三输入与或门设计
- 格式:docx
- 大小:224.77 KB
- 文档页数:14
目录一、电路逻辑功能 (2)1.1、电路设计流程 (2)1.2、真值表与表达式 (2)1.3、电路逻辑图 (3)1.4、线路图 (3)1.5、ERC验证及T-Spice仿真 (4)二、版图设计 (6)2.1、总体版图设计流程 (6)2.2、总体版图以及DRC验证 (7)2.3、三输入异或门T-Spice仿真 (8)三、三输入异或门版图设计的LVS验证 (9)四、结论 (10)一、电路逻辑功能1.1、电路设计流程1.2、真值表与表达式表达式:Y =A⊕B⊕C=C B A+C B A+C B A+ABC真值表:A B C Y F0 0 0 0 1 0 0 1 1 0 0 1 0 1 00 1 1 0 11 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 01.3、电路逻辑图1.4、线路图1.5、ERC验证及T-Spice仿真二、版图设计2.1、总体版图设计流程操作步骤:1.新建文件夹:在电脑E 盘新建文件夹,文件夹名为XOR。
2.打开L-Edit 软件:在桌面上双击L-Edit v13.0 快捷键,打开L-Edit v13.0 软件。
3.另存新文件:选择File——Save As 命令,打开“另存为”对话框,在“保存在”下拉列表框中选择存储目录(存储在刚才新建的文件夹XOR中),在“文件名”文本框中输入文件名称,例如:XOR。
4.取代设定:选择File——Replace Setup 命令,单击出现的对话框的From file 下拉列表右侧的Browser按钮,选择d:\My Documents\Tanner EDA\Tanner Toolsv13.0\L-Edit and LVS\SPR\Lights\Layout\lights.tdb文件,如图所示,再单击OK 按钮。
接着出现一个警告对话框,按确定按钮,就可将lights.tdb文件的设定选择性应用在目前编辑的文件,包括格点设定、图层设定等。
三输入或门课程设计一、教学目标本节课的教学目标是让学生掌握“三输入或门”的基本原理和电路实现。
具体包括:1.知识目标:学生能够理解三输入或门的电路结构,掌握其真值表和布尔表达式,了解其在数字电路中的应用。
2.技能目标:学生能够运用三输入或门的设计方法,完成简单的数字电路设计。
3.情感态度价值观目标:培养学生对电子技术的兴趣,增强其创新意识和实践能力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.三输入或门的基本原理:介绍三输入或门的电路结构、真值表和布尔表达式。
2.三输入或门的设计方法:讲解如何设计三输入或门电路,以及其在数字电路中的应用。
3.实践操作:让学生通过实验,亲自搭建三输入或门电路,加深对理论知识的理解。
三、教学方法为了达到本节课的教学目标,将采用以下几种教学方法:1.讲授法:讲解三输入或门的基本原理和设计方法。
2.讨论法:引导学生讨论三输入或门在实际应用中的优势和局限。
3.实验法:让学生通过实验,动手搭建三输入或门电路,提高实践能力。
四、教学资源为了支持本节课的教学内容和教学方法,将准备以下教学资源:1.教材:提供相关章节,让学生预习和复习。
2.参考书:提供电子技术的相关资料,帮助学生深入了解三输入或门。
3.多媒体资料:制作PPT和视频,直观展示三输入或门的电路结构和原理。
4.实验设备:准备三输入或门电路的实验器材,让学生动手实践。
五、教学评估为了全面、客观地评估学生对“三输入或门”知识的学习成果,将采用以下评估方式:1.平时表现:观察学生在课堂上的参与程度、提问回答等情况,了解其对知识的理解程度。
2.作业:布置相关练习题,评估学生对知识的掌握情况。
3.考试:设置期末考试,包括选择题、填空题、计算题和应用题等,全面测试学生对“三输入或门”知识的掌握程度。
六、教学安排本节课的教学安排如下:1.教学进度:按照教材的章节安排,合理安排每个阶段的教学内容。
2.教学时间:安排在上课时间,确保学生能够集中精力学习。
院课程设计三输入与门设计学生姓名:学院:专业班级:专业课程:集成电路设计基础指导教师:年月日目录一、概述 (2)二、设计要求 (3)三、设计原理 (3)四、设计思路 (4)4.1非门电路 (4)4.2三输入与非门电路 (4)五、三输入与门电路设计 (6)5.1原理图设计 (6)5.2仿真分析 (6)六、版图设计 (8)6.1 PMOS管版图设计 (8)6.2 NMOS管版图设计 (10)6.3与门版图设计 (11)七、LVS比对 (15)八、心得体会 (16)参考文献 (17)一、概述随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。
而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。
随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。
集成电路有两种。
一种是模拟集成电路。
