《自动控制》一二阶典型环节阶跃响应实验分析报告报告材料
- 格式:doc
- 大小:1.38 MB
- 文档页数:23
自动控制原理实验报告作者姓名学科专业机械工程及自动化班级学号X X年10月27日实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2、学习在电子模拟机上建立典型环节系统模型的方法。
3、学习阶跃响应的测试方法。
二、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。
2、建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。
三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s()1C s KR s Ts φ=+()=模拟运算电路如下图:其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.25,0.5,1。
记录实验数据,测量过度过程的性能指标,其中按照经验公式取3s t T=2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下:在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,1;记录所测得的实验数据以及其性能指标,其中经验公式为3.5%100%,s net σζω=⨯=.四、试验设备:1、HHMN-1型电子模拟机一台。
2、PC机一台。
3、数字万用表一块。
4、导线若干。
五、实验步骤:1、熟悉电子模拟机的使用,将各运算放大器接成比例器,通电调零。
2、断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。
3、将D/A输出端与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
实验一环典型环节节及其阶跃响应班级:学号:姓名:一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响;2.学习典型环节阶跃响应的测量方法,并学会根据阶跃响应曲线计算典型环节的传递函数;二、实验仪器1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2.时域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标[自动控制实验系统] 运行软件。
2)测试计算机与实验箱的通信是否正常,通信正常继续。
如通信不正常查找原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。
检查无误后接通电源。
4)在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应] 。
5)鼠标单击实验课题弹出实验课题参数窗口。
在参数设置窗口中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。
6)用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:YM A X- Y∞Ó%=——————×100%Y∞ T P 与T S :利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态 值所需的时间值,便可得到T P 与T S 。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应: 1.比例环节的模拟电路及其传递函数:G (s )=-R1/R22.惯性环节:G(s)= -K/TS+1 K=R2/R1 ,T=R2C; 3.积分环节 G(S)= 1/TS T=RC 4.微分环节G(S)=-RCS5.比例+微分环节G(S)= -K(TS+1) K=R2/R1 T=R2C6.比例+积分环节G(S)=K(1+1/TS) K=R2/R1 T=R2C五、实验步骤1.启动计算机,在桌面双击图标【自动控制实验系统】运行软件。
典型环节及其阶跃响应实验报告实验报告:典型环节及其阶跃响应
摘要:
本实验旨在通过对典型环节的研究,探究环节对阶跃响应的影响。
通过实验数据的收集和分析,我们成功地建立了模型,并在此基础上进行了进一步探究。
实验操作:
1. 环节参数测量
本实验分别测量了三类环节的参数:惯性环节、比例环节和一阶惯性环节。
在测量期间,我们对示波器进行了正确连接,以确保实验数据的准确性。
2. 阶跃响应测试
我们在实验中使用了脉冲信号作为输入,并记录了系统的阶跃
响应。
3. 数据分析
我们使用MATLAB软件对实验数据进行了分析,并绘制了相
应的图表。
通过对图表的观察,我们可以清晰地看到各个环节对
系统响应的影响。
结果与讨论:
通过对典型环节的实验研究,我们得出了以下结论:
1. 惯性环节会显著影响系统的阶跃响应。
惯性越大,系统的响
应越迟缓,稳态误差也增加。
2. 比例环节是最简单的环节,但是其特性并不适合所有的系统。
在一些情况下,比例环节的加入会加剧系统的振荡。
3. 一阶惯性环节的响应相对较为平滑,且稳态误差也较小。
但是在某些情况下,一阶惯性环节的响应速度可能会比较慢。
