岩石锚喷支护设计计算方案
- 格式:doc
- 大小:23.00 KB
- 文档页数:3
喷锚支护施工方案
喷锚支护是一种常用的岩土工程支护技术,广泛应用于公路、铁路、桥梁等土木工程领域。
该技术可以有效地提高地质体的稳定性,防止地层滑坡、崩塌等地质灾害发生,具有较强的承载能力和抗震抗震能力。
喷锚支护施工方案主要包括以下几个步骤:
1. 前期准备:确定施工范围、蓄水条件、施工工期等。
组织人员进行安全教育和技术培训,熟悉喷锚设备的操作方法和使用规范。
2. 地面准备:清理施工现场,确保施工区域无杂物和障碍物。
根据设计要求,在地面上标明岩石喷锚支护的线路,确保施工的准确性和顺利性。
3. 喷锚材料准备:选择合适的喷锚材料,如喷锚混凝土、钢筋等。
根据设计要求准确配制喷锚材料,确保其强度和稳定性。
4. 喷锚设备准备:检查喷锚设备的完好性和正常运行情况。
确保所有设备良好运行,做好维护保养工作,以确保施工的顺利进行。
5. 喷锚施工:按照设计要求进行喷锚施工,运用喷锚设备将喷锚材料注入岩体中,形成固定牢固的喷锚体。
在施工中要注意喷锚材料的配比、喷锚厚度和施工质量。
6. 喷锚质量检测:在喷锚施工完成后,对喷锚体进行质量检测。
检测的内容包括喷锚体的强度、密实性和厚度等指标。
确保喷锚质量符合设计要求。
7. 施工完工及清理:喷锚施工完成后,清理施工现场,恢复原貌。
整理并保存好施工记录和相关资料。
综上所述,喷锚支护施工方案主要包括前期准备、地面准备、喷锚材料准备、喷锚设备准备、喷锚施工、喷锚质量检测、施工完工及清理等步骤。
通过严格按照施工方案进行施工,可以保证喷锚支护施工质量和工期的同时,确保岩土工程的稳定性和安全性。
喷锚支护专项施工方案一、施工前准备1.1 施工目的喷锚支护专项施工的目的是确保工程结构稳定性,提高地质工程的承载能力,有效防止岩石崩塌和地层滑坡等危险情况发生。
施工前需要明确施工目的,制定合理的方案。
1.2 施工区域划分根据工程设计方案,将施工区域进行合理划分,确定施工范围和施工区域的边界。
同时要考虑周边环境因素,确保施工区域安全可靠。
1.3 施工材料准备准备喷锚支护所需的各类材料,包括喷锚材料、锚杆、喷枪等工具设备,确保施工材料齐全,并符合相关标准要求。
二、施工流程2.1 喷锚孔预处理在施工区域内进行钻孔作业,按照设计要求确定钻孔深度和间距,清除孔口碎石和泥土等杂物,保持孔壁清洁。
2.2 喷锚施工将预先准备好的喷锚材料通过专用喷枪喷入孔内,确保充实均匀,形成牢固的喷锚体,将锚杆固定在孔内,调整喷锚夯实度和垂直度。
2.3 喷锚固化喷锚材料固化后,验证喷锚体的强度和稳定性,确保达到设计要求,检测喷锚固化情况。
三、质量控制3.1 施工监测在施工过程中进行实时监测,检查喷锚体的质量,确保材料充实均匀、固化牢固,并调整喷锚孔间距和深度。
3.2 施工验收施工完成后,对喷锚体进行验收,检测固化强度和稳定性,确认施工符合设计要求。
四、施工安全4.1 安全措施施工过程中要严格遵守安全操作规程,采取防护措施,确保施工人员和设备的安全。
4.2 应急预案制定健全的应急预案,应对突发情况的发生,确保施工现场安全。
五、环境保护5.1 施工污染防控在施工过程中要注意防止施工废水和固体废物对环境造成污染,采取有效措施进行防控。
5.2 环境恢复施工完成后,及时清理施工垃圾,修复施工过程中破坏的环境,保持环境整洁。
结语喷锚支护专项施工是地质工程中重要的一环,通过合理施工方案、严格质量控制和细心施工,确保施工质量和安全可靠,为工程的稳定性和安全性提供保障。
在未来的工程实践中,我们将进一步总结经验,不断优化施工技术,提高施工效率和质量,为地质工程发展做出积极贡献。
