高分子助剂 稳定剂热稳定剂
- 格式:pptx
- 大小:291.29 KB
- 文档页数:22
1助剂是某些材料和产品在生产或加工过程中所需要添加的各种辅助化学品用以改善生产工艺和提高产品性能,树脂和生胶加工成塑料和橡胶制品这一过程中所需要的各种辅助化学品。
2喷聚:固体助剂的析出;发汗:液体助剂的析出。
3焦烧现象:是指橡胶胶料在加工过程中产生的早期硫化的现象。
4促进剂的后效应:在硫化温度以下,不会引起早期硫化达到硫化温度时则硫化活性大的这种性质。
5色母粒:是一种把超常量的颜料或染料均匀载附于树脂之中而制得的聚集体。
6增塑剂:是加进塑料体系中增加塑性同时又不影响聚合物本质特性的物质。
外增塑剂:一般为外加到聚合体系中的高沸点的较难挥发的液体或低熔点固体物质。
内增塑剂:在聚合物的聚合过程中引入能降低了聚合物分子链的结晶度增加了塑料的塑性第二单体物质。
主增塑剂:分子既能插入聚合物的无定形区域同时又能插入结晶区域的增塑剂。
辅助增塑剂:分子仅能插入部分结晶的聚合物的无定形区域的增塑剂,此增塑剂又叫非溶剂型增塑剂。
7相容性:增塑剂与树脂相互混合时的溶解能力,是增塑剂最基本要求之一。
8聚能密度(CED):单位体积溶剂的蒸发能。
9溶解度参数:单位体积溶剂的蒸发能的平方根所得值。
1浊点(Tc):聚合物与增塑剂的稀均相溶液,在冷却下变成浑浊时的温度。
2塑化效率:使树脂达到某一柔软程度的增塑剂用量称为该增塑剂的塑化效率。
3聚合物的氧化是指随着时间的增加聚合物的性能降低,又称为自动氧化。
分为诱导期、强烈氧化期。
4抗氧剂:是指对高聚物受氧化并出现老化现象能起到延缓作用的一类化学物质。
主抗氧剂:主抗氧剂被认为是一种自由基的清洗剂,它通过偶合反应(即终止反应)或给出一个氢原子来阻止聚合物中的自由基的破坏作用。
辅助抗氧剂:助抗氧剂的作用是可分解聚合物氧化所产生的过氧化物。
5金属离子钝化剂:具有防止重金属离子对聚合物产生引发氧化作用的物质。
6稳定剂:是防止或延缓聚合物在加工、贮藏和使用过程中老化变质的化学药品。
热稳定剂:主要用于PVC和其他含氯的聚合物,既不影响其加工与应用,又能在一定程度上起到延缓其热分解的作用的一类助剂。
高分子材料助剂详解高分子材料助剂是一种用于改善高分子材料性能的添加剂。
它可以通过改变高分子材料的分子结构或改善加工工艺来提高材料的力学性能、热性能、电性能、耐候性、耐化学性等方面的性能。
本文将详细介绍高分子材料助剂的种类及其作用机制。
增塑剂是一种能增加高分子材料柔软度和可塑性的助剂。
增塑剂主要通过两种机制起作用:第一种机制是与高分子材料相容形成可靠的分散体系,第二种机制是在高分子材料之间形成弱的力学键。
这两种机制使得高分子材料的分子间空隙增加,从而提高了材料的柔软性和延展性。
稳定剂是一种能保护高分子材料免受外界因素(如热、光、氧、溶剂等)影响的助剂。
稳定剂可以防止高分子材料的分子链断裂、氧化和降解等现象的发生,从而延长材料的使用寿命。
稳定剂的选择通常根据高分子材料的特性以及使用环境的需求进行。
增强剂是一种能提高高分子材料强度、刚度和耐磨性的助剂。
增强剂主要通过增加高分子材料的纤维含量或改变其分子结构来提高材料的力学性能。
常用的增强剂有纤维增强剂、颗粒增强剂等。
填充剂是一种能改善高分子材料热导率、抗压强度和耐磨性的助剂。
填充剂主要通过填充高分子材料空隙、增加材料的接触面积来提高材料的物理性能。
常用的填充剂有纳米填料、粉状填料、纤维填料等。
除了上述介绍的几种常见助剂外,高分子材料助剂还包括阻燃剂、抗氧化剂、抗静电剂等。