结论:
本实验成功研究了典型环节对阶跃响应的影响。
我们成功地建立了模型,并通过对实验数据的分析,得出了较为准确的结论。
我们相信,这些研究成果将会对相关学科的研究和开发产生积极的推动作用。
实验一典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为,1,2时,输入幅值为的正向阶跃信号,理论上依次输出幅值为,,的反向阶跃信号。
实验中,输出信号依次为幅值为,,的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%.在误差允许范围内可认为实际输出满足理论值。
2、 积分环节积分环节传递函数为:〔1〕T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图:与实验测得波形比较可知,实际与理论值较为吻合,理论上时的波形斜率近似为时的三倍,实际上为,在误差允许范围内可认为满足理论条件。
3、 惯性环节惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1= 1不变,观测秒,秒〔既R 1 = 100K,C = 1μf ,μf 〕时的输出波形。
利用matlab 仿真得到理论波形如下:时t s 〔5%〕理论值为300ms,实际测得t s =400ms 相对误差为:〔400-300〕/300=33.3%,读数误差较大。
K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近。
时t s 〔5%〕理论值为30ms,实际测得t s =40ms 相对误差为:〔40-30〕/30=33.3% 由于ts 较小,所以读数时误差较大。
K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近(2) 保持T = R f s 不变,分别观测K = 1,2时的输出波形。
K=1时波形即为〔1〕中时波形K=2时,利用matlab 仿真得到如下结果:t s 〔5%〕理论值为300ms,实际测得t s =400ms相对误差为:〔400-300〕/300=33.3% 读数误差较大K 理论值为2,实验值, 相对误差为〔〕/2=5.7%if i o R RU U -=1TS K)s (R )s (C +-=与理论值较为接近。
《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。
二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。
2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。
3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。
根据系统的阶数不同,其响应形式也不同。
实验仪器:电动力控制实验台,控制箱,计算机等。
三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。
2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。
3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。
4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。
5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。
6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。
四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。
根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。
2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。
根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。
五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。
通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。
一、实验背景随着现代工业和科技的飞速发展,自动控制技术在各个领域得到了广泛应用。
为了使学生更好地理解和掌握自动控制原理及其应用,我们进行了为期两周的自控实验。
本次实验旨在通过实际操作,加深对自动控制原理的理解,提高动手实践能力。
二、实验目的1. 熟悉自动控制实验的基本原理和方法;2. 掌握控制系统时域性能指标的测量方法;3. 学会运用实验仪器进行实验操作和数据分析;4. 提高团队合作意识和解决问题的能力。
三、实验内容1. 典型环节及其阶跃响应实验本实验通过模拟电路,研究了典型环节(比例环节、积分环节、微分环节)的阶跃响应。
通过改变电路参数,分析了参数对系统性能的影响。
2. 二阶系统阶跃响应实验本实验研究了二阶系统的阶跃响应,通过改变系统的阻尼比和自然频率,分析了系统性能的变化。