另一种是数字集成电路。
从制造工艺上可以将目前使用的数字集成电路分为双极型、单极型和混合型三种。
而在数字集成电路中应用最广泛的就是CMOS集成电路,CMOS集成电路出现于20世纪60年代后期,随着其制造工艺的不断进步,CMOS电路逐渐成为当前集成电路的主流产品。
本文便是讨论的CMOS与门电路的设计仿真及版图等的设计。
版图(Layout)是集成电路设计者将设计并模拟优化后的电路转化成的一系列几何图形,包含了集成电路尺寸大小、各层拓扑定义等有关器件的所有物理信息。
集成电路制造厂家根据版图来制造掩膜。
版图的设计有特定的规则,这些规则是集成电路制造厂家根据自己的工艺特点而制定的。
不同的工艺,有不同的设计规则。
设计者只有得到了厂家提供的规则以后,才能开始设计。
版图在设计的过程中要进行定期的检查,避免错误的积累而导致难以修改。
很多集成电路的设计软件都有设计版图的功能,L-Edit软件的的版图设计软件帮助设计者在图形方式下绘制版图。
院课程设计三输入与门设计学生姓名:学院:专业班级:专业课程:集成电路设计基础指导教师:年月日目录一、概述 (1)二、设计要求 (3)三、设计原理 (3)四、设计思路 (4)4.1非门电路 (4)4.2三输入与非门电路 (4)五、三输入与门电路设计 (6)5.1原理图设计 (6)5.2仿真分析 (6)六、版图设计 (8)6.1 PMOS管版图设计 (8)6.2 NMOS管版图设计 (10)6.3与门版图设计 (11)七、LVS比对 (15)八、心得体会 (16)参考文献 (17)一、概述随着微电子技术的快速发展,人们生活水平不断提高,使得科学技术已融入到社会生活中每一个方面。
而对于现代信息产业和信息社会的基础来讲,集成电路是改造和提升传统产业的核心技术。
随着全球信息化、网络化和知识经济浪潮的到来,集成电路产业的地位越来越重要,它已成为事关国民经济、国防建设、人民生活和信息安全的基础性、战略性产业。
集成电路有两种。
一种是模拟集成电路。
另一种是数字集成电路。
从制造工艺上可以将目前使用的数字集成电路分为双极型、单极型和混合型三种。
而在数字集成电路中应用最广泛的就是CMOS集成电路,CMOS集成电路出现于20世纪60年代后期,随着其制造工艺的不断进步,CMOS电路逐渐成为当前集成电路的主流产品。
本文便是讨论的CMOS与门电路的设计仿真及版图等的设计。
版图(Layout)是集成电路设计者将设计并模拟优化后的电路转化成的一系列几何图形,包含了集成电路尺寸大小、各层拓扑定义等有关器件的所有物理信息。
集成电路制造厂家根据版图来制造掩膜。
版图的设计有特定的规则,这些规则是集成电路制造厂家根据自己的工艺特点而制定的。
不同的工艺,有不同的设计规则。
设计者只有得到了厂家提供的规则以后,才能开始设计。
版图在设计的过程中要进行定期的检查,避免错误的积累而导致难以修改。
很多集成电路的设计软件都有设计版图的功能,L-Edit软件的的版图设计软件帮助设计者在图形方式下绘制版图。
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 三输入或非门版图设计目录1.绪论 .............................................................................................. 错误!未定义书签。
1.1版图设计基础知识.............................. 错误!未定义书签。
1.2版图设计方法 01.3设计目标 (2)2.三输入或非门电路 (3)2.1三输入或非门电路结构 (3)2.2三输入或非门电路电路仿真 (4)2.3三输入或非门电路的版图绘制 (5)2.4三输入或非门电路的版图电路仿真 (6)2.5LVS检查匹配 (7)总结 (8)参考文献 (9)附录一:原理图网表 (10)附录二:版图网表 (10)1 绪论1.1 版图设计基础知识集成电路从60年代开始,经历了小规模集成,中规模集成,大规模集成,到目前的超大规模集成。
单个芯片上已经可以制作含几百万个晶体管的一个完整的数字系统或数模混合的电子系统。
在整个设计过程中,版图(layout)设计或者称作物理设计(physical design)是其中重要的一环。
他是把每个原件的电路表示转换成集合表示,同时,元件间连接的线网也被转换成几何连线图形[1]。
对于复杂的版图设计,一般把版图设计分成若干个子步骤进行:划分为了将处理问题的规模缩小,通常把整个电路划分成若干个模块。
版图规划和布局是为了每个模块和整个芯片选择一个好的布图方案。
布线完成模块间的互连,并进一步优化布线结果。
压缩是布线完成后的优化处理过程,他试图进一步减小芯片的面积。
1.2 版图设计方法可以从不同角度对版图设计方法进行分类。
如果按设计自动化程度来分,可将版图设计方法分成手工设计和自动设计2大类。
如果按照对布局布线位置的限制和布局模块的限制来分,则可把设计方法分成全定制(fullcustom)和半定制(semicustom)2大类。
