()A.最小的整数是0 B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等6.如图是由若干个小正方体所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时,所看到的几何图形是()A .B .C .D .7.若关于x 的方程2m+x=1和方程3x ﹣1=2x+1的解互为相反数,则m 的值为( )A .﹣B .C .0D .﹣28.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算( )A .甲B .乙C .同样D .与商品的价格有关 9.李华骑赛车从家里去乐山新村广场练习,去时每小时行24千米,回来时每小时16千米,则往返一次的平均速度为( )千米/时.A .20B .19.8C .19.6D .19.2 10.单项式﹣3πxy 2z 3的系数和次数分别是( )A .﹣π,5B .﹣1,6C .﹣3π,6D .﹣3,711.长城总长约为6 700 000米,用科学记数法表示正确的是( )A .6.7×108米B .6.7×107米C .6.7×106米D .6.7×105米 12.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为()A.n(n﹣1)B.n(n+1)C.(n+1)(n﹣1)D.n2+2 二、填空题(每小题3分,共18分)13.一个n边形,从一个顶点出发的对角线有条,这些对角线将n边形分成了个三角形.14.已知(a﹣3)2+|b+6|=0,则方程ax+b=0的解为.15.若a3=a,则a= .16.|3﹣π|= .17.小明与小刚规定了一种新运算*:若a、b是有理数,则a*b=3a ﹣2b.小明计算出2*5=﹣4,请你帮小刚计算2*(﹣5)= .18.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..三、解答题(本大题共66分.注意:解答应写出必要的文字说明,解答过程或解答步骤.)19.计算:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2];(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3.20.化简:(1)3x2﹣3(x2﹣2x+1)+4;(2)3(m﹣5n+4mn)﹣2(2m﹣4n+6mn)21.解方程:(1)3(x﹣1)﹣2(x+1)=﹣6(3)=1+(4)﹣=3.22.化简、求值:已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,①求﹣A﹣3B,②若A=﹣1,B=时,求6x2﹣6xy﹣15y2的值.23.城区某中学为形成体育特色,落实学生每天1小时的锻炼时间,通过调查研究,决定在七、八、九年级分别开展跳绳、羽毛球、毽球的健身运动.国家规定初中每班的标准人数为a人,七年级共有八个班,各班人数情况如下表,八年级学生人数是七年级学生人数的2倍少400人,九年级学生人数的2倍刚好是七、八年级学生人数的总和.(注:701班表示七年级一班)(1)用含a的代数式表示该中学七年级学生总数;(2)学校决定按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,其中跳绳每根5元,毽球每个3元,羽毛球拍每副18元.请你计算当a=50时,学校为落实1小时体育锻炼时间需购买器材的费用是多少?24.数a、b、c在数轴上对应的位置如图所示,化简|a+c|﹣|c+b|+|a ﹣b|.25.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?26.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80﹣60)×1.2=72元.(1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费.若x≤60,则费用表示为;若x>60,则费用表示为.(2)若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?参考答案与试题解析一、1.【考点】展开图折叠成几何体.【分析】根据三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成三棱柱;B、D的两底面不是三角形,故也不能围成三棱柱;只有C经过折叠可以围成一个直三棱柱.故选C.2.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:根据题意得:,解得:k=﹣1.故选B.3.【考点】解一元一次方程.【分析】方程两边乘以6,去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣3(5x﹣3)=6,故选C.4.【考点】代数式求值.【分析】原式后两项提取﹣2变形后,把a﹣7b=﹣2代入计算即可求出值.【解答】解:∵a﹣7b=﹣2,∴原式=4﹣2(a﹣7b)=4+4=8,故选D.5.【考点】正数和负数;相反数;绝对值.【分析】根据有理数及正数、负数、相反数、绝对值等知识对每个选项分析判断.【解答】解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.6.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在三视图中.【解答】解:从左面看会看到左侧有3个正方形,右面有1个正方形.故选B.7.【考点】一元一次方程的解.【分析】首先求得方程3x﹣1=2x+1的解,然后根据两个方程的解互为相反数求得2m+x=1的解,然后根据方程的解的定义代入求解即可.【解答】解:解方程3x﹣1=2x+1得:x=2,∵关于x的方程2m+x=1和方程3x﹣1=2x+1的解互为相反数,∴关于x的方程2m+x=1的解为x=﹣2,∴2m﹣2=1,解得:m=,故选B.8.【考点】有理数的混合运算.【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.【解答】解:设原价为x元,则甲超市价格为x×(1﹣10%)×(1﹣10%)=0.81x乙超市为x×(1﹣20%)=0.8x,0.81x>0.8x,所以在乙超市购买合算.故选B.9.【考点】一元一次方程的应用.【分析】把从家里去乐山新村广场的总路程看作单位“1”,先求出李华从家里去乐山新村广场所用的时间,再求出李华从乐山新村广场到家里所用的时间,最后用往返的总路程除以往返的总时间就是平均速度.【解答】解:(1+1)÷(1÷24+1÷16),=2÷(+),=2÷,=2×,=19.2(千米),答:往返一次的平均速度是每小时19.2千米.故选:D.10.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.11.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6 700 000用科学记数法表示为:6.7×106.故选:C.12.【考点】规律型:图形的变化类.【分析】由题意可知:等边三角形“扩展”而来的多边形的边数为12=3×(3+1),正方形“扩展”而来的多边形的边数为20=4×(4+1),正五边形“扩展”而来的多边形的边数为30=5×(5+1),正六边形“扩展”而来的多边形的边数为42=6×(6+1),…所以正n边形“扩展”而来的多边形的边数为n(n+1),据此解答即可.【解答】解:∵等边三角形“扩展”而来的多边形的边数为:12=3×(3+1),正方形“扩展”而来的多边形的边数为:20=4×(4+1),正五边形“扩展”而来的多边形的边数为:30=5×(5+1),正六边形“扩展”而来的多边形的边数为:42=6×(6+1),…∴正n边形“扩展”而来的多边形的边数为:n(n+1).故选:B.二、13.【考点】多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形(n>3)的一个顶点出发的对角线有n﹣3条,把n边形分成n﹣2个三角形.【解答】解:从n边形(n>3)的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,故答案为:n﹣3,n﹣2.14.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质求出a与b的值,代入方程计算即可求出解.【解答】解:∵(a﹣3)2+|b+6|=0,∴a﹣3=0,b+6=0,解得:a=3,b=﹣6,代入方程得:3x﹣6=0,解得:x=2,故答案为:x=215.考点】有理数的乘方.【分析】根据有理数乘方的法则进行计算即可.【解答】解:∵a3=a,∴a=0或±1.故答案为:0或±1.16.【考点】实数的性质.【分析】由于一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,由此即可求解.【解答】解:∵π>3,∴3﹣π<0,∴|3﹣π|=π﹣3.17.【考点】有理数的混合运算.【分析】根据题中的新定义a*b=3a﹣2b,将a=2,b=﹣5代入计算,即可求出2*(﹣5)的值.【解答】解:根据题中的新定义得:2*(﹣5)=3×2﹣2×(﹣5)=6+10=16.故答案为:16.18.【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.三、19.计算:【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法可以解答本题;(2)根据幂的乘方、有理数的乘法和减法可以解答本题.【解答】解:(1)[1﹣(1﹣0.5)]×[2﹣(﹣3)2]=[1﹣0.5]×[2﹣9]=0.5×(﹣7)=﹣3.5;(2)﹣14﹣(1﹣0.5)×[10﹣(﹣2)2]﹣(﹣1)3=﹣1﹣0.5×[10﹣4]﹣(﹣1)=﹣1﹣0.5×6+1=﹣1﹣3+1=﹣3.20.【考点】整式的加减.【分析】(1)先去括号再合并同类项即可;(2)先去括号再合并同类项即可.【解答】解:(1)原式=3x2﹣3x2+6x﹣3+4=6x+1;(2)原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣3﹣2x﹣2=﹣6,移项合并得:x=﹣1;(2)去分母得:3x﹣3=12+4x+4,移项合并得:﹣x=19,解得:x=﹣19;(3)方程整理得:5x﹣10﹣2x﹣2=3,移项合并得:3x=15,解得:x=5.22.【考点】整式的加减—化简求值.【分析】①将A与B的表达式代入﹣A﹣3B后,化简即可求出答案.②将6x2﹣6xy﹣15y2表示为A与B即可求出答案.【解答】解:①﹣A﹣3B=﹣(4x2﹣4xy﹣y2)﹣3(﹣x2+xy+7y2)=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy+y2﹣20y2②当A=﹣1,B=时,6x2﹣6xy﹣15y2=(4x2﹣4xy﹣y2)﹣2(﹣x2+xy+7y2)=A﹣2B=﹣1﹣1=﹣223.