什么是P问题、NP问题和NPC问题PPT课件
- 格式:ppt
- 大小:90.00 KB
- 文档页数:21
什么是P问题、NP问题和NPC问题Program Impossible | 2006-08-28 22:58| 71 Comments | 本文内容遵从CC版权协议转载请注明出自这或许是众多OIer最大的误区之一。
你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。
你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。
他们没有搞清楚NP问题和NPC问题的概念。
NP问题并不是那种“只有搜才行”的问题,NPC问题才是。
好,行了,基本上这个误解已经被澄清了。
下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC 问题,你如果不是很感兴趣就可以不看了。
接下来你可以看到,把NP问题当成是 NPC问题是一个多大的错误。
还是先用几句话简单说明一下时间复杂度。
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。
也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。
不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2 倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!) 的阶乘级复杂度。
不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。
同样地,O (n^3+n^2)的复杂度也就是O(n^3)的复杂度。
因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。
你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。
你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。
他们没有搞清楚NP问题和NPC问题的概念。
NP问题并不是那种“只有搜才行”的问题,NPC问题才是。
好,行了,基本上这个误解已经被澄清了。
下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很感兴趣就可以不看了。
接下来你可以看到,把NP问题当成是NPC 问题是一个多大的错误。
还是先用几句话简单说明一下时间复杂度。
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。
也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。
不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如:找n个数中的最大值;而像冒泡排序插入排序等。
数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。
不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。
同样地,O(n^3+n^2)的复杂度也就是O(n^3)的复杂度。
因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。
我们也说,O(n^100)的复杂度小于O(1.01^n)的复杂度。
P问题、NP问题、NP完全问题和NP难问题在讲P类问题之前先介绍两个个概念:多项式,时间复杂度。
(知道这两概念的可以⾃动跳过这部分)1、多项式:axn-bxn-1+c恩....就是长这个样⼦的,叫x最⾼次为n的多项式....咳咳,别嫌我啰嗦。
有些⼈说不定还真忘了啥是多项式了。
例如第⼀次看到的鄙⼈→_→2、时间复杂度我们知道在计算机算法求解问题当中,经常⽤时间复杂度和空间复杂度来表⽰⼀个算法的运⾏效率。
空间复杂度表⽰⼀个算法在计算过程当中要占⽤的内存空间⼤⼩,这⾥暂不讨论。
时间复杂度则表⽰这个算法运⾏得到想要的解所需的计算⼯作量,他探讨的是当输⼊值接近⽆穷时,算法所需⼯作量的变化快慢程度。
举个例⼦:冒泡排序。
在计算机当中,排序问题是最基础的,将输⼊按照⼤⼩或其他规则排好序,有利于后期运⽤数据进⾏其他运算。
冒泡排序就是其中的⼀种排序算法。
假设⼿上现在有n个⽆序的数,利⽤冒泡排序对其进⾏排序,①⾸先⽐较第1个数和第2个数,如果后者>前者,就对调他们的位置,否则不变②接着⽐较第2个数和第3个数,如果后者>前者,就对调他们的位置,否则不变③⼀直向下⽐较直到第n-1和第n个数⽐较完,第⼀轮结束。
(这时候最⼤的数移动到了第n个数的位置)④重复前三步,但是只⽐较到第n-1个数(将第⼆⼤的数移动到第n-1个数位置)⑤持续每次对越来越少的元素重复上⾯的步骤,直到没有任何⼀对数字需要⽐较。
举个实例:5,4,3,2,1,对其进⾏排序,先是⽐较5跟4变成4,5,3,2,1,第⼀轮结束后变成43215,可以计算,当对其排序完正好要经过4+3+2+1=10次⽐较,当然这是最复杂的情况,即完全反序。
可以知道对于n个数,⾄多要经过1+2+...+n-1即(n^2-n)/2次⽐较才能排好序。
这个式⼦⾥n的最⾼次阶是2,可知道当n→∞时,⼀次性对其⽐较次数影响很⼩,所以我们把这个算法的时间复杂度⽐作:o(n^2)。
取其最⾼次,可以看出,这是⼀个时间复杂度为多项式的表⽰⽅式。
这或许是众多OIer最大的误区之一。
你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。
你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。
他们没有搞清楚NP问题和NPC 问题的概念。
NP问题并不是那种“只有搜才行”的问题,NPC问题才是。
好,行了,基本上这个误解已经被澄清了。
下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很感兴趣就可以不看了。
接下来你可以看到,把NP问题当成是NPC问题是一个多大的错误。
还是先用几句话简单说明一下时间复杂度。
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。
也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。
不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。
不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。
同样地,O (n^3+n^2)的复杂度也就是O(n^3)的复杂度。
