三角函数的平移
- 格式:doc
- 大小:466.50 KB
- 文档页数:8
三角函数的像变换与平移三角函数是数学中非常重要的概念之一,在三角函数中,像变换与平移是两个重要的概念。
它们描述了函数图像在坐标系中的移动和变形过程。
本文将重点介绍三角函数的像变换与平移。
1. 像变换(Image Transformation)像变换是指通过特定的变换规则,改变函数图像的形状、位置或尺寸等性质。
对于三角函数而言,常见的像变换包括拉伸、压缩、翻转和反转等。
1.1 拉伸(Stretch)拉伸是指改变函数图像在横轴和纵轴方向上的尺寸,使其变得更长或更短。
对于正弦函数(sin)和余弦函数(cos)而言,拉伸可以分别沿横轴和纵轴方向进行。
例如,当正弦函数的图像被沿横轴方向拉伸时,函数的周期将变得更长,波峰和波谷之间的距离增加;而当余弦函数的图像被沿纵轴方向拉伸时,函数的振幅(波峰或波谷与横轴的距离)增加。
1.2 压缩(Compression)压缩是指改变函数图像在横轴和纵轴方向上的尺寸,使其变得更短或更窄。
与拉伸相反,压缩使函数的周期变短,波峰和波谷之间的距离缩小;同时,压缩会使函数的振幅减小。
1.3 翻转(Reflection)翻转是指将函数图像相对于横轴或纵轴进行对称变换,以改变图像的朝向。
对于正弦函数和余弦函数而言,翻转可以使波形上下颠倒或左右翻转。
1.4 反转(Inversion)反转是指将函数图像的正负进行翻转,使得原本正值的部分变为负值,负值的部分变为正值。
对于正弦函数和余弦函数而言,反转会使波形关于横轴或纵轴进行对称。
2. 平移(Translation)平移是指将函数图像在坐标系中沿横轴或纵轴方向上移动,以改变图像的位置。
对于正弦函数和余弦函数而言,平移可以使波形向左或向右平移一定的距离,或者向上或向下平移。
2.1 横向平移(Horizontal Translation)横向平移是指将函数图像沿横轴方向上移动,通常用参数h表示平移的距离。
当h为正值时,函数图像向右平移;当h为负值时,函数图像向左平移。
数学公式知识:三角函数图像的平移与缩放三角函数图像的平移与缩放是数学中常见的一个话题,也是高中数学课程中的重要内容。
三角函数是数学中的基本概念之一,在大学数学中被广泛应用到各种领域。
三角函数具有一定的规律性和对称性,三角函数图像的平移和缩放是基于这些规律性和对称性而实现的,因此掌握三角函数图像的平移和缩放是理解三角函数及其应用的前提。
一、三角函数图像的基本概念三角函数是指正弦函数、余弦函数和正切函数三种函数的统称,它们都是以角度或弧度为自变量的函数,其中正弦函数的函数值为对边与斜边之比,余弦函数的函数值为邻边与斜边之比,正切函数的函数值为对边与邻边之比。
三角函数关系着三角形中的几何关系,因此在三角形几何中也十分重要。
三角函数图像是把三角函数的函数值和自变量进行映射后得到的图像,它可以帮助我们更好的理解三角函数的性质和应用。
二、三角函数图像的平移平移是指在坐标系中把图形沿着固定的方向移动一定的距离,平移前后图形形状不会改变,只是位置改变了。
对于三角函数图像的平移,其实就是在自变量上加或减一个常数,或在函数值上加或减一个常数,使得图像整体向左、向右、向上或向下平移。
这样可以使得图像的位置在坐标系上发生变化,但是形状不会发生变化。
三角函数图像的平移可以用下列公式来描述:1、正弦函数图像的平移设f(x)为正弦函数,a为常数。
当a>0时, y=f(x- a)图像向右平移a个单位。
当a<0时, y=f(x+ a)图像向左平移a个单位。
2、余弦函数图像的平移设f(x)为余弦函数,a为常数。
当a>0时, y=f(x- a)图像向右平移a个单位。
当a<0时, y=f(x+ a)图像向左平移a个单位。
3、正切函数图像的平移设f(x)为正切函数,a为常数。
当a>0时, y=f(x- a)图像向右平移a个单位。
当a<0时, y=f(x+ a)图像向左平移a个单位。
三、三角函数图像的缩放缩放是指把图形沿着某个方向缩小或放大一定的比例,缩放后图形的形状和位置都会发生变化。
三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量"起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象. 途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin (ωx +ϕ)的图象。
1。
为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A )A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位3.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A )向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是CA sin(2)3y x π=-,x R ∈B sin()26x y π=+,x R ∈C sin(2)3y x π=+,x R ∈D sin(2)32y x π=+,x R ∈5.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B(A)向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度7。