这些助剂可以根据高分子材料的性质和使用要求进行选择和配置,以获得最佳的性能。
综上所述,高分子材料助剂在高分子材料的开发和应用中起到了至关重要的作用。
不同种类的助剂具有不同的作用机制,能够改善高分子材料的力学性能、热性能、电性能、耐候性、耐化学性等方面的性能。
通过合理选择和配置助剂,可以使高分子材料更好地适应各种使用环境和要求,提高材料的综合性能和使用寿命。
塑料助剂的分类
塑料助剂是指添加在塑料制品中,能够改善或调整其特定性能的化学物质。
根据其作用和性质的不同,可以将塑料助剂分为以下几类: 1. 增塑剂:增塑剂能够提高塑料的柔韧性,常用的有邻苯二甲酸酯类、磷酸酯类、醇酸酯类等。
2. 热稳定剂:热稳定剂能够防止塑料在高温下分解,常用的有有机锡类、铅盐类、有机锑类等。
3. 抗氧化剂:抗氧化剂能够防止塑料在空气中氧化老化,常用的有苯酚类、萘醌类、磷酸类等。
4. 紫外线吸收剂:紫外线吸收剂能够吸收紫外线,防止塑料发生老化、变黄,常用的有苯酚类、三苯基三唑类等。
5. 催化剂:催化剂能够促进塑料加工反应,常用的有有机锡类、氧化锌等。
6. 着色剂:着色剂能够使塑料呈现不同的颜色,常用的有有机颜料、无机颜料等。
7. 防静电剂:防静电剂能够防止塑料表面产生静电,常用的有磷酸盐类、氨基硅油等。
以上是塑料助剂的主要分类,不同的助剂可以组合使用,以达到更好的效果。
然而,需要注意的是,过量使用助剂可能会对环境造成负面影响,因此在生产和使用中需要谨慎使用。
- 1 -。
热稳定剂热稳定剂((抗黄变剂抗黄变剂))-H10
产品描述余姚恒泽化工热稳定剂H10主要成分是磷酸盐类复合物,白色粉末状。
最小包装净重为25公斤。
特性及应用
热稳定剂H10可以有效抵抗聚合物在加工过程中由于高剪切和高压力产生的热降解和黄变。
本品主要适合于尼龙(PA6、PA66)和聚酯(PBT 、PET )。
本品典型应用和优点如下:
1)作为加工稳定剂可以有效抵抗产品的褪色和降解,添加本品的本色制品很白。
2)可以作为抗氧剂的协同稳定剂,与其他抗氧剂同时使用,效果更加。
3)在热老化条件下延长聚合物的寿命。
4)作为端基稳定剂,防止解聚。
5)户外条件下抵抗黄变。
6)挥发性非常低。
7)在最高的加工温度下非常稳定。
8)在废丝再生料中非常有效。
添加量和加工方式添加量和加工方式::
热稳定剂H10的添加量一般为0.1-0.3%,,具体添加量取决去聚合物的种类和最终制品想要达到的效果。
最好的添加方式是使用双螺杆挤出机共混造粒,也可以通过干混的方法将添加剂与聚合物进行均匀的混合。
在干混的时候建议适当添加一定比例的粘合油(比如硅油等)以确保添加剂均匀混合于聚合物中。
注意事项注意事项::本品不适用于含有三氧化二锑体系的聚合物。
常用塑料助剂简介一、稳定助剂1.热稳定剂热稳定剂聚氯乙烯由于能和许多其它材料如增塑剂、填料及其它聚合物相容,因而被认为是最通用的聚合物之一。
其主要缺点就是热稳定性差。
添加剂的使用可改变聚氯乙烯(PVC)的物理外观和工作特性,但不能防止聚合物的分解。
虽然在物理的(如热、辐射)和化学的(氧,臭氧)因素作用下总是会使聚合物材料逐渐地破坏,但叫做稳定剂的一类物质可有效地阻止、减少甚至基本停止材料的降解。
关于PVC的破坏过程,人们提出了各种机理:热氧化分解;无氧情况下增长大自由基的交联;立构规性对降解的影响;光降解;氧化脱氯化氢;辐射降解;加工过程引入的临界应力导致的分子链断裂;以及PVC分子中支化点对降解的影响等。