锚喷支护施工方案一、前言锚喷支护是一种常见的地下工程施工方法,它通过钢索将岩石或土壤与混凝土结构物连接起来,形成一种稳固的支撑结构。
本文将介绍一种基于锚喷支护的施工方案,包括施工前准备、施工过程和施工后的检测和验收。
二、施工前准备1. 设计方案确认在施工前,需要对锚喷支护的设计方案进行确认。
确认包括结构的荷载计算、锚喷的位置和数量、喷射混凝土的强度等内容。
2. 材料准备在准备阶段,需要准备好所需的材料,包括钢索、锚固胶、喷射混凝土等。
材料选用应符合设计要求,并进行检验合格。
3. 施工技术培训在施工前,施工人员应接受相关的培训,了解施工方案和操作要求,掌握孔位定位、喷射混凝土技术等技术要点。
4. 环境检查与处理在施工前,需要对施工场地进行环境检查,确保施工区域没有隐患,并进行必要的处理和清理工作。
三、施工过程1. 孔位定位按照设计方案,确定锚喷的孔位位置。
孔位的定位应精确,避免与其他结构物发生冲突。
2. 钻孔作业根据设计要求,进行锚喷孔的钻孔作业。
钻孔的直径和深度应符合设计要求,并保证孔壁的光滑度和平整度。
3. 清洁孔眼在钻孔作业完成后,应及时清洁锚喷孔眼,去除钻孔过程中产生的碎屑和泥土,保持孔眼干燥。
4. 锚固胶注入将锚固胶注入钻孔中,确保胶体充满孔眼,并与孔壁充分贴合。
注入锚固胶后,等待一定的凝固时间,确保锚固胶充分固化。
5. 钢索安装等待锚固胶固化后,安装钢索。
钢索的长度和直径应符合设计要求,并进行必要的固定和张紧。
6. 喷射混凝土在钢索安装完成后,进行喷射混凝土作业。
喷射混凝土的强度应符合设计要求,均匀喷洒在锚喷孔眼和钢索上。
7. 维护养护在混凝土凝固后,需要进行养护和维护工作。
养护应根据混凝土的强度和环境条件进行,确保施工质量。
四、施工后检测和验收1. 施工质量检测在施工后,需要对锚喷支护的施工质量进行检测。
检测内容包括胶结质量、强度等,以保证施工质量符合设计要求。
2. 现场验收对锚喷支护施工的现场进行验收。
锚喷支护设计计算
1、采用锚喷支护的岩质边坡整体稳定性计算应符合下列规定:
1岩石侧压力分布可按本规范第9.2.5条的规定确定;
2锚杆轴向拉力可按下式计算:
Nak=e,ahSχjSyj∕cosα(10.2.1)
式中:Nak一锚杆所受轴向拉力(kN);
s×j x Syj ----- 锚杆的水平、垂直间距(m);
e'ah——相应于作用的标准组合时侧向岩石压力水平分力修正值(kN∕m);α―锚杆倾角(。
)。
2、锚喷支护边坡时,锚杆计算应符合本规范第8.2.2~8.2.4条的规定。
3、岩石锚杆总长度应符合本规范第8.4.1条的相关规定。
4、采用局部锚杆加固不稳定岩石块体时,锚杆承载力应符合下式的规定:
Kb(Gt-∕G n-cA)≤∑Nakti+∕∑Nakni(10.2.4)
式中:A——滑动面面积(m2);
c——滑移面的黏聚力(kPa);
f——滑动面上的摩擦系数;
Gt、Gn——分别为不稳定块体自重在平行和垂直于滑面方向的分力(kN); Nakti、Nakni——单根锚杆轴向拉力在抗滑方向和垂直于滑动面方向上的分力(k N);
Kb一锚杆钢筋抗拉安全系数,按本规范第8.2.2条规定取值。
2.3 支护参数计算根据锚杆加固作用原理,确定如下参数:2.3.1锚杆长度123L L L L =++=0.15+1.5+0.4=2.05m式中,1L —锚杆外露长度,其值主要取决于锚杆类型及锚固方式,一般取0.15m ,对于端锚锚杆,L 1=垫板厚度+螺母厚度+(0.03~0.05),对于全长锚固锚杆,还有加上穹形球体的厚度;2L —锚杆的有效长度,即围岩松动圈的范围,通过查规范知一般取1.5m;3L —锚杆锚固段长度亦即锚杆锚入坚硬岩石的长度,一般L3=0.3~0.4,由拉拔实验确定,当围岩松软时,L 3还要加大,取L 3为0.4m 。