【考点】列代数式;代数式求值.【分析】(1)a为每班的标准人数,根据表用a表示出每个班的人数,再相加即可得出答案;(2)根据已知条件得出八年级以及九年级的总人数,再计算出购买体育器材的费用.【解答】解:(1)七年级总人数=a+3+a+2+a﹣3+a+4+a+a﹣2+a﹣5+a﹣1=8a﹣2;(2)七年级总人数=8×50﹣2=398(人),买跳绳的费用=398×5=1990(元),八年级总人数=398×2﹣400=396(人),买羽毛球拍的费用=396÷2×18=3564(元),九年级总人数=÷2=397(人),买毽球的费用=397×3=1191(元),购买体育器材的费用=1990+3564+1191=6745(元).24【考点】整式的加减;数轴;绝对值.【分析】根据数轴先取绝对值再合并同类项即可.【解答】解:由数轴得,c<b<0<a,且|c|>|a|>|b|,|a+c|﹣|c+b|+|a﹣b|=﹣a﹣c+c+b+a﹣b=0.25.【考点】一元一次方程的应用.【分析】由题目可知:公共汽车速度为:30千米/时,出租车的速度应为60千米/时.可设小张家距火车站距离为x,公共汽车行驶后x的路程用时间应为=x小时,15分钟为小时,剩下的x的路程,出租车需要时间为:=x,则由题意,可根据时间差来列方程求解.【解答】解:由题目分析,根据时间差可列一元一次方程: x﹣x=,即: x=,解得:x=30千米.答:小张家到火车站有30km.26.【考点】一元一次方程的应用.【分析】(1)若x≤60,则费用按每立方米0.8元收费;若x>60,则费用=60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费).(2)设甲用户10月份用去煤气x立方米,根据60立方米的费用(按每立方米0.8元收费)+超过60立方米的费用(按每立方米1.2元收费)=84,列方程求解.【解答】解:(1)若x≤60,则费用表示为:0.8x;若x>60,则费用表示为:60×0.8+(x﹣60)×1.2=1.2x﹣24.(2)设甲用户10月份用去煤气x立方米,由60×0.8=48<84,得到x>60,根据题意得:60×0.8+(x﹣60)×1.2=84,解得:x=90.答:甲用户10月份用去煤气90立方米.。
洛阳市2019初一数学上学期期中测试卷(含答案解析)洛阳市2019初一数学上学期期中测试卷(含答案解析) 一、选择题(每小题3分,共21分)1.下列各数中互为相反数的是()A.﹣2与+(﹣2) B.﹣(﹣1)与+(+1) C.(﹣2)2与﹣22 D.(﹣2)3与﹣232.如图所示,在数轴上两点A、B分别表示的数是a,b,则下列四个数中最大的一个是()A. a B.﹣a C. b D.﹣b3.某粮店出售的三种品牌的面粉袋上,分别标有质量为kg、kg、kg的字样,从中任意拿出两袋,它们的质量最多相差()A. 0.8kg B. 0.6kg C. 0.5kg D. 0.4kg4.小芳和小明在手工制作课上各自制作楼梯模型,它们用的材料如图①和图②所示,则它们所用材料的周长()A.一样长 B.小明的长 C.小芳的长 D.不能确定5.下列说法正确的是()A.有理数的绝对值一定是正数B.绝对值等于本身的数一定是正数C.有理数的绝对值一定是非负数D.如果两个数才绝对值相等,那么这两个数相等6.在算式1.25×(﹣)×(﹣8)=1.25×(﹣8)×(﹣)=[1.25×(﹣8)]×(﹣)中,应用了()A.分配律 B.分配律和结合律C.交换律和结合律 D.交换律和分配律7.已知:|a|=3,|b|=2,且|a+b|<|a|+|b|,则a+b的值是()A.±5 B.±3 C. 1 D.±1二、填空题(本大题有13小题,每小题2分,共26分)8.x的2倍与y的平方的差是.9.如果m与5互为相反数,则|m+3| 的值为.10.求﹣与﹣的积除以﹣2 所得的商,可列的算式是.11.三个连续偶数中间一个是2n,则它的前一个和后一个分别是.12.一批冰箱原来每台售价a元,现在打九折售出了9台,则销售额为元.13.已知a,b为两个连续整数,且a<﹣5 <b,则a2﹣b=.14.据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元,若一年按365天计算,用科学记数法表示,我国一年因土地沙漠化造成的经济损失为元.15.比较大小:﹣(填“>”或“<”号)16.一个数的倒数的绝对值等于这个数的相反数,那么这个数是.17.已知有理数﹣1,﹣8,+11,﹣2,请你通过有理数加减混合运算,使运算结果最大,则列式为.18.已知a,b为有理数,如果规定一种新运算“@”,定义a@b=a2﹣b2,则6@(﹣5)的结果是.19.若a,b互为相反数,c,d互为倒数,m为最小的非负数,a+b﹣(1﹣2m+m2)÷(cd)的值为.20.|a|的几何意义是:数字上表示数a的点到原点的距离,例如|﹣3|=3;|a﹣b|的几何意义是:数字上表示数a和数b 两点之间的距离,例如|6﹣(﹣5)|=11,如果x是一个有理数,且|x﹣2|=4,则x的值是.三、解答题21.画出数轴,且在数轴上表示出下列各数,并用“<”把它们连接起来:2.5,﹣3,5 ,﹣2 ,﹣1.6,0.22.用简便方法计算:(﹣3)×(﹣)+0.25×24.5+(﹣3 )×25%23.已知:a是﹣(﹣5)的相反数,b比最小的正整数大4,c是最大的负整数.计算:3a+3b+c的值是多少?24.计算:4+50÷22×(﹣)﹣|5 ﹣6|25.阅读下面的解题过程:计算:()2﹣(﹣2)×(﹣)+ .解:原式= ﹣(﹣2)×(﹣)+ …(第一步)= ﹣(﹣1)+ …(第二步)= + + …(第三步)=2…(第四步)回答下列问题:(1)上面解题过程中有两处错误,第一处:是第步,错误的原因是;第二处:是第步,错误的原因是.直接写出正确的结果是.26.一天两名同学利用温差测某座山峰的高度.在山脚测得温度是8℃,在山顶测得温度是﹣1℃,已知该山区高度每增加100米,气温大约下降0.6℃,请你帮这两名同学列式计算:这个山峰的山脚距山顶的高度大约是多少米.27.出租车司机小李某天下午从A地出发,营运全是在东西的人民大道进行的.如果规定向东为正,向西为负,他这天营运的车次和里程如表(单位:千米):车次① ② ③ ④ ⑤ ⑥ ⑦里程 +15 ﹣8 +14 ﹣11 +6 ﹣12 +8(1)在哪次记录中距A地最远?将最后一名乘客送到目的地时,小李距出发地的距离是多少?若每千米耗油0.3L,问小李这天下午共耗油多少升.28.计算:0.252÷(﹣)3+[﹣32×(﹣)2+(﹣2)3]÷4.洛阳市2019初一数学上学期期中测试卷(含答案解析)参考答案与试题解析一、选择题(每小题3分,共21分)1.下列各数中互为相反数的是()A.﹣2与+(﹣2) B.﹣(﹣1)与+(+1) C.(﹣2)2与﹣22 D.(﹣2)3与﹣23考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:A、﹣2=+(﹣2),故A错误;B、只有符号不同的两个数互为相反数,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、两个数相等,故D不是相反数,故D错误;故选:C.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.如图所示,在数轴上两点A、B分别表示的数是a,b,则下列四个数中最大的一个是()A. a B.﹣a C. b D.﹣b考点:有理数大小比较;数轴.分析:先根据各点在数轴上的位置判断出其绝对值的大小,再在数轴上表示出﹣a与﹣b,根据数轴的特点即可得出结论.解答:解:∵由图可知,﹣1<a<0<b<1,∴﹣a与﹣b在数轴上表示如图,∴四个数中最大的一个是﹣a.故选B.点评:本题考查的是数轴,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.3.某粮店出售的三种品牌的面粉袋上,分别标有质量为kg、kg、kg的字样,从中任意拿出两袋,它们的质量最多相差()A. 0.8kg B. 0.6kg C. 0.5kg D. 0.4kg考点:正数和负数.分析:根据题意给出三袋面粉的质量波动范围,并求出任意两袋质量相差的最大数.解答:解:根据题意从中找出两袋质量波动最大的kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.4.小芳和小明在手工制作课上各自制作楼梯模型,它们用的材料如图①和图②所示,则它们所用材料的周长()A.一样长 B.小明的长 C.小芳的长 D.不能确定考点:生活中的平移现象.分析:首先根据已知图形中两个图形中共同含有的边,再判断形状不同的边的长度即可.解答:解:两个图形右侧边与左侧相等,上侧与下侧相等,即两个图形都可以利用平移的方法变为长为8cm,宽为5cm 的矩形,所以两个图形的周长都为(8+5)×2=26(cm),所以他们用的材料一样长.故选:A.点评:此题主要考查了平移的应用,考生通过观察、分析识别图形的能力,解决此题的关键是通过观察图形确定右侧与上侧各边的长相等.5.下列说法正确的是()A.有理数的绝对值一定是正数B.绝对值等于本身的数一定是正数C.有理数的绝对值一定是非负数D.如果两个数才绝对值相等,那么这两个数相等考点:绝对值.分析:根据绝对值的定义和性质即可作出判断.解答:解:A、0的绝对值是0,不是正数,选项错误;B、0的绝对值是0,不是正数,故选项错误;C、正确;D、互为相反数的两个数的绝对值相等,故选项错误.故选C.点评:此题主要考查了绝对值的性质,注意整数、0、正数之间的区别:0是整数但不是正数.6.在算式1.25×(﹣)×(﹣8)=1.25×(﹣8)×(﹣)=[1.25×(﹣8)]×(﹣)中,应用了()A.分配律 B.分配律和结合律C.交换律和结合律 D.交换律和分配律考点:有理数的乘法.分析:根据交换律:a×b×c=a×c×b;结合律:a×b×c=a×(b×c);分配律:a×(b+c)=a×b+a×c 的公式,判断算式所运用的规律即可.解答:解:算式1.25×(﹣)×(﹣8)=1.25×(﹣8)×(﹣)该步骤运用的是交换律,=[1.25×(﹣8)]×(﹣)该步骤运用的是结合律,故答案为C.点评:该题主要考察的是有理数乘法的运算律公式,公式的正确熟练运用才是该题的关键.7.已知:|a|=3,|b|=2,且|a+b|<|a|+|b|,则a+b的值是()A.±5 B.±3 C. 1 D.±1考点:绝对值.分析:根据绝对值的性质首先求得a、b的值,然后代入代数式求解即可.解答:解:∵|a|=3,|b|=2,∴a=3或﹣3,b=2或﹣2.又∵|a+b|<|a|+|b|,∴a=3,b=﹣2或a=﹣3,b=2.则a+b=1或﹣1.故选 D.点评:本题考查了绝对值的性质,根据绝对值的性质求得a、b的值是关键.二、填空题(本大题有13小题,每小题2分,共26分)8.x的2倍与y的平方的差是2x﹣y2 .考点:列代数式.分析:分别表示出x的2倍,y的平方,然后求出差.