铀在土壤中的吸附动力学
- 格式:pdf
- 大小:139.00 KB
- 文档页数:4
铀吸附研究现状铀吸附研究是目前研究的热点问题之一,文章就各种物质对铀的吸附试验进行总结,进而提出目前面临的实际问题,在富磷铀水体中的铀吸附研究还罕有报道,值得我们关注。
标签:铀吸附;研究方法;核能源引言核能源的开发对环境的影响由来已久,随着当代工业科技的迅猛发展,人们对核能的需求也与日俱增,放射性污染的破坏程度越来越严重。
因此,研究放射性对环境影响及其吸附迁移的规律,对于环境保护和治理具有重要的理论和实际意义。
铀(uranium)位于元素周期表中第七周期第三副族元素,锕系元素之一,天然的放射性元素,原子序数92,原子量238.0289,密度18.95g/cm3。
自然界中铀的质量数包括234、235和238三种同位素,其相对丰度分别为0.006%,0.71%,99.28%,半衰期分别为2.475×105a,7.13×108a和4.507×109a。
关于铀吸附的实验研究已成为当今最具前景的研究课题之一,但是目前的研究还很少,主要集中在矿物,胶体以及微生物等方面,还需要我们不断努力。
文章就前人所做的铀吸附的相关实验进行总结。
1 国外的铀吸附实验的研究铀资源是当今社会核能发展的不可或缺的资源,铀不仅是重要的核能原料,同时也导致了主要的放射性污染。
铀的迁移及吸附对土壤及地下水的污染方面一直是人们较为关注的话题。
铀的吸附性研究,以研究天然材料对核素的吸附过程,如:美国能源部的“YuccaMountain”工程,利用火山灰、天然岩石、粘土等物质对U、Sr、Cs等14种核素,进行吸附实验,最终计算出多种核素在不同材料中的吸附百分数,并探讨溶液组成、核素浓度、温度及固相粒径对核素吸附性的影响。
EricSimoni等在法国的核物理研究所(IPN)的放射性实验室中放射性元素的吸附进行了研究,结合表面络合模型理论,主要对放射性的元素铀、钍等以及进行吸附试验的吸附材料的水溶液表面化学行为进行试验,进而总结出吸附规律。
微生物吸附铀的研究机理与展望摘要:水冶生产过程中产生一定的废物,其中的放射性核素能对地表水和地下水构成长期潜在危害。
微生物对铀的吸附作用可用于降低水中铀的浓度达到环境保护的目的。
本文探讨了微生物对铀的被动吸附机理,论述了其表面配合、氧化还原,无机微沉淀及离子交换等过程,并进行了展望。
前言铀矿冶生产过程中产生一定的废物,其中的放射性核素不可避免地进入环境水体。
这些核素进入环境后将对生态环境和人类健康构成潜在的危害。
因此,如何清除水体中的低浓度铀已成为众多学者所关注的重要问题[1]。
现就微生物吸附铀的机理进行讨论。
关键词:微生物吸附,铀,生物吸附剂,研究展望正文一铀在水体中的存在形式与去除方法由于排放源的不同,水体中铀的浓度也不尽相同,但铀存在形态基本类似,主要是以U(Ⅵ)和U(Ⅳ)2种价态与其它金属化合物或氧化物共存。
其中U(Ⅳ)容易与无机碳形成稳定的配合物,最终形成沉淀,而U(Ⅵ)则通常以UO22+铀酰离子形式存在,可溶性较好,不容易去除,水体除铀也主要指U(Ⅵ)及其化合物的去除。
核素铀污染处置的方法主要包括物理方法、化学方法和生物方法,如沸石吸附、离子交换、溶剂萃取等。
但物理化学方法成本较高,易造成二次污染,且难以用于治理环境中的面污染。
生物吸附(Biosorption)是指通过一系列生物化学作用使重金属离子被微生物细胞吸附的过程。
这一概念于1949年首先由Ruchhoft[2]等人提出他用活性污泥法从废水中回收了239Pu,描述了在清除污染的过程中增长的微生物有巨大表面积的“胶状基质能吸收放射性物质”。
大量研究表明,一些微生物,如细菌、真菌和藻类等对包括铀在内的金属离子都有很强的吸附能力[3]。
生物吸附法材料来源广泛,成本低;吸附速度快、吸附量大、处理效率高、pH值和温度范围宽;用一般的化学方法就可以解吸生物材料上吸附的金属离子,且解吸后的生物材料可再利用。
第 36卷 第6期2023 年12月Vol.36 No.6Dec. 2023投稿网址: 石油化工高等学校学报JOURNAL OF PETROCHEMICAL UNIVERSITIES吸附法提铀及提铀吸附剂的种类和性能强化策略白雪1,2,潘建明2(1. 河南工业大学化学化工学院,河南郑州 450001; 2. 江苏大学化学化工学院,江苏镇江 212013)摘要: 控制化石能源的使用、促进可替代新能源和清洁能源的发展,符合资源开发与环境保护协同发展的主题。
核能作为一种能量密度高的绿色能源,其广泛应用可缓解我国的能源短缺问题。
已探明的海水中铀资源约为陆地铀矿的1 000倍,海水提铀是确保铀资源长期供应及核能可持续发展的潜在方法。
吸附法因吸附效率高、操作简单、成本低和绿色环保等优点成为海水中铀酰离子提取的有效方法之一,但面临诸多挑战,如海水中铀酰离子的浓度极低且以Ca2UO2(CO3)3或[UO2(CO3)3]4-的形式稳定存在、共存离子种类和数量较多等。
因此,制备高性能吸附剂是实现海水提铀的关键。
综述了海水提铀吸附剂的类型及其性能强化策略,以期设计海水提铀吸附剂提供帮助。