3. 连续系统串联校正实验本实验研究了连续系统串联校正方法,通过调整校正装置的参数,使系统达到期望的性能指标。
4. 直流电机转速控制实验本实验利用LabVIEW图形化编程方法,编写电机转速控制系统程序,熟悉PID参数对系统性能的影响,通过调节PID参数掌握PID控制原理。
四、实验结果与分析1. 典型环节及其阶跃响应实验通过实验,我们观察到不同环节的阶跃响应曲线。
在比例环节中,随着比例系数的增加,系统的超调量减小,但调整时间增加。
在积分环节中,随着积分时间常数增大,系统的稳态误差减小,但调整时间增加。
在微分环节中,随着微分时间常数增大,系统的超调量减小,但调整时间增加。
2. 二阶系统阶跃响应实验通过实验,我们分析了二阶系统的性能。
在阻尼比小于1时,系统为过阻尼状态,响应速度慢;在阻尼比等于1时,系统为临界阻尼状态,响应速度适中;在阻尼比大于1时,系统为欠阻尼状态,响应速度快。
3. 连续系统串联校正实验通过实验,我们掌握了串联校正方法。
通过调整校正装置的参数,可以使系统达到期望的性能指标。
4. 直流电机转速控制实验通过实验,我们学会了利用LabVIEW图形化编程方法,编写电机转速控制系统程序。
实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。
实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。
2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。
3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。
利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。
T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。
K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。
一、实验目的1. 了解并掌握典型环节的原理和特点。
2. 熟悉阶跃响应实验方法,分析典型环节阶跃响应的特性。
3. 通过实验,提高对自动控制理论的认识和实际操作能力。
二、实验原理1. 典型环节:比例环节、惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节等。
2. 阶跃响应:当系统输入信号从零突然跃变到某一值时,系统输出信号随时间的变化规律。
3. 阶跃响应特性:上升时间、调整时间、超调量、稳态误差等。
三、实验仪器1. 自动控制系统实验箱2. 计算机3. 数据采集卡4. 信号发生器5. 示波器四、实验内容1. 比例环节阶跃响应实验(1)搭建比例环节实验电路,包括比例环节电路、运算放大器、反馈电阻、输入电阻等。
(2)调整电路参数,使比例环节的传递函数为G(s) = K。
(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。
2. 惯性环节阶跃响应实验(1)搭建惯性环节实验电路,包括惯性环节电路、运算放大器、反馈电阻、输入电阻等。
(2)调整电路参数,使惯性环节的传递函数为G(s) = Kτs/(τs+1)。
(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。
3. 积分环节阶跃响应实验(1)搭建积分环节实验电路,包括积分环节电路、运算放大器、反馈电阻、输入电阻等。
(2)调整电路参数,使积分环节的传递函数为G(s) = 1/s。
(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。
4. 比例积分环节阶跃响应实验(1)搭建比例积分环节实验电路,包括比例积分环节电路、运算放大器、反馈电阻、输入电阻等。
(2)调整电路参数,使比例积分环节的传递函数为G(s) = K(1+τs)/s。
(3)在输入端施加阶跃信号,利用数据采集卡和示波器观察输出波形,记录上升时间、调整时间、超调量等特性。
成绩:____大连工业大学《自动控制原理》实验报告实验1 典型环节的阶跃响应专业名称:自动化班级学号:自动化10I-JK学生姓名:ABCD指导老师:EFGH实验日期:年月日一、实验目的1、熟悉各种典型环节的阶跃响应曲线;2、了解参数变化对典型环节动态特性的影响。
二、实验原理实验任务1、比例环节(K)从图0-2的图形库浏览器中拖曳Step(阶跃输入)、Gain(增益模块)、Scope(示波器)模块到图0-3仿真操作画面,连接成仿真框图。
改变增益模块的参数,从而改变比例环节的放大倍数K,观察它们的单位阶跃响应曲线变化情况。
可以同时显示三条响应曲线,仿真框图如图1-1所示。
2、积分环节(1Ts)将图1-1仿真框图中的Gain(增益模块)换成Transfer Fcn (传递函数)模块,设置Transfer Fcn(传递函数)模块的参数,使其传递函数变成1Ts型。
改变Transfer Fcn(传递函数)模块的参数,从而改变积分环节的T,观察它们的单位阶跃响应曲线变化情况。
仿真框图如图1-2所示。
3、一阶惯性环节(11 Ts+)将图1-2中Transfer Fcn(传递函数)模块的参数重新设置,使其传递函数变成11Ts+型,改变惯性环节的时间常数T,观察它们的单位阶跃响应曲线变化情况。