三角函数平移变换及解析式的求法类型一:平移变换1. y =2sin(2x -π6)+1的图像是由y =sin x 的图像怎样变换而来的?解 方法一 先伸缩后平移y =sin x ――――――――――――――→各点的横坐标缩小为原来的12倍纵坐标不变y =sin 2x ――――――――――――→向右平移π12个单位y =sin(2x -π6)―――――――――――――――→各点的纵坐标伸长为原来的2倍横坐标不变y =2sin(2x -π6)――――――――――――→向上平移1个单位y =2sin(2x -π6)+1.方法二 先平移后伸缩y =sin x ――――――――――→向右平移π6个单位y =sin(x -π6)――――――――――――――→各点的横坐标缩短为原来的12纵坐标不变y =sin(2x -π6)――――――――――→各点纵坐标伸长为原来的2倍横坐标不变y =2sin(2x -π6)――――――――――→向上平移1个单位y =2sin(2x -π6)+1.2.试述如何由y =13sin(2x +π3)的图像得到y =sin x 的图像.解 方法一 y =13sin(2x +π3)――――――――――――――→横坐标扩大为原来的2倍纵坐标不变y =13sin(x +π3)――――――――――――――→图像向右平移π3个单位纵坐标不变y =13sin x――――――――――――――→纵坐标扩大到原来的3倍横坐标不变y =sin x .方法二 (1)先将y =13sin(2x +π3)的图像向右平移π6个单位长度,得y =13sin 2x 的图像;(2)再将y =13sin 2x 图像上各点的横坐标扩大为原来的2倍(纵坐标不变),得y =13sin x 的图像;(3)最后将y =13sin x 的图像上各点的纵坐标扩大为原来的3倍(横坐标不变)得到y =sin x 的图像.3.将函数x y sin =的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是() A .)102sin(π-=x y B .)102sin(π+=x yC .)1021sin(π-=x yD .)1021sin(π+=x y解:将函数sin y =x 的图象上所有的点向右平行移动10π个单位长度,得到函数sin()10y x π=-,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数1sin()210y x π=-的图象,故选:C . 4.把函数)42sin(π+=x y 的图象向左平移8π个单位长度,再将横坐标压缩到原来的21,所得函数的解析式为( )A. x y 4sin =B. x y 4cos =C. )84sin(π+=x yD.)324sin(π+=x y解:选B5.要得到)42cos(π-=x y 的图象,只需将x y 2sin =图象()A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位D .向右平移8π个单位解:将sin y = 2x 的图象向右平移8π个单位,可得sin(2)4y x π=-的图象, 故选:D .6.要得到函数x y cos 2=的图象,将函数)42sin(2π+=x y 的图象上所有的点的( )A .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度B .横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度 C .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度D .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度解:2sin(2)cos(2)cos(2))42444y x x x x πππππ=+=--=-=- 答案为C 故选:C .7.已知函数)4sin()(πω+=x x f R x ∈(,)0>ω的最小正周期为π,为了得到函数xx g ωcos )(=的图象,只要将)(x f y =的图象()A .向左平移8π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度解:由题知2ω=,所以()sin(2)cos[(2)]cos(2)cos2()42448f x x x x x πππππ=+=-+=-=-,故选:A .类型二:求函数y =A sin(ωx +φ)+b 的解析式1.已知函数)sin(ϕω+=x A y 0(>A ,0>ω,)0πϕ<<的一段图象如图所示,则此函数解析式为__________.(例10)解:)33sin(2π+=x y2.下图是函数)sin(ϕω+=x A y 0(>A ,0>ω,)20πϕ<<的图象的一部分,试求此函数解析式.解:)438sin(2ππ-=x y3.已知函数)sin(ϕω+=x A y ,在同一周期内,当9π=x 时函数取得最大值2,当94π=x 时取得最小值2-,则该函数的解析式为( )A .⎪⎭⎫ ⎝⎛-=63sin 2πx yB .⎪⎭⎫ ⎝⎛+=63sin 2πx yC .⎪⎭⎫ ⎝⎛+=631sin 2πx yD .⎪⎭⎫ ⎝⎛-=631sin 2πx y解:由题意可知42993T πππ=-=,223T ππω∴==,解得3ω=, 函数的最大值为2,最小值为2-,2A ∴=, 9x π=时函数取得最大值2,2sin(3)29πϕ∴⨯+=,解得6πϕ=.∴函数解析式为2sin(3)6y x π=+.故选:B .4.若函数f (x )=A sin(ωx +φ)+b (其中A >0,ω>0,|φ|<π2)的图像如图所示.(1)求函数f (x )的解析式;(2)求S =f (0)+f (1)+f (2)+f (3)+…+f (2 012)的值.解 (1)由图像知A =32-122=12,b =32+122=1,ω=2πT =2π4=π2.∴f (x )=12sin(π2x +φ)+1.又∵点(0,1)在函数图像上,∴f (0)=1即1=12sin φ+1,∴sin φ=0.又|φ|<π2,故φ=0,∴f (x )=12sin π2x +1.(2)由(1)知函数f (x )=12sin π2x +1,周期T =2ππ2=4.