解答:解:由题意得,2x﹣y2,故答案为:2x﹣y2.点评:本题考查了列代数式,求出等量关系是解答本题的关键.9.如果m与5互为相反数,则|m+3|的值为 2 .考点:相反数;绝对值.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得答案.解答:解:由m与5互为相反数,得m=﹣5.由负数的绝对值是它的相反数,得|m+3|=|﹣5+3|=|﹣2|=2,故答案为:2.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数,负数的绝对值是它的相反数.10.求﹣与﹣的积除以﹣2 所得的商,可列的算式是(﹣)×(﹣)÷(﹣2 ).考点:有理数的除法;有理数的乘法.专题:计算题.分析:根据题意列出算式即可.解答:解:根据题意得:(﹣)×(﹣)÷(﹣2 ),故答案为:(﹣)×(﹣)÷(﹣2 )点评:此题考查了有理数的除法,以及乘法,熟练掌握运算法则是解本题的关键.11.三个连续偶数中间一个是2n,则它的前一个和后一个分别是2n﹣2,2n+2 .考点:列代数式.分析:分别用2n加上和减去2来表示出前后两个数.解答:解:前后两个数分别为:2n﹣2,2n+2.故答案为:2n﹣2,2n+2.点评:本题考查了列代数式的知识,解答本题的关键是掌握两个偶数之间相差2.12.一批冰箱原来每台售价a元,现在打九折售出了9台,则销售额为8.1 元.考点:列代数式.分析:先求出每台的销售额,然后求出总销售额.解答:解:每台售价为:0.9a,则9台售价为:9×0.9a=8.1a.故答案为:8.1a.点评:本题考查了列代数式的知识,解答本题的关键是求出每台的销售额.13.已知a,b为两个连续整数,且a<﹣5 <b,则a2﹣b= 41 .考点:有理数的混合运算.专题:计算题.分析:根据题意确定出a与b的值,代入原式计算即可得到结果.解答:解:根据题意得:a=﹣6,b=﹣5,则原式=36+5=41.故答案为:41.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.据测算,我国每天因土地沙漠化造成的经济损失为1.5亿元,若一年按365天计算,用科学记数法表示,我国一年因土地沙漠化造成的经济损失为 5.475×1010元.考点:科学记数法—表示较大的数.分析:用每天的损失乘一年的天数,再根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数解答.解答:解:1.5亿×365=547.5亿=54 750 000000=5.475×1010.故答案为:5.475×1010.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.比较大小:﹣<(填“>”或“<”号)考点:有理数大小比较.分析:先求出它们的绝对值,再根据两个负数绝对值大的反而小的原则判断两个负数的大小.解答:解:∵|﹣ |= = ,| |= = ,故答案为:<.点评:本题考查了两个负数大小比较的方法:两个负数,绝对值大的反而小.16.一个数的倒数的绝对值等于这个数的相反数,那么这个数是﹣1 .考点:倒数;相反数;绝对值.分析:根据互为倒数的两数之积为1,互为相反数的两数之和为0,一个负数的绝对值是正数可得出答案.解答:解:设这个有理数是a,则根据题意有| |=﹣a,∵| |=﹣a>0∴a<0,∴﹣ =﹣a,即1=a2,解得,a=﹣1.故答案为:﹣1.点评:本题考查相反数及倒数的知识,属于基础题,注意掌握互为倒数的两数之积为1,互为相反数的两数之和为0.17.已知有理数﹣1,﹣8,+11,﹣2,请你通过有理数加减混合运算,使运算结果最大,则列式为+11﹣(﹣1﹣8﹣2).考点:有理数的加减混合运算.专题:计算题.分析:根据题意列出算式,使运算结果最大即可.解答:解:根据题意得:+11﹣(﹣1﹣8﹣2),故答案为:+11﹣(﹣1﹣8﹣2).点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.18.已知a,b为有理数,如果规定一种新运算“@”,定义a@b=a2﹣b2,则6@(﹣5)的结果是11 .考点:有理数的混合运算.专题:新定义.分析:利用题中的新定义计算即可得到结果.解答:解:根据题中的新定义得:6@(﹣5)=36﹣25=11,故答案为:11.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.若a,b互为相反数,c,d互为倒数,m为最小的非负数,a+b﹣(1﹣2m+m2)÷(cd)的值为﹣1 .考点:代数式求值;相反数;倒数.分析:利用相反数,倒数的定义,根据最小的非负数为0确定出m的值,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,cd=1,m=0,则原式=0﹣1=﹣1,故答案为:﹣1.点评:此题考查了代数式求值,相反数,倒数,熟练掌握各自的定义是解本题的关键.20.| a|的几何意义是:数字上表示数a的点到原点的距离,例如|﹣3|=3;|a﹣b|的几何意义是:数字上表示数a和数b 两点之间的距离,例如|6﹣(﹣5)|=11,如果x是一个有理数,且|x﹣2|=4,则x的值是﹣2或6 .考点:绝对值;数轴.分析:根据绝对值的几何意义以及数轴的知识列方程求解即可.解答:解:∵|x﹣2|=4,∴x﹣2=4或x﹣2=﹣4,解得x=6或x=﹣2.故答案为:﹣2或6.点评:本题考查了数轴,读懂题目信息,理解绝对值的几何意义是解题的关键.三、解答题21.画出数轴,且在数轴上表示出下列各数,并用“<”把它们连接起来:2.5,﹣3,5 ,﹣2 ,﹣1.6,0.考点:有理数大小比较;数轴.分析:先在数轴上表示出各数,再从左到右用“<”把它们连接起来即可.解答:解:如图所示,故﹣3<﹣2 <﹣1.6<0<2.5<5 .点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.22.用简便方法计算:(﹣3)×(﹣)+0.25×24.5+(﹣3 )×25%考点:有理数的乘法.分析:先转化,然后逆运用乘法分配律进行计算即可得解.解答:解:(﹣3)×(﹣)+0.25×24.5+(﹣3 )×25%,=3× + ×24.5+(﹣3 )× ,= ×(3+24.5﹣3.5),= ×24,=6.点评:本题考查了有理数的乘法,熟练掌握乘法分配律并灵活运用是解题的关键.2 3.已知:a是﹣(﹣5)的相反数,b比最小的正整数大4,c是最大的负整数.计算:3a+3b+c的值是多少?考点:相反数;有理数的混合运算.分析:先确定出a、b、c,然后代入代数式进行计算即可得解.解答:解:∵a是﹣(﹣5)的相反数,∴a=﹣5,∵b比最小的正整数大4,∴b=1+4=5,∵c是最大的负整数,∴c=﹣1,∴3a+3b+c=3×(﹣5)+3×5﹣1,=﹣15+15﹣1,=﹣1.点评:本题考查了相反数的定义,有理数的混合运算,熟记概念与性质并求出a、b、c的值是解题的关键.24.计算:4+50÷22×(﹣)﹣|5 ﹣6|考点:有理数的混合运算.分析:先算乘方和绝对值,再算乘除,最后算加减,由此顺序计算即可.解答:解:原式=4+50÷4×(﹣)﹣=4﹣﹣=1.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.25.阅读下面的解题过程:计算:()2 ﹣(﹣2)×(﹣)+ .解:原式= ﹣(﹣2)×(﹣)+ …(第一步)= ﹣(﹣1)+ …(第二步)= + + …(第三步)=2…(第四步)回答下列问题:(1)上面解题过程中有两处错误,第一处:是第一步,错误的原因是乘方错误;第二处:是第二步,错误的原因是没变号.直接写出正确的结果是.考点:有理数的混合运算.专题:阅读型.分析:根据分数乘方应分子与分母分别乘方,去括号应变号.解答:解:原式= ﹣(﹣2)×(﹣)+ …(第一步),= +(﹣1)+ …(第二步),= ﹣+ …(第三步),= …(第四步);故答案为:第一步,乘方错误,第二步,符号错误;.点评:本题考查了有理数的混合运算,注意运算顺序是解题的关键.26.一天两名同学利用温差测某座山峰的高度.在山脚测得温度是8℃,在山顶测得温度是﹣1℃,已知该山区高度每增加100米,气温大约下降0.6℃,请你帮这两名同学列式计算:这个山峰的山脚距山顶的高度大约是多少米.考点:有理数的混合运算.分析:先列出算式,再根据有理数的混合运算进行计算即可.解答:解:根据题意得:[8﹣(﹣1)]÷0.6×100=1500(米),答:这个山峰的山脚距山顶的高度大约是1500米.点评:本题考查的是有理数的混合运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.27.出租车司机小李某天下午从A地出发,营运全是在东西的人民大道进行的.如果规定向东为正,向西为负,他这天营运的车次和里程如表(单位:千米):车次① ② ③ ④ ⑤ ⑥ ⑦里程 +15 ﹣8 +14 ﹣11 +6 ﹣12 +8(1)在哪次记录中距A地最远?将最后一名乘客送到目的地时,小李距出发地的距离是多少?若每千米耗油0.3L,问小李这天下午共耗油多少升.考点:正数和负数.分析:(1)根据有理数的加法,可得和,根据绝对值的意义,可得每次行驶距出车点的距离,根据有理数的大小比较,可得答案;根据有理数的加法,可得答案;(3)根据单位耗油量乘以行车距离,可得答案;解答:解:(1)第一次15(千米),第二次15﹣8=7(千米),第三次7+14=21(千米),第四次21﹣11=10(千米),第五次10+6=16(千米),第六次16﹣12=4(千米),第七次4+8=12(千米).21>16>15>12>10>7>4,故行驶过程中,距离出车点最远是第 3次;15﹣8+14﹣11+6﹣12+8=12(千米),所以将最后一名乘客送到目的地时,小李距出发地的距离是12千米;(3)(15+8+14+11+6+ 12+8)×0.3=22.2(升).所以小李这天下午共耗油22.2升.点评:本题考查了正数和负数,有理数的加法运算是解题关键.28.计算:0.252÷(﹣)3+[﹣32×(﹣)2+(﹣2)3]÷4.考点:有理数的混合运算.分析:先算乘方,再算乘除,再算加减,有括号的先算括号里面的.解答:解:原式= ÷(﹣)+[﹣9× ﹣8]×=﹣ +(﹣12)×=﹣﹣3=﹣3 .点评:本题考查了有理数的混合运算,注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.第 21 页。