《集成电路工艺与版图设计》课堂作业班级:电子科学与技术01班姓名:曾海学号:201031722、3、4输入异或门版图设计如下:一、二输入异或门:(1)原理图:<2>L-edit中进行设计的如下二输入或非门版图<3>提取后在T-SPICE中进行参数及输入输出设置如下:VA A GND BIT ({1011} pw=20N lt=10N ht=10N on=5 off=0)VB B GND BIT ({0010} pw=20N lt=10N ht=10N on=5 off=0)Vdd Vdd GND 5.tran 10N 100N.print tran v(OUT) v(A) v(B)<4>在W-EDIT中得到仿真波形图:二、三输入或非门<1>三输入异或门版图<3>参数及输入输出设置VA A GND BIT ({1011} pw=20N lt=10N ht=10N on=5 off=0) VB B GND BIT ({0010} pw=20N lt=10N ht=10N on=5 off=0)Vdd Vdd GND 5.tran 10N 100N.print tran v(OUT) v(A) v(B)<3>仿真图三、四输入或非门<1>版图设计<2>参数及输入输设置Vdd Vdd GND 5VA A GND BIT ({1001} pw=20N lt=10N ht=10N o n=5 off=0)VB B GND BIT ({1010} pw=20N lt=10N ht=10N o n=5 off=0)VC C GND BIT ({1011} pw=20N lt=10N ht=10N o n=5 off=0)VD D GND BIT ({1011} pw=20N lt=10N ht=10N o n=5 off=0).tran 20N 100N.print tran v(OUT) v(A) v(B) v(C) v(D)<3>仿真图4、版图设计总结(1)本次设计中,由仿真图可以看出,仿真波形不是标准的方波图形,而是有相应的误差,可能是由于版图的设计中,布线或器件的放置不合理导致的。
三输入与或门课程设计一、课程目标知识目标:1. 理解三输入与或门的基本概念和逻辑功能;2. 学会使用三输入与或门进行简单的逻辑组合设计;3. 掌握三输入与或门的真值表及其应用。
技能目标:1. 能够正确绘制三输入与或门的电路图;2. 能够运用三输入与或门进行基本的逻辑分析;3. 能够解决实际问题中涉及三输入与或门的逻辑设计。
情感态度价值观目标:1. 培养学生对数字电路的兴趣,激发探索精神;2. 培养学生团队协作意识,提高沟通与交流能力;3. 增强学生的逻辑思维能力和问题解决能力。
分析课程性质、学生特点和教学要求,本课程旨在使学生在理解三输入与或门的基础上,掌握其应用技巧,培养逻辑思维和实际操作能力。
课程目标具体、可衡量,以便学生和教师在教学过程中能够明确预期成果,为后续的教学设计和评估提供依据。
二、教学内容本章节教学内容主要包括以下三个方面:1. 三输入与或门基本概念:- 与或门定义及其逻辑符号;- 三输入与或门的逻辑功能及其表达式;- 真值表及其与逻辑功能的对应关系。
2. 三输入与或门的电路设计与应用:- 绘制三输入与或门的电路图;- 利用三输入与或门进行逻辑组合设计;- 实际应用案例分析。
3. 逻辑分析与问题解决:- 使用三输入与或门进行逻辑分析;- 解决实际问题中的逻辑设计问题;- 探讨三输入与或门在数字电路中的应用。
教学内容按照以下进度安排:1. 引言与基本概念(1课时)2. 电路设计与绘制(1课时)3. 逻辑分析与问题解决(1课时)4. 实际应用案例分析(1课时)本章节教学内容与教材中第三章“逻辑门电路”相关,涉及三输入与或门的原理、设计与应用。
通过本章节的学习,学生能够系统地掌握三输入与或门的相关知识,为后续学习更复杂的数字电路打下基础。
三、教学方法针对本章节内容,采用以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:- 通过生动的语言和形象的比喻,讲解三输入与或门的基本概念和逻辑功能;- 结合教材插图,阐述三输入与或门的电路原理和符号表示;- 通过讲解真值表,使学生理解与或门在实际应用中的作用。
三输入与非门课程设计一、课程目标知识目标:1. 理解三输入与非门的基本概念、逻辑功能及其在数字电路中的应用;2. 掌握三输入与非门的电路符号、真值表及其逻辑表达式;3. 学会分析三输入与非门与其他逻辑门的关系,如与门、非门、或门等。
技能目标:1. 能够正确绘制三输入与非门的电路图,并运用相关知识进行简单逻辑电路设计;2. 能够运用真值表、逻辑表达式等方法分析三输入与非门电路的工作原理;3. 能够运用所学知识解决实际问题,如设计简单的数字电路。
情感态度价值观目标:1. 培养学生对数字电路学习的兴趣,激发探究精神;2. 培养学生团队合作意识,学会在小组讨论中倾听他人意见,共同解决问题;3. 培养学生严谨、细致的学习态度,养成良好的学习习惯。
课程性质:本课程属于电子技术基础课程,以理论教学与实践操作相结合的方式进行。
学生特点:学生为初中生,具备一定的物理知识和逻辑思维能力,对电子技术有一定的好奇心。