∴S =f (0)+f (1)+f (2)+f (3)+…+f (2 012) =f (0)+[f (1)+f (2)+f (3)+f (4)]×503.又∵f (0)=1,f (1)=32,f (2)=1,f (3)=12,f (4)=1,∴S =1+(32+1+12+1)×503=2 013.反思与感悟 要求y =A sin(ωx +φ)+b (A >0,ω>0)的解析式,其关键是求参数A 、φ、ω、b 的值.求A 、ω、b 三参数相对容易,设函数的最大值为m ,最小值为n ,则⎩⎨⎧A =m -n2,b =m +n2.已知函数周期为T ,则由T =2πω可求出参数ω的值.5.已知函数f (x )=A sin(ωx +φ)在一个周期内的图像如图所示,(1)求f (x )的解析式;(2)求f (π4)+f (2π4)+f (3π4)+…+f (2 015π4)的值.解 (1)由图像可知A =2, 周期T =2(7π12-π12)=π,所以ω=2πT =2ππ=2,则f (x )=2sin(2x +φ), 由图像过点(π12,2),得2sin(2×π12+φ)=2,即sin(π6+φ)=1,取π6+φ=π2得φ=π3, 故f (x )=2sin(2x +π3).(2)由(1)可知f (x )的周期为π,因为f (π4)+f (2π4)+f (3π4)+f (4π4)=1-3-1+3=0,所以f (π4)+f (2π4)+f (3π4)+…+f (2 015π4)=0×503+f (2 013π4)+f (2 014π4)+f (2 015π4)=f (π4)+f (2π4)+f (3π4)=1-3-1=- 3.6.将函数y =sin ωx (ω>0)的图像向左平移π6个单位,平移后的图像如图所示,则平移后的图像所对应函数的解析式是________.答案 y =sin(2x +π3)解析 函数y =sin ωx (ω>0)的图像向左平移π6个单位得到y =sin(ωx +ωπ6),则712πω+ωπ6=3π2,解得ω=2, 故平移后的图像的解析式为y =sin(2x +π3).7.已知函数)cos(ϕω+=x A y 的图象如图所示,32)2(-=πf ,则=)0(f ( )(例13)A .32-B .21-C .32 D .21 解:由题意可知,此函数的周期11722()12123T πππ=-=,故223ππω=,3ω∴=,()cos(3)f x A x ϕ=+. 32()cos()sin 223f A A ππϕϕ=+==-. 又由题图可知771()cos(3)cos()12124f A A ππϕϕπ=⨯+=-cos sin )02A A ϕϕ=+=, 2(0)cos 3f A ϕ∴==.故选:C .。
三角函数的平移
三角函数的平移是指将三角函数的图像在坐标系中向某一方向移动,而不改变其形状。
三角函数的平移可以通过改变函数中的参数来实现,这些参数可以是函数的角度或者是函数的横坐标。
三角函数的平移可以用来解决很多数学问题,比如求解三角形的面积,求解抛物线的焦点,求解椭圆的长短轴等等。
三角函数的平移也可以用来求解更复杂的数学问题,比如求解椭圆的焦点,求解抛物线的顶点,求解椭圆的面积等等。
三角函数的平移也可以用来解决物理问题,比如求解物体的运动轨迹,求解物体的加速度,求解物体的动量等等。
三角函数的平移也可以用来求解更复杂的物理问题,比如求解物体的动能,求解物体的势能,求解物体的力等等。
总之,三角函数的平移是一种非常有用的数学和物理技术,它可以用来解决各种数学和物理问题,并且可以用来求解更复杂的问题。
三角函数的平移三角函数是数学中常见且重要的函数之一,包括正弦函数、余弦函数和正切函数。
这些函数在实际应用中具有广泛的意义,而其中一项关键操作就是平移。
一、平移定义和基本概念平移是指将图形或函数在一定方向上进行移动,而不改变其形状和大小。
对于三角函数而言,平移可以通过改变函数的幅值、相位和角度单位来实现。
1. 幅值的平移对于正弦函数和余弦函数,平移可以通过改变幅值来实现。
幅值即函数图像在y轴上的偏移量。
当幅值为正时,图像会向上平移,在y轴上方显示;当幅值为负时,图像会向下平移,在y轴下方显示。
2. 相位的平移相位是指函数图像在x轴上的偏移量,也称为水平平移。
对于正弦函数和余弦函数,相位变化会导致函数在x轴上发生平移。
相位正数右平移,相位负数左平移。
3. 角度单位的平移三角函数中的角度单位通常为弧度制和度数制,不同的角度单位会影响函数图像在x轴上的变化。
当角度单位为度数制时,函数图像在x轴上向右平移;当角度单位为弧度制时,函数图像在x轴上向左平移。
二、平移的公式和示例以下是三种常见的三角函数的平移公式:1. 正弦函数平移公式:y = a·sin(b(x - c)) + d其中a为幅值,b为角度单位系数,c为相位,d为垂直平移量。
2. 余弦函数平移公式:y = a·cos(b(x - c)) + d其中a为幅值,b为角度单位系数,c为相位,d为垂直平移量。
3. 正切函数平移公式:y = a·tan(b(x - c)) + d其中a为幅值,b为角度单位系数,c为相位,d为垂直平移量。
示例:以正弦函数为例,说明平移的具体过程。
假设原始的正弦函数为:y = sin(x)若要对其进行平移,可以通过修改幅值、相位和角度单位来实现。
比如,将原始正弦函数的幅值改为2,相位改为π/6,角度单位改为弧度制,则新的正弦函数为:y = 2·sin(1(x - π/6))三、三角函数平移的应用举例三角函数平移在实际应用中具有广泛的应用,下面介绍两个常见的应用举例。
三角函数图象平移,优化方法
三角函数图象平移是将三角函数图象水平或垂直移动的一种方法。
图形可以以两个参数来描述:比例和偏移量。
比例决定了图形在水平和垂直方向的位置,而偏移量表示图形在垂直或水平方向上的位置。
优化三角函数图象平移,首先要了解什么是三角函数图象平移。
然后,要了解比例和偏移量参数,以便知道图形在水平和垂直方向的位置。