仿真框图如图1-3所示。
4、实际微分环节(1KsTs +) 将图1-2中Transfer Fcn (传递函数)模块的参数重新设置,使其传递函数变成1KsTs +型,(参数设置时应注意1T )。
令K 不变,改变Transfer Fcn (传递函数)模块的参数,从而改变T ,观察它们的单位阶跃响应曲线变化情况。
仿真框图如图1-4所示。
5、二阶振荡环节(2222nn ns s ωξωω++) 将图1-2中Transfer Fcn (传递函数)模块的参数重新设置,使其传递函数变成2222nn ns s ωξωω++型(参数设置时应注意01ξ<<),仿真框图如图1-5所示。
自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2. 学习在电子模拟机上建立典型环节系统模型的方法。
3. 学习阶跃响应的测试方法。
二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。
2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。
三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。
222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。
一、实验目的1. 研究二阶系统的特征参数(阻尼比和无阻尼自然频率)对系统动态性能的影响。
2. 定量分析最大超调量(Mp)和调节时间(t)之间的关系。
3. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。
4. 加深对线性系统稳定性的理解,即稳定性只与其结构和参数有关,而与外作用无关。
5. 学习利用MATLAB仿真分析二阶控制系统的阶跃响应。
二、实验原理二阶系统是控制系统中常见的一种类型,其动态性能主要取决于阻尼比(ζ)和无阻尼自然频率(ωn)。
阶跃响应是指系统在输入端突然施加一个阶跃信号时,系统输出信号随时间变化的规律。
通过分析阶跃响应,可以评估系统的动态性能,如超调量、调节时间等。
三、实验设备1. 自动控制系统实验箱一台2. 计算机一台3. Matlab 6.5编程软件四、实验步骤1. 搭建实验电路:根据实验要求,搭建一个二阶系统的模拟电路,并连接好实验设备。
2. 设置参数:利用Matlab软件设置二阶系统的阻尼比和无阻尼自然频率,并观察阶跃响应曲线。
3. 分析动态性能指标:根据阶跃响应曲线,计算最大超调量(Mp)和调节时间(t)。
4. 改变参数,观察影响:逐步改变阻尼比和无阻尼自然频率,观察系统动态性能的变化,并记录实验数据。
五、实验结果与分析1. 阻尼比对动态性能的影响:当阻尼比ζ=0时,系统处于过冲状态,超调量较大;随着阻尼比的增大,超调量逐渐减小,系统趋于稳定。
当ζ=1时,系统处于临界稳定状态,超调量为0。
当ζ>1时,系统处于欠阻尼状态,超调量减小,但调节时间增加。
2. 无阻尼自然频率对动态性能的影响:当无阻尼自然频率ωn增大时,系统的响应速度加快,超调量减小,调节时间缩短。
3. 最大超调量与调节时间的关系:随着阻尼比的增大,最大超调量逐渐减小,调节时间逐渐增加。
两者之间存在一定的平衡关系。
六、结论通过本次实验,我们掌握了二阶系统的阶跃响应特性,以及阻尼比和无阻尼自然频率对系统动态性能的影响。
自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。
6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。
二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。
自动控制原理实验报告实验名称:线性系统的时域分析线性系统的频域分析线性系统的校正与状态反馈班级:学号:姓名:指导老师:2013 年12 月15日典型环节的模拟研究一. 实验目的1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.实验内容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U = 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元‘右显示)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线。
自动控制原理实验分析报告姓名:学号:班级:一、典型一阶系统的模拟实验:1.比例环节(P) 阶跃相应曲线。
传递函数:G(S)=-R2/R1=K说明:K为比例系数(1)R1=100KΩ,R2=100KΩ;特征参数实际值:K=-1.(2)(2)R1=100KΩ,R2=200KΩ;即K=-2.〖分析〗:经软件仿真,比例环节中的输出为常数比例增益K;比例环节的特性参数也为K,表征比例环节的输出量能够无失真、无滞后地按比例复现输入量。
2、惯性环节(T) 阶跃相应曲线及其分析。
传递函数:G(S)=-K/(TS+l) K=R2/R1 , T=R2C说明:特征参数为比例增益K和惯性时间常数T。