教学要求:结合学生特点,注重启发式教学,引导学生主动探究、动手实践,提高学生的逻辑思维能力和实际操作能力。
将课程目标分解为具体的学习成果,以便于后续教学设计和评估。
二、教学内容1. 引入三输入与非门的概念,讲解其在数字电路中的作用;2. 讲解三输入与非门的电路符号、真值表、逻辑表达式及其相互转换方法;3. 分析三输入与非门与其他逻辑门(与门、非门、或门等)的逻辑关系;4. 介绍三输入与非门在实际数字电路中的应用实例;5. 实践操作:使用面包板搭建三输入与非门电路,观察并分析电路工作原理;6. 练习:设计简单的逻辑电路,利用三输入与非门实现特定功能;7. 课堂小结:总结三输入与非门的特点、应用及其在数字电路中的重要性。
教学内容安排与进度:第一课时:引入概念、电路符号、真值表及逻辑表达式;第二课时:逻辑关系分析、应用实例讲解;第三课时:实践操作,搭建三输入与非门电路;第四课时:练习,设计简单逻辑电路;第五课时:课堂小结,巩固所学知识。
《集成电路工艺与版图设计》课堂作业班级:电子科学与技术01班姓名:曾海学号:201031722、3、4输入异或门版图设计如下:一、二输入异或门:(1)原理图:<2>L-edit中进行设计的如下二输入或非门版图<3>提取后在T-SPICE中进行参数及输入输出设置如下:VA A GND BIT ({1011} pw=20N lt=10N ht=10N on=5 off=0)VB B GND BIT ({0010} pw=20N lt=10N ht=10N on=5 off=0)Vdd Vdd GND 5.tran 10N 100N.print tran v(OUT) v(A) v(B)<4>在W-EDIT中得到仿真波形图:二、三输入或非门<1>三输入异或门版图<3>参数及输入输出设置VA A GND BIT ({1011} pw=20N lt=10N ht=10N on=5 off=0) VB B GND BIT ({0010} pw=20N lt=10N ht=10N on=5 off=0)Vdd Vdd GND 5.tran 10N 100N.print tran v(OUT) v(A) v(B)<3>仿真图三、四输入或非门<1>版图设计<2>参数及输入输设置Vdd Vdd GND 5VA A GND BIT ({1001} pw=20N lt=10N ht=10N on=5 off= 0)VB B GND BIT ({1010} pw=20N lt=10N ht=10N on=5 off= 0)VC C GND BIT ({1011} pw=20N lt=10N ht=10N on=5 off= 0)VD D GND BIT ({1011} pw=20N lt=10N ht=10N on=5 off= 0).tran 20N 100N.print tran v(OUT) v(A) v(B) v(C) v(D)<3>仿真图4、版图设计总结(1)本次设计中,由仿真图可以看出,仿真波形不是标准的方波图形,而是有相应的误差,可能是由于版图的设计中,布线或器件的放置不合理导致的。
《集成电路版图设计》实验(一):三输入与或门设计一.设计目的1、掌握使用Ledit软件绘制基本的元器件单元版图。
2、掌握数字电路基本单元CMOS版图的绘制方法,并利用CMOS版图设计简单的门电路,然后对其进行基本的DRC检查。
3、学习标准逻辑单元的版图绘制。
二.设计原理(一)设计步骤:1、设计参数设置:包括工艺参数设置(理解Technology Unit和Technology Setup的关系)、栅格设置(理解显示栅格、鼠标栅格和定位栅格)、选择参数设置等2、布局布线:安排各个晶体管、基本单元、复杂单元在芯片上的位置,并且设计走线,实现管间、门间、单元间的互连。
4、尺寸确定:确定晶体管尺寸(W、L)、互连尺寸(连线宽度)以及晶体管与互连之间的相对尺寸等(此次实验可以忽略)。
5、版图编辑(Layout Editor ):规定各个工艺层上图形的形状、尺寸和位置。
6、布局布线(Place and route ):给出版图的整体规划和各图形间的连接。
7、版图检查(Layout Check ):设计规则检验(DRC,Design Rule Check),能够找到DRC规则在版图的应用点。
(二)设计目标:1、满足电路功能、性能指标、质量要求。
2、尽可能达到面积的最小化,以提高集成度,降低成本。
3、尽可能缩短连线,以减少复杂度,缩短延时、改善可靠性.三.设计内容用CMOS工艺设计一个三输入与或门F=A+B﹡C,进行基本的DRC检查。
四。
评价标准本次的实验作业旨在让同学通过亲身实践,对所学的CMOS集成电路设计有一个更系统更全面的了解,并且通过软件的使用,达到将来参与电路设计工作的的入门练习作用.五.部分设计规则描述设计规则是设计人员与工艺人员之间的接口与“协议”, 版图设计必须无条件的服从的准则,可以极大地避免由于短路、断路造成的电路失效和容差以及寄生效应引起的性能劣化。
设计规则主要包括几何规则、电学规则以及走线规则。
基于Cadence 平台三输入或非门的设计设计目的:1、熟悉candence 软件,并掌握其各种工具的使用方法。