因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。
我们也说,O(n^100)的复杂度小于O(1.01^n)的复杂度。
什么是P问题、NP问题和NPC问题这或许是众多OIer最大的误区之一。
你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP 问题了”之类的话。
你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。
他们没有搞清楚NP问题和NPC问题的概念。
NP问题并不是那种“只有搜才行”的问题,NPC问题才是。
好,行了,基本上这个误解已经被澄清了。
下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很感兴趣就可以不看了。
接下来你可以看到,把NP问题当成是 NPC问题是一个多大的错误。
还是先用几句话简单说明一下时间复杂度。
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。
也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。
不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。
不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。
同样地,O (n^3+n^2)的复杂度也就是O(n^3)的复杂度。
因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。
P问题、NP问题、NPC问题的概念这或许是众多OIer最大的误区之一。
你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。
你要知道,大多数人此时所说的NP问题其实都是指的NP C问题。
他们没有搞清楚NP问题和NPC问题的概念。
NP问题并不是那种“只有搜才行”的问题,NPC 问题才是。
好,行了,基本上这个误解已经被澄清了。
下面的内容都是在讲什么是P问题,什么是NP问题,什么是NPC问题,你如果不是很感兴趣就可以不看了。
接下来你可以看到,把NP问题当成是NPC问题是一个多大的错误。
还是先用几句话简单说明一下时间复杂度。
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。
也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。
不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。
不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。
同样地,O(n^3+n^2)的复杂度也就是O(n^3)的复杂度。
P问题、NP问题、NPC问题、NP难问题的概念NP困难: NP-hardNP: Non-deterministic Polynomial(非确定型多项式)NP问题: 用非确定性图灵机能在多项式时间内验证的一类问题.NP困难问题: 若NP中的每个问题R都能多项式归约到S,则S是NP困难问题. NP完全问题: 若NP中的每个问题R都能多项式归约到S且S是NP问题,则S 是NP完全问题.从上面定义可知,NP困难问题可以是NP完全问题,也可以不是NP完全问题.但NP完全问题一定是NP困难的.还是先用几句话简单说明一下时间复杂度。
时间复杂度并不是表示一个程序解决问题需要花多少时间,而是当问题规模扩大后,程序需要的时间长度增长得有多快。
也就是说,对于高速处理数据的计算机来说,处理某一个特定数据的效率不能衡量一个程序的好坏,而应该看当这个数据的规模变大到数百倍后,程序运行时间是否还是一样,或者也跟着慢了数百倍,或者变慢了数万倍。
不管数据有多大,程序处理花的时间始终是那么多的,我们就说这个程序很好,具有O(1)的时间复杂度,也称常数级复杂度;数据规模变得有多大,花的时间也跟着变得有多长,这个程序的时间复杂度就是O(n),比如找n个数中的最大值;而像冒泡排序、插入排序等,数据扩大2倍,时间变慢4倍的,属于O(n^2)的复杂度。
还有一些穷举类的算法,所需时间长度成几何阶数上涨,这就是O(a^n)的指数级复杂度,甚至O(n!)的阶乘级复杂度。
不会存在O(2*n^2)的复杂度,因为前面的那个“2”是系数,根本不会影响到整个程序的时间增长。
同样地,O (n^3+n^2)的复杂度也就是O(n^3)的复杂度。
因此,我们会说,一个O(0.01*n^3)的程序的效率比O(100*n^2)的效率低,尽管在n很小的时候,前者优于后者,但后者时间随数据规模增长得慢,最终O(n^3)的复杂度将远远超过O(n^2)。
我们也说,O(n^100)的复杂度小于O(1.01^n)的复杂度。
P NP NPC三者问题阐述1)"P对NP问题"是什么意思?首先说明一下问题的复杂性和算法的复杂性的区别,下面只考虑时间复杂性。
算法的复杂性是指解决问题的一个具体的算法的执行时间,这是算法的性质;问题的复杂性是指这个问题本身的复杂程度,是问题的性质。
比如对于排序问题,如果我们只能通过元素间的相互比较来确定元素间的相互位置,而没有其他的附加可用信息,则排序问题的复杂性是O(nlgn),但是排序算法有很多,冒泡法是O(n^2),快速排序平均情况下是O(nlgn)等等,排序问题的复杂性是指在所有的解决该问题的算法中最好算法的复杂性。
问题的复杂性不可能通过枚举各种可能算法来得到,一般都是预先估计一个值,然后从理论上证明。
为了研究问题的复杂性,我们必须将问题抽象,为了简化问题,我们只考虑一类简单的问题,判定性问题,即提出一个问题,只需要回答yes或者no的问题。
任何一般的最优化问题都可以转化为一系列判定性问题,比如求图中从A到B的最短路径,可以转化成:从A 到B是否有长度为1的路径?从A到B是否有长度为2的路径?…从A到B是否有长度为k 的路径?如果问到了k的时候回答了yes,则停止发问,我们可以说从A到B的最短路径就是k。
如果一个判定性问题的复杂度是该问题的一个实例的规模n的多项式函数,则我们说这种可以在多项式时间内解决的判定性问题属于P类问题。
P类问题就是所有复杂度为多项式时间的问题的集合。
然而有些问题很难找到多项式时间的算法(或许根本不存在),比如找出无向图中的哈米尔顿回路问题,但是我们发现如果给了我们该问题的一个答案,我们可以在多项式时间内判断这个答案是否正确。
比如说对于哈米尔顿回路问题,给一个任意的回路,我们很容易判断他是否是哈米尔顿回路(只要看是不是所有的顶点都在回路中就可以了)。
这种可以在多项式时间内验证一个解是否正确的问题称为NP问题。
显然,所有的P 类问题都是属于NP问题的,但是现在的问题是,P是否等于NP?这个问题至今还未解决。