(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。
(2)、R2=R1=100KΩ , C=0.1µF;特征参数实际值:K=-1,T=0.01。
〖分析〗:惯性环节的阶跃相应是非周期的指数函数,当t=T时,输出量为0.632K,当t=3~4T时,输出量才接近稳态值。
比例增益K表征环节输出的放大能力,惯性时间常数T表征环节惯性的大小,T越大表示惯性越大,延迟的时间越长,反之亦然。
传递函数:G(S)= -l/TS ,T=RC说明:特征参数为积分时间常数T。
(1)、R=100KΩ , C=1µF;特征参数实际值:T=0.1。
(2)R=100KΩ , C=0.1µF;特征参数实际值:T=0.01。
〖分析〗:只要有一个恒定输入量作用于积分环节,其输出量就与时间成正比地无限增加,当t=T时,输出量等于输入信号的幅值大小。
积分时间常数T表征环节积累速率的快慢,T越大表示积分能力越强,反之亦然。
4、比例积分环节(PI) 阶跃相应曲线及其分析。
传递函数:G(S)=K( l+l/TS) K=-R2/R1, T=R2C说明:特征参数为比例增益K和积分时间常数T。
(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。
自动控制原理实验报告班级:自动化0906班学生: 伍振希(09213052)张小维(合作)任课教师:苗宇老师目录实验一典型环节及其阶跃响应 (1)一、实验目的 (1)二、实验仪器 (1)三、实验原理 (1)四、实验内容 (1)五、实验步骤 (2)六、实验结果 (3)实验二二阶系统阶跃响应 (6)一、实验目的 (6)二、实验仪器 (6)三、实验原理 (6)四、实验内容 (6)五、实验步骤 (7)六、实验结果 (7)实验三连续系统串联校正 (13)一、实验目的 (13)二、实验仪器 (13)三、实验内容 (13)四、实验步骤 (15)五、实验结果 (15)实验一典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。
2. 掌握控制系统时域性能指标的测量方法。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1.比例环节的模拟电路及其传递函数如图1-1。
G(S)= R2/R12.惯性环节的模拟电路及其传递函数如图1-2。
G(S)= - K/TS+1K=R2/R1,T=R2C3.积分环节的模拟电路及传递函数如图1-3。
G(S)=1/TST=RC4.微分环节的模拟电路及传递函数如图1-4。
G(S)= - RCS5.比例微分环节的模拟电路及传递函数如图1-5(未标明的C=0.01uf)。
G(S)= -K(TS+1)K=R2/R1,T=R1C五、实验步骤1.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
分组:成绩:__ _______北京航空航天大学自动控制原理实验报告实验一一、二阶系统的电子模拟及时域响应的动态测试学院专业方向班级学号学生姓名指导教师2014年11月目录一、实验目的 (1)二、实验内容 (1)三、实验原理 (1)四、实验设备 (2)五、实验步骤 (2)六、实验数据 (3)1.一阶系统实验数据及图形 (3)2.二阶系统实验数据及图形 (4)七、结论和误差分析 (6)结论: (6)误差分析: (7)八、收获与体会 (7)附录 (7)实验时间2014.11.1 同组同学 无一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2.学习在电子模拟机上建立典型环节系统模型的方法。
3.学习阶跃响应的测试方法。
二、实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。
2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的阶跃响应曲线,并测定其超调量σ%及过渡过程时间Ts 。
三、实验原理1.一阶系统实验原理系统传递函数为:()()()1C S Ks R S TS φ==+模拟运算电路如图1所示:图1212R R Uo(s)K ==Ui(s)CSR +1Ts+1在实验中始终取R2=R1,则K=1,T=R2*C 取不同的时间常数T ,T=0.25s ,T=0.5s ,T=1s记录不同的时间常数下阶跃响应曲线,测量并记录其过渡时间Ts (Ts=3T )2.二阶系统实验原理 其传递函数为:222()()()(2)n n n C S S R S S S ωζωωΦ==++令1n ω=弧度/秒,二阶系统模拟线路下图2所示:图2取R2*C1=1,R3*C2=1,则R4/R3=R4*C2=1/(2*ζ)及ζ=1/(2*R4*C2)理论值:3(0.05)s nt ζω≈∆=,%σ100%e =⨯四、实验设备1. HHMN-1 型电子模拟机一台2. PC 机一台3. 数字式万用表一块。
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
自动控制原理实验分析报告姓名:学号:班级:
一、典型一阶系统的模拟实验:
1.比例环节(P) 阶跃相应曲线。
传递函数:G(S)=-R2/R1=K
说明:K为比例系数
(1)R1=100KΩ,R2=100KΩ;特征参数实际值:K=-1.