然后,可以使用图形化工具的拖拽和大小更改功能,可以快速使用一种方式,调整图形的大小和位置。
此外,也可以使用数学公式计算比例和偏移量,以精确的平移子图形。
了解相关知识的基础上,可以计算出比例和偏移量,应用于拖拽图形的过程中,以实现更精确的位置修复。
在优化三角函数图象平移时,还可以利用计算机技术将这些参数存储在计算机中,由软件程序自动识别调用。
这样将减少工作量,加速平移效率,提高平移图象的精度。
总之,优化三角函数图象平移,可以使用图形化工具、数学公式和计算机技术。
这种方法可以有效地提高平移的精度,节省时间和经历,从而更好地应用三角函数图象。
三角函数平移的知识点总结一、三角函数平移的基本概念1. 正弦函数和余弦函数的平移正弦函数和余弦函数的平移可以通过改变函数的自变量(x)来实现。
对于正弦函数f(x) = sin(x)和余弦函数g(x) = cos(x)来说,它们的平移操作可以分别表示为f(x + a)和g(x + a),其中a表示在x轴上的平移距离。
当a为正数时,函数图像向左平移;当a为负数时,函数图像向右平移。
同样,如果在函数中加上一个常数b( f(x) + b 或 g(x) + b),则代表在y 轴上的平移。
当b为正数时,函数图像上移; 当b为负数时,函数图像下移。
2. 正弦函数和余弦函数的平移公式正弦函数和余弦函数的平移公式可以表示为:f(x ± a) = sin(x ± a)g(x ± a) = cos(x ± a)f(x) ± b = sin(x) ± bg(x) ± b = cos(x) ± b这些公式表示了正弦函数和余弦函数在x和y轴上的平移操作。
通过改变a和b的数值,可以控制函数图像在坐标系中的位置,从而得到不同的函数图像。
3. 正切函数和余切函数的平移类似于正弦函数和余弦函数,正切函数和余切函数的平移操作也可以通过改变自变量来实现。
对于正切函数h(x) = tan(x)和余切函数k(x) = cot(x)来说,它们的平移操作可以分别表示为h(x + a)和k(x + a)。
同样,如果在函数中加上一个常数c( h(x) + c 或 k(x) + c),则代表在y轴上的平移。
4. 正切函数和余切函数的平移公式正切函数和余切函数的平移公式可以表示为:h(x ± a) = tan(x ± a)k(x ± a) = cot(x ± a)h(x) ± c = tan(x) ± ck(x) ± c = cot(x) ± c这些公式表示了正切函数和余切函数在x和y轴上的平移操作。
三角函数的平移伸缩变换
三角函数可以通过平移、伸缩来进行变换。
平移指的是将函数图像沿着横轴或纵轴方向移动一定的距离。
伸缩指的是将函数图像沿着横轴或纵轴方向拉伸或缩小。
以正弦函数为例,设其图像为y=sin(x),则有以下几种变换:
1. 平移
平移指的是将函数图像沿着横轴或纵轴方向移动一定的距离。
这种变换可以用一个参数来表示,记为h和k。
其中h表示横向平移的距离,k表示纵向平移的距离。
平移后的函数为y=sin(x-h)+k。
2. 垂直伸缩
垂直伸缩指的是将函数图像沿着纵轴方向拉伸或缩小。
这种变换可以用一个参数来表示,记为a。
垂直伸缩后的函数为y=a*sin(x)。
当a>1时,函数图像沿着纵轴方向被拉伸,函数的振幅增大;当0<a<1时,函
数图像沿着纵轴方向被缩小,函数的振幅减小。
3. 水平伸缩
水平伸缩指的是将函数图像沿着横轴方向拉伸或缩小。
这种变换可以用一个参数来表示,记为b。
水平伸缩后的函数为y=sin(b*x)。
当b>1时,函数图像沿着横轴方向被缩短,函数的周期变小;当0<b<1时,函数图像沿着横轴方向被拉长,函数的周期变大。
4. 综合变换
完整的三角函数平移伸缩变换包含了垂直伸缩、水平伸缩、横向平移、纵向平移四种变换。
对于正弦函数而言,其综合变换的表达式为:
y=a*sin(b*(x-h))+k
其中,a表示垂直伸缩的参数,b表示水平伸缩的参数,h和k表示横向和纵向平移的参数。
三角函数图象的作法:1.y=Asin(ωx+φ)的图象:的图象:①用五点法作图①用五点法作图::五点取法由ωx +j =0=0、、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图描点作图. .②图象变换:先平移、再伸缩两个程序③A---A---振幅振幅振幅 vp2=T--------周期周期周期 pw 21==T f --------频率频率频率 相位--+j w x 初相--j2、函数sin()y A x k w j =++的图象与函数sin y x =的图象之间可以通过变化A k w j ,,,来相互转化.A w ,影响图象的形状,k j ,影响图象与x 轴交点的位置.轴交点的位置.由由A 引起的变换称振幅变换,引起的变换称振幅变换,由由w 引起的变换称周期变换,它们都是伸缩变换;由j 引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 sin y x =的图象j j j <¾¾¾¾¾¾¾®向左向左((>0)>0)或向右或向右或向右((0)平移个单位长度得sin()y x j =+的图象()w w w¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾®®横坐标伸长横坐标伸长(0<(0<<1)<1)或缩短或缩短或缩短((>1)1到原来的纵坐标不变 得sin()y x w j =+的图象()A A A >¾¾¾¾¾¾¾¾¾®纵坐标伸长纵坐标伸长((1)1)或缩短或缩短或缩短(0<(0<<1)为原来的倍横坐标不变 得sin()y A x w j =+的图象(0)(0)k k k ><¾¾¾¾¾¾¾®向上或向下平移个单位长度得sin()y A x k j =++的图象.的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<¾¾¾¾¾¾¾¾¾®纵坐标伸长或缩短为原来的倍(横坐标不变横坐标不变))得sin y A x =的图象(01)(1)1()w w w<<>¾¾¾¾¾¾¾¾¾®横坐标伸长或缩短到原来的纵坐标不变得sin()y A x w =的图象(0)(0)j j j w><¾¾¾¾¾¾¾®向左或向右平移个单位得sin ()y A x x w j =+的图象(0)(0)k k k ><¾¾¾¾¾¾¾®向上或向下平移个单位长度得sin()y A x k w j =++的图象.的图象.注意:利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种x ? ? ? ? j w +x2p p23pp 2)sin(j w +=x A yA 0 -A 0变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