为安全施工,取锚杆长度L=2100mm 长满足要求。
围岩内外围层结构的稳定性分析巷道围岩范围内各部分岩体,由于其距巷道周边的距离和岩性的不同,对巷道稳定性的影响作用是有显著差别的。
根据这种作用的大小以及一般巷道支护控制作用的范围,可将巷道围岩分为内层围岩和外层围岩两部分,然后研究内外层围岩的结构类型及其与围岩稳定性之间的关系,并提出相应的围岩控制原则。
(1)内层围岩。
内层围岩是指距巷道周边较近的那部分岩体,其范围与通常意义上的松动圈范围相当。
如图所示,内层围岩的结构与性质对巷道稳定性影响最大。
这部分岩体受开挖及风化等影响严重,最易出现破坏和冒落,围岩变形的绝大部分是由这部分岩体产生的,锚杆支护、注浆加固及人为卸压等措施大致上也是在该范围岩体中进行的。
可见,内层围岩既是影响巷道稳定性的最关键部分,也是人为控制措施的主要的和直接的作用对象。
(2)外层围岩。
外层围岩是围岩中距巷道周边较远的那部分岩体。
与内层围岩相比,外层围岩受开挖及风化等影响较小,受支护控制作用的影响也较小;总的围岩变形中,外层围岩所占比例很小,对巷道稳定性的影响也较小。
(3)内外层围岩之间的关系。
根据上述定义可知.内层围岩的结构与性质是影响巷道稳定性的决定因索,外层围岩的结构与性质对巷道稳定性的影响要通过内层围岩来实现;支护控制的主要对象是内层围岩。
锚杆支护参数的确定一、锚杆长度L≥L1+L2+L3------------------------- ①=0.1+1.5+0.3=1.9m式中:L——锚杆总长度,m;L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m;L2 ——锚杆有效长度或软弱岩层厚度,m;L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。
(一)锚杆外露长度L1L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)](二)锚入岩(煤)层内深度(锚固长度)L31.经验取值法《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定:第3.3.3条端头锚固型锚杆的设计应遵守下列规定:一、杆体材料宜用20锰硅钢筋或3号钢钢筋;二、杆体直径按表3.3.3选用;三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟;四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度宜为300~400毫米;五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米;六、锚头的设计锚固力不应低于50千牛顿;七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。
一般取300mm ~400mm2. 理论估算法《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定:第3.3.11条 局部锚杆或锚索应锚入稳定岩体。
水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式:公式(3.3.11-1)、(3.3.11-2)见图形所示。