(2)(2)R1=100KΩ,R2=200KΩ;即K=-2.
参数也为K,表征比例环节的输出量能够无失真、无滞后地按比例复现输入量。
传递函数:G(S)=-K/(TS+l) K=R2/R1 , T=R2C
说明:特征参数为比例增益K和惯性时间常数T。
(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,
T=0.1。
(2)、R2=R1=100KΩ , C=0.1µF;特征参数实际值:K=-1,T=0.01。
〖分析〗:惯性环节的阶跃相应是非周期的指数函数,当t=T时,输出量为0.632K,当t=3~4T时,输出量才接近稳态值。
比例增益K表征环节输出的放大能力,惯性时间常数T表征环节惯性的大小,T越大表示惯性越大,延迟的时间越长,反
之亦然。
传递函数:G(S)= -l/TS ,T=RC
说明:特征参数为积分时间常数T。
(1)、R=100KΩ , C=1µF;特征参数实际值:T=0.1。
(2)R=100KΩ , C=0.1µF;特征参数实际值:T=0.01。
〖分析〗:只要有一个恒定输入量作用于积分环节,其输出量就与时间成正比地无限增加,当t=T时,输出量等于输入信号的幅值大小。
积分时间常数T表征环节积累速率的快慢,T越大表示积分能力越强,反之亦然。
4、比例积分环节(PI) 阶跃相应曲线及其分析。
传递函数:G(S)=K( l+l/TS) K=-R2/R1, T=R2C
说明:特征参数为比例增益K和积分时间常数T。
(1)、R2=R1=100KΩ , C=1µF;特征参数实际值:K=-1,T=0.1。
(2)、R2=R1=100KΩ , C=0.1µF;特征参数实际值:K=-1,T=0.01。
〖分析〗:比例积分环节的输出是在比例作用的基础上,再叠加积分作用,其输出量随时间的增加无限地增加。
但是实际上放大器都有饱和特性,积分后的输出量不可能无限增加。
5、微分环节(D) 阶跃相应曲线及其分析。
传递函数:G(S)=-TS T=RC1
说明:特征参数为微分时间常数T。
(1)、R=100KΩ , C2=0.01µF,C1=1µF;特征参数实际值:T=0.1。
(2)、R=100KΩ , C2=0.01µF,C1=0.1µF;特征参数实际值:T=0.01。
〖分析〗:微分环节在输入信号维持恒值情况下,输出信号按指数规律随时间推移逐步下降,经过一段时间后,稳定输出为0。
实际微分环节不具备理想微分环节的特征,但是仍能够在输入跃变时,于极短时间内形成一个较强的脉冲输出。
其特征参数T表征了输出脉冲的面积。
6、比例微分环节(PD) 阶跃相应曲线及其分析。
传递函数:G(S)=K(TS+1) K= -R2/R1,T=R2C1。
说明:特征参数为比例增益K和微分时间常数T。
(1)、R2=R1=100KΩ , C2=0.01µF,C1=1µF;特征参数实际值:K= -1,T=0.1。
(2)、R2=R1=100KΩ , C2=0.01µF,C1=0.1µF;特征参数实际值:K= -1,T=0.01。
〖分析〗:比例微分环节是在微分作用的基础上,再叠加比例作用,其稳定输出与输入信号成比例关系。
