例1.7 已知现在投入1000元,第3年底投入2000元, 第10年底全部收入为5000元,计算半年换算名利率
解题:设半年换算名利率为 i ( 2 ) ,令 j i(2) / 2,则有
10(10 j0 )20 20(10 j0 )14 5000
令 f(i) 10 (1 0j)2 0 020 (1 0j)1 0 450,0分0 别验证f(j0),f(j1) 使得 f(j0)f(j1)0,则有 j2j0ff((jj01))(j1f(jj00)) 按照相同原则迭代出 j3 , j4 等
2.1 基本年金
续例2.1 A: 500(1 00.0)0 8 10 5000 50 70 9.5406
B: 5000 0 .00 8 10 0400000
C: 500001005000020451.445
a 100.08
(利息的发生过程未予考虑)
2.1 基本年金
2.1.2 期初年金
定义2.3 若年金的首次现金流在合同生效时立即产 生,随后依次分期进行,这种年金称为期初年金
aA (5 ) 1 .41a 0 B (5 6 ) 1 .4058
1.1 利率基本函数
定义1.11 设累积函数 a (t ) 为 t(t 0) 的连续可微函
数,则称函数
t
a' (t) ,(t 0)
a(t)
为累积函数a (t ) 对应的利息力函数,并称其在各个
时刻的值为利息力。
a(t)exp0t(sd)st,0
后5年内按月偿还,如果年实际利率为6.09%, 计算每月末的付款金额。
【解】付款按月进行,因此可以先将年利率转 换成实际月利率( 16.0% 9) 1/12 10.49% 3,86 再按照基本年金公式有