2018-2019学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共30分)1.的相反数是()A.3 B.﹣3 C.D.2.下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.3.一个数的绝对值是5,则这个数是()A.±5 B.5 C.﹣5 D.254.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣16.长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米7.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是()A.0或1 B.0或﹣1 C.0 D.18.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元 C.(4m+7n)元 D.11mn元9.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.10.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()A.2011 B.2 C.﹣1 D.二、细心填一填(每小题3分,共30分)11.列式表示:p的3倍的相反数是.12.若单项式5x4y和25x n y m是同类项,则m+n的值为.13.数轴上的A点与表示﹣3的点距离4个单位长度,则A点表示的数为.14.已知代数式a2﹣2a值是4,则代数式1+3a2﹣6a的值是.15.化简|π﹣4|+|3﹣π|=.16.计算:﹣5÷×5=(﹣1)2000﹣02011+(﹣1)2012=.17.单项式的系数是,次数是.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为(用含n的式子表示).19.如果某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高温度﹣最低温度)是.20.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f21.计算(1)﹣14﹣×[2﹣(﹣3)2](2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣+﹣+)÷(4)﹣32﹣(﹣2)2+1.22.计算(1)(3a﹣2)﹣3(a﹣5)(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)23.化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.24.若|a+2|与(b﹣3)2互为相反数,求a b+3(a﹣b)的值.25.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行计件工资制,每辆车6元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?27.观察下列等式=1﹣,=,=将以上三个等式两边分别相加得: ++=1﹣++=1﹣=(1)猜想并写出:=(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算: +++…+.一、精心选一选(每小题3分,共30分)1.的相反数是()A.3 B.﹣3 C.D.【考点】相反数.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:的相反数为﹣.故选D.2.下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0 B.﹣22+|﹣3|=7C.﹣(﹣2)3=8 D.【考点】有理数的混合运算.【分析】A、先算乘方,再算加法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;B、先算乘方,再算加法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算;C、根据有理数的乘方法则计算即可求解;D、从左往右依次计算即可求解.【解答】解:A、﹣(﹣1)2+(﹣1)=﹣1﹣1=﹣2,故选项错误;B、﹣22+|﹣3|=﹣4+3=﹣1,故选项错误;C、﹣(﹣2)3=8,故选项正确;D、﹣+(﹣)﹣1=﹣1﹣1=﹣2,故选项错误.故选:C,3.一个数的绝对值是5,则这个数是()A.±5 B.5 C.﹣5 D.25【考点】绝对值.【分析】根据绝对值的定义解答.【解答】解:绝对值是5的数,原点左边是﹣5,原点右边是5,∴这个数是±5.故选A.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.5.下列说法错误的是()A.数轴上表示﹣2的点与表示+2的点的距离是2B.数轴上原点表示的数是0C.所有的有理数都可以用数轴上的点表示出来D.最大的负整数是﹣1【考点】数轴;有理数大小比较.【分析】根据数轴上的点表示数的方法得到数轴上表示﹣2的点与表示+2的点的距离是4;数轴上原点表示的数是0;所有的有理数都可以在数轴上表示出来;﹣1是最大的负整数.【解答】解:A、数轴上表示﹣2的点与表示+2的点的距离是4,所以A选项错误,符合题意;B、数轴上原点表示的数是0,所以B选项正确,不符合题意;C、所有的有理数都可以在数轴上表示出来,所以C选项正确,不符合题意;D、﹣1是最大的负整数,所以D选项正确,不符合题意.故选A.6.长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:B.7.如果a是不等于零的有理数,那么式子(a﹣|a|)÷2a化简的结果是()A.0或1 B.0或﹣1 C.0 D.1【考点】整式的混合运算;绝对值.【分析】由于a≠0,那么应该分两种情况讨论:①a>0;②a<0,然后分别计算即可.【解答】解:∵a≠0,①当a>0时,(a﹣|a|)÷2a=(a﹣a)÷2a=0;②当a<0时,(a﹣|a|)÷2a=(a+a)÷2a=1.故选A.8.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元 C.(4m+7n)元 D.11mn元【考点】列代数式.【分析】总价格=足球数×足球单价+篮球数×篮球单价,把相关数值代入即可.【解答】解:∵4个足球需要4m元,7个篮球需要7n元,∴买4个足球、7个篮球共需要(4m+7n)元,故选C.9.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.【考点】数轴;有理数的加法;有理数的减法;有理数的乘法;有理数的除法.【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,然后根据有理数的加、减、乘、除运算进行符号判断即可.【解答】解:根据题意,a<0且|a|<1,b>且|b|>1,∴A、a+b是正数,故本选项正确;B、a﹣b=a+(﹣b),是负数,故本选项错误;C、ab是负数,故本选项错误;D、是负数,故本选项错误.故选A.10.有一列数a1,a2,a3,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2011为()A.2011 B.2 C.﹣1 D.【考点】规律型:数字的变化类.【分析】分别求出a2,a3,a4,a5的值,不难发现每3个数为一组依次进行循环,用2011除以3,余数是几,则与第几个数相同.【解答】解:∵a1=2,∴a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,a5=1﹣=,…依此类推,每3个数为一组进行循环,2011÷3=670…1,∴a2011=a1=2.故答案为:2.二、细心填一填(每小题3分,共30分)11.列式表示:p的3倍的相反数是﹣3p.【考点】列代数式.【分析】根据题意可以列出相应的代数式,本题得以解决.【解答】解:p的3倍的相反数是﹣3p,故答案为:﹣3p.12.若单项式5x4y和25x n y m是同类项,则m+n的值为5.【考点】同类项.【分析】根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.【解答】解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.13.数轴上的A点与表示﹣3的点距离4个单位长度,则A点表示的数为﹣7或1.【考点】数轴.【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.【解答】解:当点A在﹣3的左侧时,则﹣3﹣4=﹣7;当点A在﹣3的右侧时,则﹣3+4=1.则A点表示的数为﹣7或1.故答案为:﹣7或114.已知代数式a2﹣2a值是4,则代数式1+3a2﹣6a的值是13.【考点】代数式求值.【分析】把代数式1+3a2﹣6a变形为3(a2﹣2a)+1,然后把a2﹣2a=4整体代入计算即可.【解答】解:∵1+3a2﹣6a=3(a2﹣2a)+1,而a2﹣2a=4,∴1+3a2﹣6a=3×4+1=13.故答案为13.15.化简|π﹣4|+|3﹣π|=1.【考点】绝对值.【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.16.计算:﹣5÷×5=﹣125(﹣1)2000﹣02011+(﹣1)2012=2.【考点】有理数的混合运算.【分析】(1)乘除运算时,从左往右进行计算;(2)先计算乘方运算,再算加减运算即可得到结果.【解答】解:(1)﹣5÷×5,=﹣5×5×5,=﹣125;(2)(﹣1)2000﹣02011+(﹣1)2012,=1﹣0+1,=2.17.单项式的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3.故答案为﹣,3.18.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形个数为3n+1(用含n的式子表示).【考点】规律型:图形的变化类.【分析】先写出前三个图案中基础图案的个数,并得出后一个图案比前一个图案多3个基础图案,从而得出第n个图案中基础图案的表达式.【解答】解:观察可知,第1个图案由4个基础图形组成,4=3+1第2个图案由7个基础图形组成,7=3×2+1,第3个图案由10个基础图形组成,10=3×3+1,…,第n个图案中基础图形有:3n+1,故答案为:3n+1.19.如果某天的最高气温是5℃,最低气温是﹣3℃,那么这天的温差(最高温度﹣最低温度)是8℃.【考点】正数和负数.【分析】用最高气温减去最低气温,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣3)=5+3=8℃.故答案为:8℃.20.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f=n﹣1,f()=n(n为整数),再计算即可.【解答】解:由规律得:f(n)=n﹣1,f(1n)=n(n为整数),∴f()﹣f21.计算(1)﹣14﹣×[2﹣(﹣3)2](2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2(3)(﹣+﹣+)÷(4)﹣32﹣(﹣2)2+1.【考点】有理数的混合运算.【分析】(1)先算乘方和括号里面的,再算乘法,由此顺序计算即可.(2)先算乘方和括号里面的,再算乘法,由此顺序计算即可.