二、典型二阶系统的模拟实验:
典型二阶系统的闭环传递函数为:
其中ζ 和ωn 对系统的动态品质有决定的影响。
1.典型二阶系统的模拟电路,并测量其阶跃响应:
二阶系统模拟电路图
其结构图为:
系统闭环传递函数为:
2
2
2
2)()()(n
n n
w s w s w s R s C S ++==ξ
φ
式中 T=RC,K=R2/R1。
比较上面二式,可得:ωn=1/T=1/RC ζ=K/2=R2/2R1。
2、画出系统响应曲线,再由ts和Mp计算出传递函数,并与由模拟电路计算的传递函数相比较。
(1)当R1=R=100KΩ,C=1uF,ωn=10rad/s时:
① R2=40KΩ,ζ=0.2,响应曲线:
〖分析〗:系统处于欠阻尼状态,0<ζ<1。
系统的闭环根为两个共轭复根,系统处于稳定状态,其单位阶跃响应是衰减振荡的曲线,又称阻尼振荡曲线。
其振荡频率为ωd ,称为阻尼振荡频率
② R2=100KΩ,ζ=0.5,响应曲线:
〖分析〗:系统处于欠阻尼状态,0<ζ<1。
系统的闭环根为两个共轭复根,系统处于稳定状态,其单位阶跃响应是衰减振荡的曲线,又称阻尼振荡曲线。
其振荡频率为ωd ,称为阻尼振荡频率。
〖总结〗:由①②两个实验数据和仿真图形可知:对不同的ζ,振荡的振幅和频率都是不同的。
ζ越小,振荡的最大振幅愈大,振荡的频率ωd也愈大,即超调量和振荡次数愈大,调整时间愈长。
当ζ =0.707时,系统达到最佳状态,此时称为最佳二阶系统。
③ R2=200KΩ,ζ=1,响应曲线:
〖分析〗:系统处于临界阻尼状态,ζ=1。
系统的闭环根为两个相等的实数根,系统处于稳定状态,其单位阶跃响应为单调上升曲线,系统无超调。
④ R2=240KΩ,ζ=1.2,响应曲线:
〖分析〗:系统处于过阻尼状态,ζ>1。
系统的闭环根为两个不相等的实数根,系统处于稳定状态,其单位阶跃响应也为单调上升曲线,不过其上升的速率较临界阻尼更慢,系统无超调。
⑤ R2=0KΩ,ζ=0,响应曲线:
〖分析〗:系统处于无阻尼或零阻尼状态,ζ=0。
系统的闭环根为两个共轭虚根,系统处于临界稳定状态(属于不稳定),其单位阶跃响应为等幅振荡曲线,又称自由振荡曲线,其振荡频率为ωn ,且ωn=1/(RC)。
(2)当R=100KΩ,C=0.1uF,ωn=100rad/s时:
① R2=40KΩ,ζ=0.2,响应曲线:
〖分析〗:在相同阻尼比ζ的情况下。
可见ωn 越大,上升时间和稳定时间越短。
其稳定性也越好。
② R2=100KΩ,ζ=0.5,响应曲线:
③ R2=0KΩ,ζ=0,响应曲线:
【总结】:典型二阶系统在不同阻尼比(无阻尼自然频率相同)情况下,它们的阶跃响应输出特性的差异是很大的。
若阻尼比过小,则系统的振荡加剧,超调量大幅增加;若阻尼比过大,则系统的响应过慢,又大大增加了调整时间。
一般情况下,系统工作在欠阻尼状态下。
但是ζ过小,则超调量大,振荡次数多,调节时间长,暂态特性品质差。
为了限制超调量,并使调节时间较短,阻尼比一般在0.4~0.8之间,此时阶跃响应的超调量将在25%~1.5%之间。
在相同阻尼比ζ的情况下。
可见ωn 越大,上升时间和稳定时间越短。
其稳定性也越好。