2、用cadence 设计一个三输入或非门,并画出仿真电路、版图、并验证其特性。
一、设计背景1.cadence 简介:Cadence 公司的电子设计自动化(Electronic Design Automation )产品涵盖了电子设计的整个流程,包括系统级设计,功能验证,IC 综合及布局布线,模拟、混合信号及射频IC 设计,全定制 集成电路设计,IC 物理验证,PCB 设计和硬件仿真建模等。
本次设计是基于cadence 工具的三输入或非门的电路和版图设计。
2.三输入或非门:a.逻辑表达式:b.逻辑符号:c.真值表:CB A Y ++=二、三输入或非门电路设计和逻辑仿真进入红帽4系统,打开终端输入cd Artist446进入Artist446目录,输入icms &命令运行Cadence软件。
在打开的CIW的窗口选择tools →Library Manager建立一个新的库文件myLib,在创建一个新的cellview1、在schematic窗口中选择Tools →Analog Evironment,打开模拟窗口1、setup →simulator /directory/host…,在弹出窗口中确认simulator项是spectre.单击ok。
2、setup →Model Library setup,做如下输入,然后add。
3、选择Analyses →Choose,在坦诚的窗口中吧stop time设为50u4、选择outputs →save all.5、选择outputs →to be plotted →select on schematic,然后在schematic窗口中依次选择A、B、C、Y为输入和输出,选择之后按ESC。
6、选择完毕后窗口如下图所示7、选择Simulation →Netlist →Create8、选择Simulation →Run三、版图设计:登录Linux系统,启动终端,cd Layout进入版图目录,然后以layoutPlus &运行版图设计软件,进行版图设计。
三元逻辑电路三元逻辑电路是一种基本的电子电路,用于处理三种逻辑值的输入和输出。
在计算机科学和电子工程领域,三元逻辑电路是一种重要的组成部分,被广泛应用于数字电路和逻辑门设计中。
本文将介绍三元逻辑电路的基本原理、应用以及设计方法。
一、三元逻辑电路的基本原理三元逻辑电路是一种能够处理三种逻辑值(通常表示为0、1和2)的电路。
与传统的二元逻辑电路不同,三元逻辑电路可以在输入和输出中表示更多的状态。
它由多个逻辑门组成,每个逻辑门都能够根据输入的逻辑值产生相应的输出。
三元逻辑电路的基本元件包括与门、或门、非门和异或门等。
与门用于实现逻辑与操作,只有当所有输入都为1时,输出才为1;或门用于实现逻辑或操作,只要有一个输入为1,输出就为1;非门用于实现逻辑非操作,将输入取反;异或门用于实现逻辑异或操作,只有当输入的逻辑值不同时,输出才为1。
三元逻辑电路在数字电路和逻辑门设计中有广泛的应用。
它可以用来实现多位计数器、数据选择器、编码器和解码器等。
三元逻辑电路还可以用于处理模糊逻辑和多值逻辑系统中的问题。
在计算机系统中,三元逻辑电路可以用来处理多位数字和多种状态的输入。
例如,在某些并行计算机中,三元逻辑电路可以用来处理三种不同的操作状态,分别对应于运算、传输和控制。
这种设计可以提高计算机系统的并行性和处理能力。
三、三元逻辑电路的设计方法三元逻辑电路的设计方法与二元逻辑电路类似,但需要考虑更多的输入和输出状态。
在设计三元逻辑电路时,需要确定输入和输出的逻辑值,并根据逻辑表达式确定逻辑门的连接方式和逻辑功能。
设计三元逻辑电路的一种常见方法是使用真值表或卡诺图。
真值表列出了所有可能的输入组合及其对应的输出值,可以根据真值表确定逻辑门的输入和输出关系。
卡诺图则可以用于简化逻辑表达式,减少逻辑门的数量和延迟。
还可以使用硬件描述语言(HDL)来设计和模拟三元逻辑电路。
HDL 可以描述电路的结构和功能,并通过仿真和验证来验证设计的正确性。
三人表决器的组合逻辑电路设计
三人表决器的设计需要考虑到三个输入信号的组合逻辑,以确
定最终的输出。
通常情况下,三人表决器的输出是根据三个输入信
号中的大多数来确定的。
例如,如果有两个输入信号为“1”,一个
输入信号为“0”,那么输出信号将为“1”。
这种设计可以确保在
三个输入信号中获得多数投票的决策。
为了实现这种组合逻辑,我们可以使用逻辑门来设计三人表决器。
最常用的逻辑门是“与门”和“或门”。
与门用于实现多个输
入信号全部为“1”时输出为“1”的逻辑功能,而或门用于实现多
个输入信号中有一个为“1”时输出为“1”的逻辑功能。
在三人表决器的设计中,我们可以使用三个与门和一个或门来
实现。
首先,将三个输入信号分别连接到三个不同的与门的输入端,然后将这三个与门的输出连接到一个或门的输入端。
最终的输出信
号将由或门产生,根据多数投票的原则确定。
除了基本的与门和或门之外,还可以使用其他逻辑门来实现三
人表决器,例如“与非门”或“或非门”。
这取决于具体的设计需
求和电路的复杂程度。