(3)先把除法化为乘法,再根据乘法分配律进行计算;(4)先计算乘方,再计算加减,注意﹣32=﹣9.【解答】解:(1)﹣14﹣×[2﹣(﹣3)2],=﹣1﹣×[2﹣9],=﹣1﹣×(﹣7),=;(2)﹣82+3×(﹣2)2+(﹣6)÷(﹣)2,=﹣64+3×4﹣6,=﹣64+12﹣54,=﹣52﹣54,=﹣106;(3)(﹣+﹣+)÷,=﹣+×60﹣×60+×60,=﹣45+50﹣35+12,=﹣80+62,=﹣18;(4)﹣32﹣(﹣2)2+1,=﹣9﹣4+1,=﹣13+1,=﹣12.22.计算(1)(3a﹣2)﹣3(a﹣5)(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)【考点】整式的加减;合并同类项;去括号与添括号.【分析】(1)先去括号,再合并即可;(2)先去括号,再合并.【解答】解:(1)(3a﹣2)﹣3(a﹣5)=3a﹣2﹣3a+15=13;(2)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)=4a2b﹣5ab2﹣3a2b+4ab2=a2b﹣ab2.23.化简求值:2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2y﹣3xy2﹣2xy2﹣4x2y=﹣2x2y﹣5xy2,当x=,y=﹣2时,原式=1﹣10=﹣9.24.若|a+2|与(b﹣3)2互为相反数,求a b+3(a﹣b)的值.【考点】非负数的性质:绝对值;非负数的性质:偶次方;代数式求值.【分析】先根据互为相反数的和等于0列式,再根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可求解.【解答】解:∵|a+2|与(b﹣3)2互为相反数,∴|a+2|+(b﹣3)2=0,∵|a+2|≥0,(b﹣3)2≥0,∴|a+2|=0,(b﹣3)2=0,a+2=0,b﹣3=0,解得a=﹣2,b=3,∴a b+3(a﹣b),=(﹣2)3+3(﹣2﹣3),=﹣8﹣15,=﹣23.故答案为:﹣23.25.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【考点】有理数的加减混合运算;正数和负数.【分析】(1)把记录到得所有的数字相加,看结果是否为0即可;(2)记录到得所有的数字的绝对值的和,除以0.5即可.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒.26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.如表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产599辆;(2)产量最多的一天比产量最少的一天多生产26辆;(3)该厂实行计件工资制,每辆车6元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?【考点】正数和负数.【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【解答】解:(1)前三天生产的辆数是20×3+(5﹣2﹣4)=599(辆).答案是:599;(2)16﹣(﹣10)=16+10=26(辆),故答案是26;(3)这一周多生产的总辆数是5﹣2﹣4+13﹣10+16﹣9=9(辆).1400×7+9×15=9800+135=9935(元).答:该厂工人这一周的工资是9935元.27.观察下列等式=1﹣,=,=将以上三个等式两边分别相加得: ++=1﹣++=1﹣=(1)猜想并写出:=﹣(2)直接写出下列各式的计算结果:①+++…+=②+++…+=(3)探究并计算: +++…+.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据连续整数的乘积的倒数等于倒数差可得;(2)利用(1)中所得规律裂项求解可得;(3)根据=(﹣)裂项求和可得.【解答】解:(1)=﹣,故答案为:﹣;(2)①原式=1﹣+﹣+﹣+…+﹣=1﹣=;②原式=1﹣+﹣+﹣+…+﹣=1﹣=;故答案为:;;(3)原式=(﹣+﹣+﹣+…+﹣)=×(﹣)=×=,故答案为:.2017年5月4日。
2018-2019学年七年级上期中考试数学试卷(有答案)2018-2019学年七年级上期中考试数学试卷(有答案)篇一一、选择题(本大题共16 个小题,1-10 题,每小题3 分11-16 小题,每小题2 分,共42 分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列方程是二元一次方程的是( )2. 用两块相同的三角板按如图所示的方式作平行线AB 和CD,能解释其中的道理的依据是( )A. 内错角相等,两直线平行B. 同位角相等,两直线平行C. 同旁内角互补,两直线平行D. 两直线平行,内错角相等3. 下列命题中是假命题的是( )A. 同旁内角互补,两直线平行B. 垂线段最短C. 在同一平面内,过一点有且只有一条直线与已知直线垂直D. 两条直线被第三条直线所截,内错角相等5. 下列运算中,能用平方差公式计算的是( )A. (-a+b) (a-b)B. (a-b) (-b+a) C. (3a-b) (3b+a) D. (b+2a) (2a-b)6. 点A、B、C 为直线l 上三点,点P 为直线l 外一点,且PA=3cm,PB=4cm,PC=5cm,则点P 到直线l 的距离为( )A. 2cmB. 3cmC. 小于3cmD. 不大于3cm8. 如图,下列条件①∠1=∠2;②∠3=∠4;③∠B=∠3;④∠1+∠ACE=180°,其中,能判定AD∥BE 的条件有( )A. 4 B. 3 C. 2 D. 111. 如图,把一张长方形纸条ABCD 沿EF 折叠,若∠1=56°,则∠FGE 应为( )二、填空题(本题共有3 个小题,1 7-1 8 每小题3 分,1 9 小题4 分,满分 1 0 分)17.阅读理解:引人新数i ,新数i 满足分配律,结合律,交换律,已知:18.如右图所示,直线AB,CD 相交于点O,若∠BOD=40°,OA 平分∠COE,则∠COE= 。
2018~2019学年度第一学期期中质量检测七年级数学参考答案及评分标准二、填空题17.-9 18.两点之间线段最短 19.20.1 20.115°三、解答题21.解:(1)原式=-1+3-4+6………………………………………………………3分=4 ……………………………………………………………………5分(2)原式=-132×413-8÷(-2)……………………………………………2分 =-2+4………………………………………………………………4分=2. …………………………………………………………………5分22.解:∵AB =10,BC =4,∴AC =AB -BC =6,…………………………………………………………2分∵点D 是AC 的中点,∴AD =CD =12AC =3.…………………………………………………………4分 ∴BD =BC +CD =4+3=7cm ………………………………………………5分23.解:(1)如图所示,△A 1B 1C 1即为所求;………………………………………………3分(2)△AB 1C 的面积=2×2−12×2×1−12×2×1=2 ………………………………6分 24.解:(1)26+(-32)+(-15)+34+(-38)+(-20)=-45吨,答:库里的粮食是减少了45吨; ……………………………………3分(2)280+45=325吨,答:3天前库里有粮325吨;…………………………………………5分(3)(26+|-32|+|-15|+34+|-38|+|-20|)×5=165×5=825元,答:这3天要付825元装卸费. ……………………………………8分25.解:(1)∵直线AB ,CD 相交于点O ,∴∠AOC 和∠BOD 与∠AOD 互补, ……………………………………2分∵OF 平分∠AOE ,∴∠AOF =∠EOF ,∵OF ⊥CD ,∴∠COF =∠DOF =90°,∴∠DOE =∠AOC ,∴∠DOE 也是∠AOD 的补角, …………………………………………4分∴与∠AOD 互补的角有∠AOC ,∠BOD ,∠DOE ; …………………5分(2)∵OF 平分∠AOE ,∴∠AOF =12∠AOE =60°, ………………………………………………6分 ∵OF ⊥CD ,∴∠COF =90°,∴∠AOC =∠COF -∠AOF =90°-60°=30°,…………………………7分∵∠AOC 与∠BOD 是对顶角,∴∠BOD =∠AOC =30°.…………………………………………………8分26.解:(1)由图可知:a =-10,b =2,………………………………………………1分∴a +b =-8 ………………………………………………………………2分故a +b 的值为-8. ………………………………………………………3分(2)由B 点不动,点A 向左移动3个单位长,可得a =-13,b =2 ………………………………………………………4分∴ b -|a |=b +a =2-13=-11 ……………………………………………5分故a 的值为-13,b -|a |的值为-11 ……………………………………6分(3)∵点A 不动,点B 向右移动15.3个单位长∴ a =-10 b =17.3 ……………………………………………………7分∴ b -a =17.3-(-10)=27.3……………………………………………8分故b 比a 大27.3. …………………………………………………………9分。