三角函数伸缩变换法则
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
三角函数平移伸缩变换口诀:左加右减,上加下减。
一个点作左右平移时,纵坐标不发生任何改变,而是横坐标在发生变化。
当点向右平移时,横坐标变大,当点向左平移时,横坐标变小,这就是平移的左加右减。
一个点作上下平移时,横坐标不发生任何改变,而是纵坐标在发生变化。
当点向上平移时,纵坐标变大,当点向下平移时,纵坐标变小,这就是平移的上加下减。
高中数学三角函数的图像平移与缩放技巧在高中数学的学习中,三角函数是一个重要的内容,它是解决各种实际问题的基础。
而理解三角函数的图像平移与缩放技巧,则能够帮助我们更好地理解和应用三角函数。
本文将通过具体题目的举例,来说明这方面的考点和解题技巧,并给出一些相关的练习题供读者练习。
一、图像平移图像平移是指将函数图像沿着横轴或纵轴方向上移动一定的单位长度。
对于三角函数而言,图像平移主要是通过改变函数中的常数项来实现的。
例如,考虑函数y = sin(x)。
我们知道,正弦函数的图像在原点处有一个特殊的点,即(0, 0)。
现在,如果我们想将这个函数的图像向右平移2个单位长度,我们只需要将函数中的自变量x替换为x-2,即y = sin(x-2)。
这样,原来的(0, 0)点就变成了(2, 0)点,整个图像向右平移了2个单位长度。
同样地,如果我们想将函数y = cos(x)的图像向上平移3个单位长度,我们只需要将函数中的因变量y替换为y+3,即y+3 = cos(x)。
这样,原来的(0, 1)点就变成了(0, 4)点,整个图像向上平移了3个单位长度。
通过上述例子,我们可以看出,图像平移主要是通过改变函数中的常数项来实现的。
对于正弦函数而言,平移的方向和距离由常数项的正负和数值大小决定;对于余弦函数而言,平移的方向和距离由常数项的正负和数值大小决定。
练习题:1. 画出函数y = sin(x-π/2)的图像,并说明其平移的方向和距离。
2. 画出函数y = cos(x+π/4)的图像,并说明其平移的方向和距离。
二、图像缩放图像缩放是指将函数图像沿着横轴或纵轴方向进行拉伸或压缩,使得图像变得更宽或更窄,更高或更矮。
对于三角函数而言,图像缩放主要是通过改变函数中的系数来实现的。
例如,考虑函数y = 2sin(x)。
我们知道,这个函数的图像是正弦函数图像的纵坐标放大了2倍。
也就是说,原来的正弦函数图像上的每个点的纵坐标都乘以了2。
三角函数图像变换总结三角函数是数学中的重要内容,它在数学、物理、工程等领域都有着广泛的应用。
三角函数的图像变换是三角函数研究中的一个重要内容,通过对三角函数图像的变换,可以更直观地理解三角函数的性质和特点。
本文将对三角函数图像的平移、垂直伸缩和水平伸缩等变换进行总结,希望能够帮助读者更好地理解三角函数图像的变换规律。
1. 平移变换。
平移是指将函数图像沿着坐标轴的方向进行平移。
对于三角函数图像而言,平移包括水平平移和垂直平移两种情况。
水平平移是指将函数图像沿着横坐标轴的方向进行平移,而垂直平移则是指将函数图像沿着纵坐标轴的方向进行平移。
对于三角函数y=sin(x)而言,将其图像沿着横坐标轴平移a个单位,则新的函数图像为y=sin(x-a);将其图像沿着纵坐标轴平移b个单位,则新的函数图像为y=sin(x)+b。
同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像平移变换。
2. 垂直伸缩变换。
垂直伸缩是指将函数图像沿着纵坐标轴的方向进行伸缩。
对于三角函数图像而言,垂直伸缩可以分为垂直方向的拉伸和压缩两种情况。
对于三角函数y=sin(x)而言,将其图像沿着纵坐标轴方向进行拉伸k倍,则新的函数图像为y=ksin(x);将其图像沿着纵坐标轴方向进行压缩k倍,则新的函数图像为y=(1/k)sin(x)。
同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像垂直伸缩变换。
3. 水平伸缩变换。
水平伸缩是指将函数图像沿着横坐标轴的方向进行伸缩。
对于三角函数图像而言,水平伸缩可以分为水平方向的拉伸和压缩两种情况。
对于三角函数y=sin(x)而言,将其图像沿着横坐标轴方向进行拉伸k倍,则新的函数图像为y=sin(kx);将其图像沿着横坐标轴方向进行压缩k倍,则新的函数图像为y=sin(x/k)。
同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像水平伸缩变换。
通过以上对三角函数图像变换的总结,我们可以发现三角函数图像的变换规律其实并不复杂。
初中数学如何求解三角函数的平移性变换问题在初中数学中,我们经常会遇到求解三角函数的平移性变换问题。
这类问题要求我们根据已知函数的平移性质,求解相应的变换函数的平移性质。
在本文中,我们将讨论如何求解三角函数的平移性变换问题,并通过具体的例子来说明。
一、正弦函数和余弦函数的平移性变换1. 正弦函数的平移性变换正弦函数sin(x)的标准图像是在原点上方和下方呈现周期性波动的曲线。