总的来说,三人表决器的组合逻辑电路设计是一个有趣且实用的电子设计问题。
通过合理地选择逻辑门和连接方式,我们可以设计出一个可靠的三人表决器,用于各种应用场景中的投票和决策。
这种设计不仅可以帮助我们理解逻辑电路的基本原理,还可以在实际应用中发挥重要作用。
1绪论1。
1 设计背景随着集成电路技术的日益进步,使得计算机辅助设计(CAD)技术已成为电路设计师不可缺少的有力工具[1].国内外电子线路CAD软件的相继推出与版本更新,使CAD技术的应用渗透到电子线路与系统设计的各个领域,如芯片版图的绘制、电路的绘图、模拟电路仿真、逻辑电路仿真、优化设计、印刷电路板的布线等。
CAD技术的发展使得电子线路设计的速度、质量和精度得以保证。
在众多的CAD 工具软件中,Spice程序是精度最高、最受欢迎的软件工具,tanner是用来IC 版图绘制软件,许多EDA系统软件的电路模拟部分是应用Spice程序来完成的,而tanner软件是一款学习阶段应用的版图绘制软件,对于初学者是一个上手快,操作简单的EDA软件。
Tanner集成电路设计软件是由Tanner Research 公司开发的基于Windows 平台的用于集成电路设计的工具软件.该软件功能十分强大,易学易用,包括S-Edit,T-Spice,W-Edit,L—Edit与LVS,从电路设计、分析模拟到电路布局一应俱全。
其中的L—Edit版图编辑器在国内应用广泛,具有很高知名度。
L—Edit Pro是Tanner EDA软件公司所出品的一个IC设计和验证的高性能软件系统模块,具有高效率,交互式等特点,强大而且完善的功能包括从IC设计到输出,以及最后的加工服务,完全可以媲美百万美元级的IC设计软件。
L-Edit Pro包含IC设计编辑器(Layout Editor)、自动布线系统(Standard Cell Place & Route)、线上设计规则检查器(DRC)、组件特性提取器(Device Extractor)、设计布局与电路netlist的比较器(LVS)、CMOS Library、Marco Library,这些模块组成了一个完整的IC设计与验证解决方案[2]。
L—Edit Pro丰富完善的功能为每个IC设计者和生产商提供了快速、易用、精确的设计系统。
三输入CMOS异或门
版图设计
学院:
专业:集成电路
姓名:何 宝 华
学号: vbop25@ __
课程名称: VLSI 导论
日期:2011年 12月16日
1名称
三输入CMOS异或门版图设计
2目的
绘制三输入一输出CMOS异或门的版图设计,并对其进行DRC检测和T-Spice模拟仿真。
3设备和工具
PC计算机一台,Tanner软件。
4版图设计要求
(1)0.25u工艺
(2)3输入xor
(3)原理图
(4)原理图有spice仿真
(5)版图
(6)LVS
(7)有封皮
5 S-Edit电路图
电路图1
电路图2
6 T-Spice模拟
7 T-Spice仿真
8 真值表
0011
0101
10
9 验证结果
结合T-Spice仿真图和真值表,表明电路图设计是正确的。
10 L-Edit版图设计
11 DRC检测
12 LVS比较
13 结论
三输入一输出异或门版图设计是正确的。
实验二三输入与门、三输入或门一、实验目的1、理解简单组合电路设计方法。
2、掌握基本门电路的应用。
二、实验原理三输入与门、三输入或门的真值表略。
输出分别为:out=a&b&c; out=a^b^c;三、实验连线1、将EP2C5适配板左下角的JTAG用十芯排线和万用下载区左下角的SOPC JTAG 口连接起来,万用下载区右下角的电源开关拨到SOPC下载的一边2、请将JPLED1短路帽右插,JPLED的短路帽全部上插。
3、请将JP103的短路帽全部插上。
四、实验步骤按照步骤三正确连线,完成项目的建立,文件的命名,文件的编辑,语法检查,引脚分配,编译,下载。
引脚锁定见图:图4-1五、实验代码三输入与门参考代码:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY triple_input ISPORT (A :IN STD_LOGIC;B :IN STD_LOGIC;C :IN STD_LOGIC;OUTA :OUT STD_LOGIC);END triple_input;ARCHITECTURE ADO OF triple_input ISBEGINOUTA<= A AND B AND C;END ADO;波形如下:图5-1三输入或门参考代码:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY triple_input ISPORT (A :IN STD_LOGIC;B :IN STD_LOGIC;C :IN STD_LOGIC;OUTA :OUT STD_LOGIC);END triple_input;ARCHITECTURE ADO OF triple_input ISBEGINOUTA<= A OR B OR C;END ADO;波形如下:图5-2六、实验现象对应真值表,以开关SW1,SW2,SW3 作为三输入与门或者三输入或门输入信号对应a,b,c,以D101为输出信号,当结果为0时彩色LED灯熄灭,当结果1时彩灯点亮。