2018——2019学年度第一学期期中教学质量检测七年级数学试题(满分120分,时间:120分钟)一、选择题(每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填入该小题后的括号内,每小题3分,共24分)1.如图是由六个小正方体组合而成的一个立体图形,从正面看到的图形是2.下面图形经过折叠不能围成一个三棱柱的是3.如图,点A 表示的有理数是a ,则a ,﹣a ,1的大小顺序为A .a <﹣a <1B .﹣a <a <1C .a <1<﹣aD .1<﹣a <a4.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为A .0.13×105B .1.3×104C .1.3×105D .13×1035.下列各组数中互为相反数的是 A .2与12B .(-1)2与1C .-1与(-1)2D .2与|-2| 6. 长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之 一圆组成,则能射进阳光部分的面积是 A .222b a π- B .2222b a π-C .22b ab π-D .222b ab π-第6题图123456–1–2–3–4–5–607.使(ax 2-2xy+y 2)-(-x 2+bxy+2y 2)=5x 2-9xy+cy 2成立的a 、b 、c 的值依次是 A. 4,-7,-1 B .-4,-7,-1 C. 4,7,-1 D. 4,7,1 8.已知下列一组数:1,34,59,716,925,….用代数式表示第n 个数,则第n 个数是 A.2n -13n -2 B.2n -1n 2 C.2n +13n -2 D.2n +1n2 二、填空题(每小题3分,共18分)9.“齐天大圣”孙悟空有一个宝贝——金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆面的形象,这说明____________.10.如图是一个正方体,用一个平面去截这个正方体,截面形状不可能是 (填序号).11.-9的绝对值是 ;12.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b ),例如:3⊕2=3×2+(3﹣2)=7,则(-4)⊕5= ; 13.代数式213x π-的系数、次数分别是 ;14.甲、乙两地相距nkm ,李师傅骑摩托车从甲地驶往乙地.原计划每小时行驶xkm ,但实际每小时行驶40km (x <40),则李师傅骑摩托车从甲地到乙地所用时间比原来减少了 小时. 三、解答题(共78分,解答要写出必要的文字说明、演算步骤) 15.(6分)把下列各数分别在数轴上表示出来,并用“<”连接起来: 12-,2, 0, -3,|0.5|-,1(4)2--16.计算(每小题2分,共8分)(1)(-3)-(-7) (2)0.5+(-14)-(-2.75)+12(3)18-6÷(-2)×(-13) (4)16÷(-2)3-(-18)×(-4)17.(8分)某只股票上周末的收盘价格10.00元,本周一到周五的收盘情况(“+”表示股票比前一天上涨;“-”表示股票比前一天下跌)如下表:上周末收盘价周一 周二 周三 周四 周五 10.00+0.28-2.36+1.80-0.35+0.08(1)周一至周五这只股票每天的收盘价各是多少?(2)本周末的收盘价比上周末收盘价是上涨了?还是下跌了? (3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?18.(8分)如图是一个长为4cm ,宽为3cm 的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)19.(6分)如图所示,由一个底面为正方形的长方体与一个三棱柱(底面为直角三角形) 构成的立体图形,请画出从三个方向看到的图形.20.(8分)下图是由两个长方体组合而成的一个立体图形从三个方向看到的三种视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积.第20题图从正面看从上面看从左面看 第19题图21.(8分)先化简,再求值:(1)3(x-2y)-[3x-2y+2(x+y)],其中x=12-,y=-3.(2)7a2b+(-4a2b+5ab2)-(2a2b-3ab2),其中a=2,b=12 -.22.(8分)笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,6支圆珠笔;小明买6本笔记本,3支圆珠笔.(1)小红和小明买这些笔记本和圆珠笔一共花费多少元钱?(2)若每本笔记本比每支圆珠笔贵2元,求小明比小红多花费了多少元钱?23.(8分)一个四边形的周长为48cm,已知第一条边长acm,第二条边比第一条边的2倍长3cm,第三条边等于第一、第二两条边的和.(1)求出表示第四条边长的式子;(2)当a=3cm或a=7cm时,还能得到四边形吗?若能,指出四边形的形状,若不能,说明理由.24.(10分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):①买一套西装送一条领带;②西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x套西装,y条领带(y>x).(1)该客户选择两种不同的方案所需总费用分别是多少元?(用含x、y的式子表示并化简)(2)若该客户需要购买10套西装,22条领带,则他选择哪种方案更划算?(3)若该客户需要购买15套西装,40条领带,则他选择哪种方案更划算?2018——2019学年度第一学期期中教学质量检测七年级数学参考答案一、选择题(每小题3分,共24分)1、B2、C3、A4、B5、C6、D7、C8、B二、填空题(每小题3分,共18分)9. 线动成面 10、④11、9 12、-29 13、13π-,214、40n nx -(此代数式加与不加括号都正确) 三、计算题(共78分)15.每个数表示对0.5分………………………………………………………………………3分 -3<12-<0 <|0.5|-<2<1(4)2--……………………………………………………………6分16.(1)(-3)-(-7)=(-3)+7……………………………………………………………………………1分 =4……………………………………………………………………………………2分(2)0.5+(-14)-(-2.75)+12 =12+(-14)+114+12……………………………………………………………………1分=72……………………………………………………………………………………2分(3)18-6÷(-2)×(-13)=18+3×(-13) ………………………………………………………………………1分=18-1=17……………………………………………………………………………………2分 (4)16÷(-2)3-(-18)×(-4) =16÷(-8)-12………………………………………………………………………1分=-2-1 2=-212……………………………………………………………………………………2分17.(1)周一收盘价为:10.00+0.28=10.28(元)周二收盘价为:10.28-2.36=7.92(元)周三收盘价为:7.92+1.80=9.72(元)周四收盘价为:9.72-0.35=9.37(元)周五收盘价为:9.37+0.08=9.45(元)……………………………………………2分(2)因为10.00>9.45,所以本周末的收盘价比上周末收盘价下跌了.……………………4分(3)因为10.28>9.72>9.45>9.37>7.9210.28-7.92=2.36(元)所以周一收盘价最高,周二收盘价最低,……………………………………………6分最高收盘价与最低收盘价相差2.36元.………………………………………………7分18.解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;…………………………………………………………………4分如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.由于36π<48π,所以绕短边旋转得到的圆柱的体积大…………………………………8分19.解:如图所示……每个图2分,共6分20.解:由题意可知,上面长方体长、宽、高分别为4,4,2…………………………………………………………2分下面长方体的长、宽、高分别为6,8,2,……………………………………………………4分从正面看从左面看从上面看则表面积为[6×2+6×8+8×2]×2+[4×2+4×2+4×4]×2-4×2×2=200(mm 2), 这个立体图形的表面积200mm 2.………………………………………………………………8分 21.解:(1)原式=3x -6y -3x +2y -2y -2y=-2x-6y ,……………………………………2分当x=-12,y=-3时,原式=19.………………………………………………………4分(2)原式=7a 2b -4a 2b +5ab 2-2a 2b +3ab 2=a 2b +8ab 2,……………………………………2分 当a=2,b=-12时,原式=-2+4=2.………………………………………………………4分22.解:(1)由题意,得3x +6y +6x +3y=9x +9y ,则小红和小明买这些笔记本和圆珠笔一共花费了(9x +9y)元.…………………………………………………………………………4分(2)由题意,得(6x +3y)-(3x +6y)=3x -3y.………………………………………6分 因为每本笔记本比每支圆珠笔贵2元,即x -y=2,所以3x -3y =3(x -y)=6(元),则小明比小红多花费了6元钱.…………………………………………………………………8分 23.解:(1)48-a -(2a +3)-[a +(2a +3)]=48-a -2a -3-a -2a -3=42-6a ;…………………………………………………………………………………4分 (2)当a=3cm 时,四条边长分别为3cm ,9cm,12cm ,24cm ,因为3+9+12=24,故不能构成四边形.……………………………………………………………………………………6分当a=7cm 时,四条边长分别为7cm,17cm,24cm,0cm ,因为四边形边长不能为0,故不能构成四边形.……………………………………8分 24.解:(1)按方案①购买,需付款:200x+(y ﹣x )×40=(40y+160x )元;…………2分 该客户按方案②购买,需付款:200x •90%+40y •80%=(180x+32y )(元);………………4分 (2)当x=10,y=22时,按方案①购买,需付款:40×22+160×10=2480(元); 该客户按方案②购买,需付款:180×10+32×22=2504(元); ∵2480<2504,∴按方案①更划算;……………………………………………………………………7分 (3)当x=15,y=40时,按方案①购买,需付款:40×40+160×15=4000(元); 该客户按方案②购买,需付款:180×15+32×40=3980(元); ∵4000>3980,∴按方案②更划算.…………………………………………………………………………10分。