现在我们来求解正弦函数的平移性变换问题,即求解sin(x + a)的平移性。
对于正弦函数sin(x + a),我们可以使用以下公式来求解平移:平移量= -a这意味着sin(x + a)的图像向左平移a个单位。
例如,当a=π/2时,sin(x + π/2)的图像向左平移π/2个单位。
2. 余弦函数的平移性变换余弦函数cos(x)的标准图像是在原点右侧和左侧呈现周期性波动的曲线。
现在我们来求解余弦函数的平移性变换问题,即求解cos(x + a)的平移性。
对于余弦函数cos(x + a),我们可以使用以下公式来求解平移:平移量= -a这意味着cos(x + a)的图像向左平移a个单位。
例如,当a=π/2时,cos(x + π/2)的图像向左平移π/2个单位。
二、例题解析现在我们通过具体的例子来求解三角函数的平移性变换问题。
例题1:求解sin(x - π/3)的平移性。
根据前面的讨论,我们知道sin(x - π/3)的图像向右平移π/3个单位。
例题2:求解cos(x + π/4)的平移性。
根据前面的讨论,我们知道cos(x + π/4)的图像向左平移π/4个单位。
通过这两个例子,我们可以看到,根据三角函数的平移性规律,我们可以很轻松地求解三角函数的平移性变换问题。
三、数学背景和应用三角函数的平移性变换问题在数学中具有重要的意义。
平移是函数的一种特殊性质,它可以帮助我们理解和分析函数的位置变化规律。
通过求解三角函数的平移性变换问题,我们可以更好地掌握函数的平移性,从而更好地理解和应用三角函数。
三角函数图像平移变换由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一样有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也常常显现不管哪一种变形,请切记每一个变换老是对字母x 而言,即图象变换要看“变量”起多大转变,而不是“角转变”多少。
途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变成原先的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变成原先的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
1.为取得函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位 2.要取得函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位 3.为了取得函数)62sin(π-=x y 的图象,能够将函数x y 2cos =的图象( B ) (A)向右平移6π个单位长度 (B)向右平移3π个单位长度 (C)向左平移6π个单位长度 (D)向左平移3π个单位长度 4.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原先的12倍(纵坐标不变),取得的图象所表示的函数是C A sin(2)3y x π=-,x R ∈ B sin()26x y π=+,x R ∈ C sin(2)3y x π=+,x R ∈ D sin(2)32y x π=+,x R ∈5.为了取得函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像B (A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位 6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了取得函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度 7.函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 能够等于B.(,2)6A π-- .(,2)6B π- .(,2)6C π- .(,2)6D π8.将函数y=sinx 的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,取得函数y=sin ()6x π-的图象,则ϕ等于(D ) A .6π B .56π C. 76π D.116π 9.若将函数()tan 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则ω的最小值为DA .16 B. 14 C. 13 D.12 10.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于C(A )13 (B )3 (C )6 (D )9 11.将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中 心对称,则向量α的坐标可能为( C )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π 12.将函数3sin()y x θ=-的图象F 按向量(,3)3π平移取得图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是AA. π125B. π125-C. π1211D. 1112π- 13.把曲线yc os x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,取得的曲线方程是( C )A .(1-y )sin x +2y -3=0B .(y -1)sin x +2y -3=0C .(y +1)sin x +2y +1=0D .-(y +1)sin x +2y +1=0 解析:将原方程整理为:y =x cos 21+,因为要将原曲线向右、向下别离移动2π个单位和1个单位,因此可得y =)2cos(21π-+x -1为所求方程.整理得(y +1)sin x +2y +1=0.点评:本题考查了曲线平移的大体方式及三角函数中的诱导公式。