《集成电路版图设计》实验(一):三输入与或门设计一.设计目的1、掌握使用Ledit软件绘制基本的元器件单元版图。
2、掌握数字电路基本单元CMOS版图的绘制方法,并利用CMOS版图设计简单的门电路,然后对其进行基本的DRC检查。
3、学习标准逻辑单元的版图绘制。
二.设计原理(一)设计步骤:1、设计参数设置:包括工艺参数设置(理解 Technology Unit 和Technology Setup的关系)、栅格设置(理解显示栅格、鼠标栅格和定位栅格)、选择参数设置等2、布局布线:安排各个晶体管、基本单元、复杂单元在芯片上的位置,并且设计走线,实现管间、门间、单元间的互连。
4、尺寸确定:确定晶体管尺寸(W、L)、互连尺寸(连线宽度)以及晶体管与互连之间的相对尺寸等(此次实验可以忽略)。
5、版图编辑(Layout Editor ):规定各个工艺层上图形的形状、尺寸和位置。
6、布局布线(Place and route ):给出版图的整体规划和各图形间的连接。
7、版图检查(Layout Check ):设计规则检验(DRC,Design RuleCheck),能够找到DRC规则在版图的应用点。
(二)设计目标:1、满足电路功能、性能指标、质量要求。
2、尽可能达到面积的最小化,以提高集成度,降低成本。
3、尽可能缩短连线,以减少复杂度,缩短延时、改善可靠性。
三.设计内容用CMOS工艺设计一个三输入与或门F=A+B﹡C,进行基本的DRC 检查。
四.评价标准本次的实验作业旨在让同学通过亲身实践,对所学的CMOS集成电路设计有一个更系统更全面的了解,并且通过软件的使用,达到将来参与电路设计工作的的入门练习作用。
五.部分设计规则描述设计规则是设计人员与工艺人员之间的接口与“协议”,版图设计必须无条件的服从的准则,可以极大地避免由于短路、断路造成的电路失效和容差以及寄生效应引起的性能劣化。
设计规则主要包括几何规则、电学规则以及走线规则。
其中几何设计规则通常有两类:①微米准则:用微米表示版图规则中诸如最小特征尺寸和最小允许间隔的绝对尺寸。
②λ准则:用单一参数λ表示版图规则,所有的几何尺寸都与λ成线性比例。
设计规则分类如下:1.拓扑设计规则(绝对值):最小宽度、最小间距、最短露头、离周边最短距离。
2.λ设计规则(相对值):最小宽度w=mλ、最小间距s=nλ、最短露头t=lλ、离周边最短距离d=hλ(λ由IC制造厂提供,与具体的工艺类型有关,m、n、l、h为比例因子,与图形类形有关)。
①宽度规则(width rule):宽度指封闭几何图形的内边之间的距离。
图1.宽度规则②间距规则(Separation rule):间距指各几何图形外边界之间的距离。
同一工艺层的间距(spacing) 不同工艺层的间距(separation)图2.间距规则③交叠规则(Overlap rule)交叠有两种形式:(1)一几何图形内边界到另一图形的内边界长度(intersect)(2)一几何图形外边界到另一图形的内边界长度(enclosure)Intersect enclosure图3.交叠规则④因为物理结构直接决定晶体管的跨导、寄生电容和电阻,以及用于特定功能的硅区,所以说物理版图的设计与整个电路的性能(面积、速度、功耗)关系密切。
另一方面,逻辑门精密的版图设计需要花费很多的时间与精力。
这在按照严格的限制对电路的面积和性能进行优化时是非常需要的。
但是,对大多数数字VLSI电路的设计来说,自动版图生成是更好的选择(如用标准单元库,计算机辅助布局布线)。
为判断物理规范和限制,VLSI设计人员对物理掩膜版图工艺必须有很好的了解。
因为物理结构直接决定晶体管的跨导、寄生电容和电阻,以及用于特定功能的硅区,所以说物理版图的设计与整个电路的性能(面积、速度、功耗)关系密切。
CMOS逻辑门掩膜版图的设计是一个不断反复的过程。
首先是电路布局(实现预期的逻辑功能)和晶体管尺寸初始化(实现期望的性能规范)。
绘制出一个简单的电路版图,在图上显示出晶体管位置、管间的局部互连和接触孔的位置。
⑤部分MOS版图设计规则有了合适的版图结构后,就可以根据版图设计规则利用版图编辑工具绘出掩膜层。
这个过程可能需要多次反复以符合全部的设计规则,但基本布局不应有太大的改变。
进行DRC(设计规则检查)之后,就在完成的版图上进行电路参数提取来决定实际的晶体管尺寸,更重要的是确定每个节点的寄生电容。
提取步骤完成后,提取工具会自动生成一个详细的SPICE输入文件。
在就可以使用提取的网表通过SPICE 仿真确定电路的实际性能,如果仿真出的电路性能(如瞬态响应时间或功耗)与期望值不相符,就必须对版图进行修改并重复上面的过程。
版图修改主要是对晶体管尺寸中的宽长比进行修改。
这是因为管子的宽长比决定器件的跨导和寄生源极和漏极电容。
为了减小寄生效应,设计者也必须考虑对电路结构进行局部甚至全部的修改。
⑥版图设计流程图:图四. 版图设计流程图六.设计过程分析(一)绘制版图前分析:① P型MOS管必须放在n阱区。