2018-2019学年七年级(上)期中数学试卷(及答案)一、选择题((本部分10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.24.70千克B.25.32千克C.25.51千克D.24.86千克2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109 3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体 D.三棱柱4.﹣23的意义是()A.3个﹣2相乘B.3个﹣2相加C.﹣2乘以3 D.3个2相乘的积的相反数5.下列说法中正确的有()①最小的整数是0;②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A .0个B .1个C .2个D .3个6.将如图Rt △ABC 绕直角边AC 旋转一周,所得几何体的左视图是( )A .B .C .D .7.下列计算:(1)78﹣23÷70=70÷70=1;(2)12﹣7×(﹣4)+8÷(﹣2)=12+28﹣4=36;(3)12÷(2×3)=12÷2×3=6×3=18;(4)32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)=0. 其中错误的有( )A .1个B .2个C .3个D .4个8.图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则该从正面看该几何体得到的平面图形为( )A .B .C .D .9.有若干个数,第一个数记为a 1,第二个数记为a 2,…,第n 个数记为a n .若a 1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,等于()利用这个规律可得a2016A.﹣B. C.2 D.310.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.15 B.9或15 C.15或21 D.9,15或21二、填空题(本部分7个小题,每小题3分,共21分.把最后答案直接填在题中的横线上)11.计算(﹣3)﹣(﹣7)= .12.如图所示的三个几何体的截面分别是:(1);(2);(3).13.把边长为lcm的正方体表面展开要剪开条棱,展开成的平面图形周长为cm.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = .三、解答题(本部分8个大题,共69分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)写出符合下列条件的数:(1)最小的正整数:;(2)绝对值最小的有理数:;(3)绝对值大于3且小于6的所有负整数:;(4)在数轴上,与表示﹣1的点距离为5的所有数:;(5)倒数等于本身的数:;(6)绝对值等于它的相反数的数:.19.(7分)画一条数轴,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数.然后用“>”把这些数连接起来.20.(16分)计算:(1)(﹣)+(﹣);(2)15×﹣(﹣15)×+15×;(3)﹣+÷(﹣2)×(﹣);(4)﹣14﹣×[2﹣(﹣3)2].21.(6分)根据实验测定,高度每增加100米,气温大约下降0.6℃.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是﹣16℃,如果当时地面温度是8℃,那么小张所在位置离地面的高度是多少米?22.(8分)已知如图为一几何体的三种形状图:(1)这个几何体的名称为;(2)任意画出它的一种表面展开图;(3)若从正面看到的是长方形,其长为10cm;从上面看到的是等边三角形,其边长为4cm,求这个几何体的侧面积.23.(4分)已知|x|=3,y2=25,且x>y,求出x,y的值.24.(4分)已知|2m﹣6|+(﹣1)2=0,求m﹣2n的值.25.(8分)在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救物资,中午从A地出发,晚上到达B地.规定向东为正,当天的航行记录如下(单位:km):﹣16,﹣7,12,﹣9,6,10,﹣11,9.(1)B在A地的哪侧?相距多远?(2)若冲锋舟每千米耗油0.46L,则这一天共耗油多少升?26.(10分)将一个正方体的表面全涂上颜色.(1)如果把正方体的棱2等分,然后沿等分线把正方体切开,能够得到8个小正方体,设其中3面被涂上颜色的有a个,则a= ;(2)如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体.设这些小正方体中有3个面涂有颜色的有a个,各个面都没有涂色的有b个,则a+b= ;(3)如果把正方体的棱4等分,然后沿等分线把正方体切开,能够得到64个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= ;(4)如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到个小正方体.设这些小正方体中有2个面涂有颜色的有c个,各个面都没有涂色的有b个,则c+b= .参考答案与试题解析一、1.【考点】正数和负数.【分析】根据有理数的加法法则可求25+0.25;根据有理数的加法法则可求25﹣0.25,进而可得合格面粉的质量范围,进而可得答案.【解答】解:∵25+0.25=25.25;25﹣0.25=24.75,∴合格的面粉质量在24.75和2.25之间,故选:D.【点评】本题考查正数和负数,解题的关键是明确正负数在题目中的实际意义.2.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】简单几何体的三视图.【分析】几何体可分为柱体,锥体,球体三类,按分类比较即可.【解答】解:长方体、圆柱体、三棱体为柱体,它们的主视图都是矩形;球的三种视图都是圆形.故选:C.【点评】本题考查几何体的分类和三视图的概念.4.【考点】有理数的乘方.【分析】根据有理数的乘方,即可解答.【解答】解:﹣23的意义是3个2相乘的积的相反数,故选:D.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.5.【考点】有理数.【分析】根据整数的定义,有理数的定义,绝对值的性质,相反数的性质,可得答案.【解答】解:①没有最小的整数,故①错误;②有理数中没有最大的数,故②正确;③如果两个数的绝对值相等,那么这两个数相等或互为相反数,故③错误;④互为相反数的两个数的绝对值相等,故④正确;故选:C.【点评】本题考查了有理数,没有最大的有理数,没有最小的有理数.6.【考点】点、线、面、体;简单几何体的三视图.【分析】应先得到旋转后得到的几何体,找到从左面看所得到的图形即可.【解答】解:Rt△ABC绕直角边AC旋转一周,所得几何体是圆锥,圆锥的左视图是等腰三角形,故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.【考点】有理数的混合运算.【分析】原式各项计算得到结果,即可作出判断.【解答】解:(1)原式=78﹣=77,错误;(2)原式=12+28﹣4=36,正确;(3)原式=12÷6=2,错误;(4)原式=3×9.42+3×(﹣9.42)=0,正确,则错误的有2个,故选B【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右的列数分别是4,3,2.故选C.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.9.【考点】规律型:数字的变化类.【分析】根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2016÷3=672可知a2016=a3.【解答】解:当a1=时,==3,a3===﹣,a4===,∴这列数的周期为3,∵2016÷3=672,∴a2016=a3=﹣,故选:A.【点评】本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.10.【考点】认识立体图形;有理数的加法.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为1、2、3、4、5、6或0、1、2、3、4、5;且每个相对面上的两个数之和相等,故只可能为0、1、2、3、4、5其和为15.故选A.【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.二、11.计算(﹣3)﹣(﹣7)= 4 .【考点】有理数的减法.【分析】根据有理数减法法则计算,减去一个数等于加上这个数的相反数.【解答】解:(﹣3)﹣(﹣7)=(﹣3)+7=7﹣3=4.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.如图所示的三个几何体的截面分别是:(1)圆;(2)长方形;(3)三角形.【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面不相同.【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形.故答案为:圆,长方形,三角形.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.把边长为lcm的正方体表面展开要剪开7 条棱,展开成的平面图形周长为14 cm.【考点】几何体的展开图.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,可得出正方体表面展开要剪开的棱的条数;剪开1条棱,增加两个正方形的边长,依此即可求解.【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,1×(7×2)=1×14=14(cm).答:把边长为lcm的正方体表面展开要剪开7条棱,展开成的平面图形周长为14cm.故答案为:7,14.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.14.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.15.设a<0,b>0,且|a|<|b|,用“<”把a,﹣a,b,﹣b连接起来:﹣b<a<﹣a<b .【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵a<0,b>0,∴﹣a>0,﹣b<0,∵|a|<|b|,∴﹣a<b,∴﹣b<a<﹣a<b.故答案为:﹣b<a<﹣a<b.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.在图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?所有可能的情况是剪去1号、2号或3号小正方形.【考点】展开图折叠成几何体.【分析】根据正方体展开图中没有田字形解答.【解答】解:∵剩余的部分恰好能折成一个正方体,∴展开图中没有田字形,∴应剪去1号、2号或3号小正方形.故答案为:剪去1号、2号或3号小正方形.【点评】本题考查了展开图折叠成几何体,熟记正方体展开图的11中形式是解题的关键,只要有“田”字格的展开图都不是正方体的表面展开图.17.《庄子.天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图.由图易得: = 1﹣.【考点】规律型:图形的变化类.【分析】由图可知第一次剩下,截取1﹣;第二次剩下,共截取1﹣;…由此得出第n次剩下,共截取1﹣,得出答案即可.【解答】解:=1﹣故答案为:1﹣.【点评】此题考查图形的变化规律,找出与数据之间的联系,得出规律解决问题.三、18.