初中数学如何求解三角函数的平移性变换问题三角函数的平移性变换问题是指通过变换函数的操作,改变三角函数的平移性质。
在本文中,我们以正弦函数为例,介绍如何求解三角函数的平移性变换问题。
1. 正弦函数的平移性特点:正弦函数sin(x)在定义域上是一个周期函数,其图像在坐标平面上以(0, 0)为中心,以x轴为对称轴进行上下平移。
平移后的正弦函数的图像在坐标平面上以(h, k)为中心,以x轴为对称轴进行上下平移。
2. 求解正弦函数的平移性变换问题:要求解正弦函数sin(x)的平移性变换,我们需要找到一个变换函数,使正弦函数的平移性质发生改变。
-平移性的定义:在给定的定义域上,如果一个函数的图像在坐标平面上进行上下或左右平移,则该函数具有平移性。
-平移性的变换规律:在平移性变换中,函数的图像在坐标平面上进行上下或左右平移。
-平移性变换的关键点:要求解平移性变换问题,我们需要找到一个变换函数,确定平移的距离和方向。
3. 具体求解平移性变换问题的方法:对于正弦函数sin(x),我们可以通过以下步骤求解平移性变换问题:-步骤1:确定变换函数。
变换函数是对函数的平移性质进行改变的函数。
对于sin(x),我们可以使用变换函数sin(x - h) + k,其中(h, k)为平移的距离和方向。
-步骤2:确定平移性变换的定义域。
由于正弦函数的定义域为实数集合R,平移性变换后的函数的定义域仍然是实数集合R。
-步骤3:确定平移性变换的图像。
通过确定平移的距离和方向,可以将正弦函数的图像在坐标平面上进行上下或左右平移。
通过上述步骤,我们可以求解正弦函数的平移性变换问题。
同样的方法也可以应用于其他三角函数的平移性变换问题。
高中三角函数的像变换三角函数是数学中常见的函数形式,它们在数学和物理等领域中有着广泛的应用。
像变换是对函数图像进行的一种变换操作,可以通过变换操作来改变原始函数图像的形态和位置。
在高中数学中,三角函数的像变换是一个重要的概念,掌握它可以帮助我们更好地理解和应用三角函数。
一、平移变换平移变换是一种保持函数形状不变,只改变位置的变换操作。
对于三角函数来说,平移变换可以分为水平平移和垂直平移两种类型。
1. 水平平移水平平移是将函数图像沿x轴的方向移动,可以使函数图像向左或向右平移。
数学上,水平平移的量可以用常数c表示。
对于三角函数来说:- 正弦函数y = sin(x + c)的图像向左平移c个单位;- 余弦函数y = cos(x + c)的图像向右平移c个单位;- 正切函数y = tan(x + c)的图像向左平移c个单位。
2. 垂直平移垂直平移是将函数图像沿y轴的方向移动,可以使函数图像向上或向下平移。
数学上,垂直平移的量可以用常数d表示。
对于三角函数来说:- 正弦函数y = sin(x) + d的图像向上平移d个单位;- 余弦函数y = cos(x) + d的图像向上平移d个单位;- 正切函数y = tan(x) + d的图像向上平移d个单位。
二、伸缩变换伸缩变换是一种改变函数图像形状和大小的变换操作。
对于三角函数来说,伸缩变换可以分为水平伸缩和垂直伸缩两种类型。
1. 水平伸缩水平伸缩是通过改变自变量x的取值范围来改变函数图像的形状。
数学上,水平伸缩的量可以用常数a表示。
对于三角函数来说:- 正弦函数y = sin(ax)的自变量x的取值范围变为原来的1/a倍,图像被水平挤压;- 余弦函数y = cos(ax)的自变量x的取值范围变为原来的1/a倍,图像被水平挤压;- 正切函数y = tan(ax)的自变量x的取值范围变为原来的1/a倍,图像被水平挤压。
2. 垂直伸缩垂直伸缩是通过改变因变量y的取值范围来改变函数图像的形状和大小。
三角函数平移加减三角函数是数学中重要的概念之一,它包括三角函数的平移加减。
这种操作可以改变函数的位置和形状,在数学和物理学等领域中有广泛的应用。
下面我将详细讨论三角函数的平移加减。
首先,我们来了解一下三角函数的定义。
常见的三角函数包括正弦函数(sin)和余弦函数(cos)。
正弦函数是一个周期函数,它的图像可以由单位圆上的点的纵坐标表示;余弦函数也是一个周期函数,它的图像可以由单位圆上的点的横坐标表示。
三角函数的平移加减是指将函数的图像在横坐标或纵坐标方向上移动一定的距离。
具体来说,对于正弦函数来说,它的平移加减可以通过以下公式表示:y = A * sin(B(x - C)) + D在这个公式中,A表示振幅,它控制图像在纵向的变化幅度;B表示周期,它控制图像的周期性变化;C表示平移量,它控制图像在横向的平移;D表示纵向平移量,它控制图像在纵向的平移。
类似地,对于余弦函数来说,它的平移加减可以通过以下公式表示:y = A * cos(B(x - C)) + D通过调整A、B、C和D的值,我们可以改变函数的位置和形状。
下面我们来具体讨论一些常见的平移加减情况。
首先,对于正弦函数来说,如果C的值增大,那么图像会向右移动;如果C的值减小,那么图像会向左移动。
如果D的值增大,图像会向上移动;如果D的值减小,图像会向下移动。
而A和B的值不会改变图像的位置,它们只会影响图像的形状和大小。
同样地,对于余弦函数来说,如果C的值增大,图像会向左移动;如果C的值减小,图像会向右移动。
如果D的值增大,图像会向下移动;如果D的值减小,图像会向上移动。
A和B的值同样不会改变图像的位置,它们只会影响图像的形状和大小。
三角函数的平移加减在实际应用中非常广泛。
例如,在物理学中,三角函数的平移加减可以用来描述物体的振动和波动现象。
在工程学中,三角函数的平移加减可以用来描述振动台、电路等系统的性质。
总结一下,三角函数的平移加减是一种改变函数位置和形状的操作。
三角函数图象的平移和伸缩
函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.