②PMOS的有源区、n阱和n+区的最小重叠区决定n阱的最小尺寸。
③n+有源区同n阱间的最小间距决定了nMOS管和pMOS管的距离。
④通常,将nMOS管和pMOS管的多晶硅栅极对准,这样可以由最小长度的多晶硅线条组成栅极连线。
在一般版图中要避免出现长的多晶硅连接的原因在于多晶硅线条过高的寄生电阻和寄生电容会导致明显的RC延时。
⑤版图的最后一步是在金属中形成输出节点VDD和GND接触孔间的局部互连。
⑥版图中的金属线尺寸通常由金属最小宽度和最小金属间距(同一层上的两条相邻线间)决定。
⑦为了得到合适的偏置,n阱区必须也有一个VDD接触孔。
每当有源区被nSelect包围时就形成n+,每当有源区被pSelect包围时就形成p+。
每当多晶穿越n+区时就形成nFET ,每当多晶穿越p+区时就形成pFET 。
若无接触孔(有源区接触、多晶接触、通孔),n+、p+、多晶硅、各层金属即使相互交叉,也不会形成电连接。
设计步骤大体和COMS反相器差不多,只是过比CMOS反相器复杂,需注意各层之间的连接关系。
(二)电路图与欧拉路径图五.欧拉路径图示图六.F=A+BXC电路图根据电路图和画的欧拉路径图,将输入选择为C、B、A的顺序,由图五的欧拉路径图,可以得到有源区连续的版图,节约版图面积。
(三)三输入与或门版图绘制的步骤概述1、打开ledit软件,新建new layout,通过file中的replace setup 选择lights.tdb文件,使用里面的参数设置来绘制版图。
2、在P衬底上绘制有源区,再画N select,将有源区包裹住,进行设计规则检查。
3、在有源区上绘制4条多晶硅,宽度为最小尺寸。
三条是MOS管的,一条是反相器的。
需满足最小尺寸要求和伸展出有源区一定的距离。
进行设计规则检查无误后,这样就形成了MOS管的源漏。
4、绘制GND,将需要接地的晶体管的有源区打接触孔,通过metal1接地,可知A管的源端、C管的源端、反相器NMOS的源端需要接地,A管和反相器N管共源接地。
需要满足金属包裹接触孔、接触孔离有源区的边界、接触孔离多晶的距离,金属的最小尺寸等设计规则。
5、上述步骤将NMOS基本绘制完成。
下面绘制PMOS,首先绘制N well,再在N well中绘制P select,然后再绘制Active层。
将N管的4条多晶拉伸,公用栅极,伸展出P有源区2微米,这样就形成了Pmos 的源漏区,进行设计规则检查。
6、绘制VDD。
根据电路图知道A管的源极和反向器PMOS的源极需要接电源,两个管子共源,在有源区打接触孔,通过金属线连接至电源端。
需要满足金属包裹接触孔、接触孔离有源区的边界、接触孔离多晶的距离,金属的最小尺寸等设计规则。
7、上面的步骤基本完成了MOS管的绘制,之后就是连接和信号输入输出问题了。
将PMOS中B管和C管的漏端与NMOS中的A管和B管进行连接,连接时通过在漏端打通孔,通过Metal2 进行连接,这样就得到了最终输出的反向结果,再通过Metal2 连接到反相器的栅极,进行设计规则检查。
8、由电路图可知,PMOS中A管的漏端是和B管、C管的源端连接的,所以在有源区打接触孔,通过Metal1连接。
进行设计规则检查。
9、将A、B、C信号加到PMOS和NMOS的栅极,在多晶硅上做多晶硅接触,连Metal1,再通过通孔连接Metal2接入信号。
需要满足各种间距规则问题,进行设计规则检查。
10、做NMOS和PMOS的衬底接触,进行设计规则检查。
11、将反相器的NMOS和PMOS的漏极通过Metal1连接,在Metal1上打通孔连接Metal2将最终的输出引出,进行设计规则检查。
通过以上的11个步骤,综合布局布线,设计版图、输入输出如下图7所示通过DRC检测没有错误。
图7.绘制的F=A+BxC版图(四)版图评价1、绘制之前,找到了欧拉路径,将输入选择为C、B、A的顺序,使得绘制的版图NMOS和PMOS都能够共用有源区,节省了版图的面积。
2、版图的绘制都是一步一步按照设计规则卡出来的,使得有源区面积小,使用了最小尺寸的多晶硅和金属连线。
3、在最小面积的有源区上,尽可能多的做了接触孔,减小接触电阻。
4、通过使用Metal2,减小了布线间距,节省了面积。
5、通过共用有源区、共用金属至地和电源的连线,也减少了有源区面积和连线长度。
6、将nMOS管和pMOS管的多晶硅栅极对准,利于工艺上的加工,这样可以由最小长度的多晶硅线条组成栅极连线,这样做可以降低RC 延时。
七、总结这次版图设计我做的是F=A+B*C的设计,通过这次L-edit软件的训练,对所学的CMOS集成电路设计有一个更系统更全面的了解,初步的掌握了L-edit软件的基本操作方法,并能够独立的运用该软件设计版图,灵活的根据设计规则要求绘制版图,熟悉了电路的结构,我想这对我今后学习或者工作大有裨益,今后,我要更多的运用该软件,达到熟练掌握的目的,在我们锻炼动手能力的同时,学到更多的有关专业知识。
在我做集成电路版图设计过程中的困难之一是分不清楚集成器件的工艺层次结构。
使用L-edit软件设计版图设计的过程中,对于工艺部分的尺寸调节这个环节是个相当繁琐的工作,通过此次上机,熟悉了设计规则,熟悉了器件的工艺层次结构,受益匪浅。