从化学上来说这些机理是非常相似的,并且可以直接与PVC的物理状态相联系。
PVC 降解的最重要的原因是脱氧化氢,表示如下:随着脱氯化氢过程的继续,出现共轭双键,聚合物吸收光的波长发生变化,当在一个共轭体系中出现6或7个多烯结构时,PVC分子吸收紫外光,从而呈现黄色。
这里最多能产生0.1%的氯化氢。
随着降解过程的继续,双键增加,吸收光波长变化,PVC的颜色也逐渐变深,深黄色,摇拍色,红棕色,直至完全变黑。
当聚合物进一步受损时,继而发生氧化,链断裂,最后交联。
为了最大限度地弥补PVC均聚物和共聚物的严重缺陷,需要用稳定剂消除引起开始脱氯化氢的不稳定部位;或作为氯化氢的清除剂;或当自由基产生时便与之反应;或作为抗氧剂;或改变多烯结构以阻止颜色变化、分子链断裂和交联。
稳定剂必须与PVC体系相容,不会损害材料体系整体的美感,并且还应具有调节润滑的性能。
对某一具体的树脂、复合组份、最终用途选定好稳定剂,可得到优良的PVC掺混物。
PVC 树脂的敏感性以及各种添加剂的稳定作用或有害效应可能是多种多样的,这需要逐一加以注意。
因此,必须注意到像树脂的锌敏感性,金属皂润滑剂的稳定性能,环氧及磷类增塑剂的工作特性,以及各种颜料及其它组份的影响等现象。
高分子材料的热稳定性与退火行为随着科技的发展和进步,高分子材料在现代工业中得到了广泛的应用。
高分子材料具有许多优点,如轻质、耐腐蚀、绝缘性能好等。
然而,在高温环境下,高分子材料往往会出现热稳定性差、退火等问题。
本文将重点介绍高分子材料的热稳定性与退火行为,并探讨如何提升其热稳定性。
首先,我们来谈谈高分子材料的热稳定性。
高分子材料通常是通过聚合反应得到的,并且具有长链结构。
在高温下,长链结构很容易发生断裂和交联反应,导致材料性能下降。
此外,热稳定性也与高分子材料的分子结构有关。
一些高分子材料中的化学键结构不稳定,容易发生热解,导致材料的性能受到损害。
为了提高高分子材料的热稳定性,科学家们采取了一系列措施。
一种常见的方法是添加热稳定剂。
热稳定剂是能够延缓高分子材料热解过程的化学物质。
它可以在高温下吸收热量,阻止或减缓热解反应的进行。
热稳定剂的选择要注意其化学稳定性和相容性与基体材料的适应性。
此外,科学家还通过合成改性高分子材料来提高其热稳定性。
通过引入稳定性较高的基团或调整分子结构,可以增强材料的热稳定性。
除了热稳定性外,退火行为也是高分子材料中的一个重要问题。
高分子材料通常在制备过程中需要经历退火步骤,以提高材料的物理性能。
然而,退火可以导致高分子材料发生结构重排或结晶行为,从而影响其性能。
退火行为主要包括固态退火和溶液退火。
固态退火是将高分子材料在一定温度下保持一段时间,使其分子在局部重新排列,从而改善材料的物理性质。
溶液退火是将高分子材料溶解在溶剂中,然后通过控制溶剂中高分子的浓度和温度,达到分子链的松弛和固定的目的。
值得一提的是,退火过程也会带来一些问题。
一方面,退火过程会使高分子材料发生晶化,导致材料的透明度下降。
晶体结构的出现会导致光的散射,从而影响高分子材料的光学性能。
另一方面,退火过程也会导致高分子材料的形状发生改变,从而影响其在工业应用中的应用效果。
因此,退火工艺需要谨慎控制,以保证材料的性能和形状。
高分子材料助剂高分子材料助剂是一种添加到高分子材料中以改善其性能的化学物质。
它们可以用于塑料、橡胶、纤维和其他高分子材料的生产过程中,以提高产品的质量、稳定性和功能。
高分子材料助剂的种类繁多,可以分为增塑剂、稳定剂、阻燃剂、增强剂、填充剂等多个类别。