既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩
sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)
平移个单位长度
得sin()y x ϕ=+的图象()
ωωω
−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)
1
到原来的
纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)
为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ϕ=++的图象. 先伸缩后平移
sin y x =的图象
(1)(01)
A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)
得sin y A x =的图象(01)(1)
1
()
ωωω
<<>−−−−−−−−−→横坐标伸长或缩短到原来的
纵坐标不变 得sin()y A x ω=
的图象(0)(0)
ϕϕϕω
><−−−−−−−→向左或向右平移个单位
得sin ()y A x x ωϕ=+的图象(0)(0)
k k k ><−−−−−−−→向上或向下平移个单位长度
得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛
⎫
=+
+ ⎪⎝⎭
的图象. 解:(方法一)①把sin y x =的图象沿x 轴向左平移π4
个单位长度,得πsin 4y x ⎛⎫=+
⎪⎝
⎭
的
图象;②将所得图象的横坐标缩小到原来的12
,得πsin 24y x ⎛⎫
=+
⎪⎝
⎭
的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛
⎫=+
⎪⎝⎭
的图象;④最后把所得图象沿y 轴向上平移
1个单位长度得到π2sin 214y x ⎛
⎫
=+
+ ⎪⎝
⎭
的图象.
(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的
12
,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移
π8
个单位长度得π2sin 28y x ⎛
⎫=+
⎪⎝
⎭
的图象;④最后把图象沿y 轴向上平移1个单位长度得到
π2sin 214y x ⎛
⎫=++ ⎪⎝
⎭的图象.
说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8
个单位长
度得到的函数图象的解析式是πsin 28y x ⎛
⎫=+
⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛
⎫=+ ⎪⎝
⎭的
图象的横坐标缩小到原来的
12
,得到的函数图象的解析式是πsin 24y x ⎛⎫
=+
⎪⎝
⎭
而不是
πs i n 24y x ⎛
⎫=+ ⎪⎝
⎭.
对于复杂的变换,可引进参数求解.
例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫
=- ⎪⎝
⎭
的图象.
分析:应先通过诱导公式化为同名三角函数.
解:ππsin 2cos 2cos 22
2y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭
⎝
⎭
,
在πcos 22y x ⎛⎫=- ⎪⎝
⎭
中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣
⎦
⎝
⎭
.
根据题意,有ππ2222
4
x a x --=-,得π8
a =-.
所以将
sin 2y x
=的图象向左平移π8
个单位长度可得到函数
πcos 24y x ⎛
⎫=- ⎪
⎝
⎭的图象.
练习
1、将函数y=3sin (2x+θ)的图象F 1按向量平移得到图象F 2,若图象
F 2关于直线
对称,则θ的一个可能取值是( )
A 、
B 、
C 、
D 、
2、将函数
的图象按向量
平移,得到y=f
(x )的图象,则f (x )=( )
A 、
B 、
C 、
D 、sin (2x )+3
3、要得到函数y=cos()24
x π
-
的图象,只需将y=sin 2
x 的图象( )
A .向左平移2
π
个单位 B.同右平移
2
π
个单位 C .向左平移
4
π
个单位 D.向右平移
4
π
个单位
4、若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个
图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1
y= sin x 2
的图象y=f(x)是( ) A . 1y=sin(2)12
2
x π
+
+ B. 1y=
sin(2)122
x π
-+ C. 1y=
sin(2)124
x π
+
+ D. 1sin(2)12
4
y x π
=
-
+
5.为得到函数πcos 23y x ⎛
⎫
=+
⎪⎝
⎭
的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位 B .向右平移
5π12个长度单位 C .向左平移
5π6
个长度单位
D .向右平移
5π6
个长度单位
6.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫
=-
⎪3⎝
⎭
的图象( D )
A .向右平移π6个单位
B .向右平移π3个单位
C .向左平移
π3
个单位
D .向左平移
π6
个单位
7.为了得到函数)6
2sin(π
-=x y 的图象,可以将函数x y 2cos =的图象( B )
(A)向右平移6
π
个单位长度 (B)向右平移3
π
个单位长度 (C)向左平移
6
π
个单位长度 (D)向左平移
3
π
个单位长度
8.已知函数()sin()(,0)4
f x x x R π
ϖϖ=+∈>的最小正周期为π,为了得到函数
()c o s g x x
ϖ=的图象,只要将()y f x =的图象A A 向左平移8
π
个单位长度 B 向右平移8
π
个单位长度 C 向左平移
4
π
个单位长度 D 向右平移
4
π
个单位长度
9.把曲线yc os x +2y -1=0先沿x 轴向右平移2
π
个单位,再沿y 轴向下平移1个单位,得到的
曲线方程是( C )
A .(1-y )sin x +2y -3=0
B .(y -1)sin x +2y -3=0
C .(y +1)sin x +2y +1=0
D .-(y +1)sin x +2y +1=0。