关键词: 海水提铀; 吸附法; 吸附剂的种类; 性能强化; 偕胺肟; 纳米纤维基吸附剂中图分类号:TQ028 文献标志码: A doi:10.12422/j.issn.1006‐396X.2023.06.003Uranium Extraction by Adsorption and the Types and PerformanceEnhancement Strategies for AdsorbentsBAI Xue1,2,PAN Jianming2(1. School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou Henan 450001, China;2. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang Jiangsu 212013, China)Abstract: Controlling the use of fossil fuels and promoting the development of alternative new and clean energy sources is consistent with the theme of synergistic development between resource development and environmental protection. As a green energy source with high energy density, nuclear energy can be widely applied to alleviate the energy shortage in our country. The proven uranium resource content in seawater is more than 1 000 times higher than that in uranium mines. Extracting uranium from seawater is a potential way to ensure the long‐term supply of uranium resource and the sustainable development of nuclear power. Adsorption has emerged as one of the effective methods for extracting uranium from seawater due to its advantages of high adsorption efficiency, simple operation, low cost, and environmentally friendly. However, the adsorption faces a number of challenges when extracting uranium from seawater, such as the extremely low concentrations of uranium in seawater and their stable existence in the form of Ca2UO2(CO3)3or [UO2(CO3)3]4-, as well as a large variety and quantity of coexisting ions. Therefore, the preparation of high‐performance adsorbents to achieve efficient and selective separation and enrichment of uranium in seawater is one of the important research topics in the field of environmental science. In this review, the types of adsorbents for uranium extraction from seawater and the performance enhancement strategies of their properties are briefly introduced, with the aim of helping researchers in this field design promising adsorbents for practical seawater uranium extraction.Keywords: Uranium extraction from seawater;Adsorption;Types of adsorbents;Performance Enhancement;Amidoximes;Nanofiber based absorbent随着我国“双碳”目标的确立,控制化石能源消耗,促进新能源和清洁能源的发展势在必行[1]。