写出符合下列条件的数:(1)最小的正整数: 1 ;(2)绝对值最小的有理数:0 ;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5 ;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6 ;(5)倒数等于本身的数:±1 ;(6)绝对值等于它的相反数的数:0或负数.【考点】倒数;数轴;相反数;绝对值.【分析】根据正整数、绝对值、负整数、倒数、相反数的定义结合数轴进行解答.【解答】解:如图.(1)最小的正整数:1;(2)绝对值最小的有理数:0;(3)绝对值大于3且小于6的所有负整数:﹣4,﹣5;(4)在数轴上,与表示﹣1的点距离为5的所有数:4,﹣6;(5)倒数等于本身的数:±1;(6)绝对值等于它的相反数的数:0或负数.故答案为:1;0;﹣4,﹣5;4,﹣6;±1;0或负数.【点评】本题考查了正整数、绝对值、负整数、倒数、相反数的定义,利用数形结合是解题的关键.19.【考点】有理数大小比较;数轴;相反数;倒数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出3.5和它的相反数,﹣2和它的倒数,最小的自然数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可.【解答】解:,3.5>0>﹣0.5>﹣2>﹣3.5.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.【考点】有理数的混合运算.【分析】(1)应用加法交换律和加法结合律,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.(3)(4)根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)(﹣)+(﹣)=(+)﹣(+)=1﹣=﹣(2)15×﹣(﹣15)×+15×=15×(++)=15×=22(3)﹣+÷(﹣2)×(﹣)=﹣+(﹣)×(﹣)=﹣+1=﹣1(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×[2﹣9]=﹣1﹣×[﹣7]=﹣1+=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.21.【考点】有理数的混合运算.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:[8﹣(﹣16)]÷0.6=24÷0.6=40(米),则小张所在位置离地面的高度是40米.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.【考点】由三视图判断几何体;几何体的展开图;等边三角形的性质.【分析】(1)由三视图可知,该几何体为三棱柱;(2)画出三棱柱的展开图即可;(3)根据三棱柱侧面积计算公式计算可得.【解答】解:(1)由三视图可知,该几何体为三棱柱,故答案为:三棱柱;(2)展开图如下:(3)这个几何体的侧面积为3×10×4=120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.【考点】有理数的乘方;绝对值.【分析】根据绝对值的定义、有理数的乘方先求出x、y,再根据条件确定x、y.【解答】解:∵|x|=3,∴x=±3∵y2=25,∴y=±5,∵x>y,∴x=3,y=﹣5或x=﹣3,y=﹣5.【点评】本题考查有理数的乘方、绝对值的化简等知识,关键是掌握有理数的乘方法则、绝对值的性质,属于基础题,中考常考题型.24.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质求出m、n的值,计算即可.【解答】解:由题意得,2m﹣6=0,﹣1=0,解得,m=3,n=2,则m﹣2n=﹣1.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.25.【考点】正数和负数.【分析】(1)把所有航行记录相加,再根据正数和负数的意义进行判断即可;(2)用所有航行记录的绝对值的和乘0.46,即可得这一天共耗油的量.【解答】解(1)﹣16+(﹣7)+12+(﹣9)+6+10+(﹣11)+9=﹣16﹣7+12﹣9+6+10﹣11+9=﹣6(km),∴|﹣6|=6km,答:B地在A地的西边,相距6km;(2)0.46×(|﹣16|+|﹣7|+12+|﹣9|+6+10+|﹣11|+9)=0.46×(16+7+12+9+6+10+11+9)=0.46×80=36.8(升).答:这天共消耗了36.8升油.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.26.【考点】认识立体图形.【分析】根据正方体的性质可发现顶点处的小方块三面涂色,除顶点外位于棱上的小方块两面涂色,涂色位于表面中心的一面涂色,处于正中心的没涂色.依此可得到(1)棱二等分时的所得小正方体表面涂色情况;(2)棱三等分时的所得小正方体表面涂色情况;(3)棱四等分时的所得小正方体表面涂色情况.(4)根据已知图形中没有涂色的小正方形个数得出变化规律进而得出答案.【解答】解:(1)三面被涂色的有8个,故a=8;(2)三面被涂色的有8个,各面都没有涂色的1个,a+b=8+1=9;(3)两面被涂成红色有24个,各面都没有涂色的8个,b+c=24+8=32;(4)由以上可发现规律:能够得到n3个小正方体,两面涂色c=12(n﹣2)个,各面均不涂色(n﹣2)3个,b+c=12(n﹣2)+(n﹣2)3.故答案为:8,9,32,n3,12(n﹣2)+(n﹣2)3.【点评】本题主要考查了正方体的组合与分割.要熟悉正方体的性质,在分割时有必要可动手操作.。
七年级上学期数学期中考试卷(满分120分 时间90分钟)一、选择题(每题3分,共30分,请把答案填入下面表格中) 题号 1 2 3 4 5 6 7 8 9 10 答案1.若气温为零上10℃记作+10℃,则-3℃表示气温为( )A. 零上3℃B. 零下3℃C. 零上7 ℃D. 零下7℃ 2.下列结论正确的是( )A.有理数包括正数和负数B.数轴上原点两侧的数互为相反数C.0是绝对值最小的数D.倒数等于本身的数是0、1、-1. 3.中国网民已达到731 000 000人,用科学记数法表示为( )人 A. 0.731×109 B.7.31×108 C.7.31×109 D.73.1×104.若a 、b 为有理数,a >0,b <0,且|a |<|b |,则a ,b ,-a ,-b 的关系是( ) A. b <-a <-b <a B. b <-b <-a <a C. b <-a <a <-b D. -a <-b <b <a5.用一个平面去截一个正方体,截面不可能是( )A .梯形 B.五边形 C.六边形 D.七边形6.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多..可由多少个这样的正方体组成?( ) A. 12个 B .13个C .14个D .18个7.在-(-8),-7 ,-0 ,(-2)2 这四个数中,负数有( ) A.1 个 B.2 个 C. 3 个 D. 4 个8.如图所示,圆的周长为4 个单位长度.在圆的4 等分点处标上0,1,2,3,先让圆周上的0 对应的数与数轴的数-1 所对应的点重合,再让数轴按逆时针方向绕在该圆上.那么数轴上的-2017 将与圆周上的数字( )重合. A.0 B.1 C.2 D.3 9.下列说法正确的有( )个 (1)xab 2,4y x 都是单项式;(2)多项式2x 3-x 2y 2+y 3+45的次数是五次四项式;(3)多项式3m 2n 2-2xy -5m -7有四项,分别为3m 2n 2,-2xy ,-5m , 7;从正面看 从左面看(4)24x 3是7次单项式;(5)单项式a 的指数和系数均为1 . A.1 B.2 C.3 D.4 10.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2018次后,骰子朝下一面的点数是( )A.2B.3C.4D.5 二、填空题(3分×8=24分)11.薄薄的硬币在桌面上旋转时,看上去像球,这说明了 12.温度由t ℃下降5℃后是 ℃13.在数轴上-6.1和5.9之间的所有整数之和是 14.下列各式中,3a 2+4b , 0 , -a , am +1 , -xy ,x 1 ,a x -1 ,2yx + 单项式有 个,多项式有 个 15.如果x -y =-1,|y |=1,则x ÷y =16.某市出租车的收费标准为:起步价7.5元,超过3千米后每千米1.2元,则某人乘坐出租车行驶了x (x > 3)千米应付车费 元 17.若01<<-a ,则2,1,a aa 的大小关系是 (用“<”号连接) 18.若(k -5)x2-k y 3是关于x ,y 的六次单项式,则k =三、解答题(共66分)19.计算题(每题4分,共16分) (1)32)2()2.0511(2-÷⨯--- (2)(-12)×(21-32+65-43)(简化计算)(3)-19189×5 (简化计算) (4)18.0)35()5(124-+-⨯-÷-20.若25(6)0x y -+-=,z 2=100,求2008()x y -+z 的值(本题8分)21.如图,一辆货车从超市出发,向东走了3 k m 到达小彬家,继续走了1.5 k m 到达小颖家,然后向西走了9.5 k m 到达小明家,最后回到超市. (本题8分)(1)小明家在超市的什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 k m ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗? (2)小明家距小彬家多远? (3)货车一共行驶了多少千米?22.把棱长为1cm 的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面) (本题8 分)(1)该几何体中有 小正方体?(2)其中两面被涂到的有 个小正方体; 没被涂到的有 个小正方体; (3)求出涂上颜色部分的总面积.23.在数轴上表示下列各数,并用“<”连接: (本题8分) 绝对值最小的数,121,倒数等于本身的数,-5.2 ,平方是16的数24.人在运动时心跳速率和人的年龄有关.若用a 表示一个人的年龄,用b 表示人在运动时能承受的每分钟心跳的最高次数,则b =0.8(220-a ).(本题8分)(1)正常情况时,一个14岁的少年能承受的每分钟心跳的最高次数是多少? (2)一个45岁的人运动时10秒心跳的次数为22次,请问他有危险吗?为什么?25.某商场销售西装每套定价1000元,领带每条定价200元.国庆节优惠方案如下. 方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.若小王到该商场购买西装20套,领带x条(x>20).(本题10分)(1)该客户按方案一购买需付款元;该客户按方案二购买需付款元.(用含x的代数式表示)(2)当x=30时,通过计算写出一种更为省钱的方案。