其中,增塑剂是其中一类较为常见的助剂。
增塑剂可以增加高分子材料的柔软性、延展性和韧性,使其更易加工和成型。
常见的增塑剂有邻苯二甲酸酯、磷酸酯和脂肪酸酯等。
稳定剂可以帮助高分子材料抵抗氧化、热降解和光降解等不良环境影响。
其作用是通过抑制自由基、金属催化、光敏化和氧化反应等途径来延长高分子材料的寿命。
一些常见的稳定剂包括有机锡化合物、光稳定剂和热稳定剂等。
阻燃剂是一类重要的高分子材料助剂,可使材料具有较好的阻燃性能。
它们可以减缓燃烧速度、减少火焰蔓延和降低有害气体和烟雾的产生。
常见的阻燃剂有溴化物、氯化物和磷化物等。
增强剂用于提高高分子材料的强度、刚度和耐磨性。
主要的增强剂有玻璃纤维、碳纤维和纳米填料等。
填充剂主要是用来调整高分子材料的密度、热导率、膨胀系数和收缩性等性能。
常见的填充剂包括粉末、纤维、颗粒和纳米颗粒等。
高分子材料助剂的应用可以使高分子材料具有更多的应用场景和功能。
例如,通过添加阻燃剂,高分子材料可以在建筑行业中用于制造阻燃墙板、防火门和防火帘等;通过添加增塑剂,可以生产具有良好柔软性的塑料制品,如塑料袋和塑料瓶;通过添加稳定剂,可以延长高分子材料的使用寿命,使其更适用于室外使用等。
总之,高分子材料助剂在高分子材料行业中起着非常重要的作用。
它们能够改善高分子材料的性能,提高产品的质量和功能,拓宽高分子材料的应用领域,为各行各业提供更多的选择。
随着科技的不断进步,高分子材料助剂的研究和应用将会更加深入,从而推动高分子材料行业的发展。
聚合物的添加剂介绍1.介绍现代生活的方方面面均会涉及高分子材料。
高分子材料是由单体分子经聚合而得的高分子量材料,其分子量普遍大于1万。
高分子材料在应用上很少单独使用,几乎所有的高分子材料或多或少都会添加一定的其他物质,以满足不同的使用要求。
实际加工制造以及终端使用过程中,对高分子材料各方面特性有着多元化的要求,如机械结构件对材料的机械性有较高要求,电气零部件要求有良好的绝缘鞋等,因此,单一的添加剂往往难以满足。
根据添加剂实现的功能差异,大致可分为稳定剂、增塑剂、润滑剂、交联剂和固化剂、填充剂、抗冲击剂、抗静电剂等。
实际生产中,根据终端需求,添加多种添加剂,实现高分子材料的复配,满足制品需求。
2.稳定剂高分子材料制品长期暴露于自然或人工环境中,在光、热、氧、水、微生物等缓慢作用下,使高分子的表面结构甚至内部结构发生不可逆的质变或破坏,称之为材料的老化。
材料的老化往往意味着性能的恶化,可分为外观的变化以及物理化学性能的变化。
外观变化有表面变黄、光泽度和透明度的降低、裂纹的产生等;物理化学变化有机械强度和绝缘性能的下降、脆性增加、溶解度等的改变等。
材料的老化是其耐候性或耐久性的直接体现,影响因素诸多,可分为内因和外因。
内因方面,主要取决于高分子链的化学结构和聚集态结构。
化学结构主要取决于化学键的强度,键能越低,键断裂所需能量越小,材料也越容易发生老化。
聚集态结构主要指结晶度。
通常,高分子材料可分为结晶区和无定型区,结晶区密度大于无定型区,氧、水等物质更难渗透进内部结构,因此相应的老化速率也较慢。
外因方面则包括物理因素(光、热、应力、电场、射线等)、化学因素(氧、臭氧、重金属离子、化学介质等)与生物因素(微生物与小动物)。
诸多外因中,以光、氧、热三个因素最为重要。
内因为高分子材料的固有特性,难以通过添加剂等改变。
因此改善高分子材料的老化性能唯有从外因入手。
根据所针对的外部因素的不同,可将添加的稳定剂分为抗氧剂、光稳定剂和热稳定剂三类。