cs st f f d k l 412≥ (3.3.11-1)crst a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm ); d1——锚杆钢筋直径走私或锚索体直径(cm );d2——锚杆孔直径(cm );f st ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2);f cs ——水泥砂浆与钢筋或水泥砂浆与锚索的设计粘结强度(N/cm 2);圆钢为2.5MPa ,螺纹钢为5MPa 。
建筑边坡工程技术规范GB 50330-20029岩石锚喷支护9.1一般规定9 . 1 . 1 岩质边坡可采用锚喷支护。
Ⅰ类岩质边坡宜采用混凝土锚喷支护;Ⅲ类岩质边坡宜采用钢筋混凝土锚喷支护;Ⅲ类边坡坡高不宜大于15m,且应采用钢筋混凝土锚喷支护。
9 . 1 . 2 下列边坡不应采用锚喷支护:1 膨胀性岩石的边坡;2 具有严重腐蚀性的边坡。
9 . 1 . 3 岩质边坡采用锚喷支护后,对局部不稳定块体尚应采取加强支护的措施。
9.1设计计算9 . 2 . 1 岩质边坡采用锚喷支护时,整体稳定性计算应符合下列规定:1 岩石侧压力可视为均匀分布,岩石压力水平分力标准值可按下式计算:e hk =EhkH(9 . 2 . 1 - 1)式中 e ——岩石侧向压力水平分力标准值(kN / m2);E hk——岩石侧向压力合力水平分力标准值(kN/m);H——边坡高度(m)。
2 锚杆所受水平拉力标准值可按下式计算:H =e s s (9 . 2 . 1 -2)式中s x j ——锚杆的水平间距(m);s y j ——锚杆的垂直间距(m);H t k——锚杆所受水平拉力标准值(kN)。
9 . 2 . 2 采用锚喷支护边坡时,锚杆计算应符合7 . 2 . 1~7 . 2 . 4 条的规定。
9 . 2 . 3 用锚杆加固局部不稳定块体时,锚杆抗力应满足下列要求:1 加固受拉破坏的不稳定危岩块体,锚杆抗拉承载力应满足下式的要求:ξ2 ASfy≥rrQG(9 . 2 . 3 - 1)2 加固受剪破坏的不稳定危岩块体,锚杆抗剪承载力应满足下式的要求:ξv Asfv+ (G2tgϕs+csA) ≥rrQG1(9 . 2 . 3 - 2)式中G0——不稳定块体的自重(kN);G1、G2——分别为不稳定块体自重在平行和垂直于滑面方向的分力(kN);A S——锚杆钢筋总截面面积(m2);f y——锚杆钢筋抗拉强度设计值(kPa); fv——锚杆钢筋抗剪强度设计值(kPa);c s——滑移面的粘聚力(kPa);ψs——滑移面的内摩擦角(°);A——滑移面面积(m2);r 0——边坡工程重要性系数;r Q——荷载分项系数,可取1 .30,当可变荷载较大时应按现行荷载规范确定;ζ2——锚杆抗拉工作条件系数,永久性锚杆取0 . 69,临时性锚杆取0 . 92;ζv——锚杆抗剪工作条件系数,取0 . 6 .9 . 2 . 4 喷层对局部不稳定块体的抗拉承载力应按下式验算:0 .6ζc f t hu r ≥r0r Q G0 (9 .2. 4)式中ζc——喷层工作条件系数,取0. 6;f t ——喷射混凝土抗拉强度设计值(kPa),可按表9 .3 .5 采用;u r ——不稳定块体出露面的周边长度(m);h——喷层厚度(m),当h>100mm 时以100mm 计算。
岩石锚喷支护设计计算书
计算依据:
1、《建筑基坑支护技术规程》JGJ120-2012
2、《建筑边坡工程技术规范》GB50330-2013
3、《建筑施工计算手册》江正荣编着
一、设计简图
岩质边坡采用锚喷支护时,整体稳定性计算及锚杆计算应符合以下规定:第1 层锚杆的计算:
1、岩石压力水平分力标准值和锚杆所受水平拉力标准值可按下式计算:
e hk=E hk/H=20.00/8.00=2.50kN/m2
H tk=e hk×s xj×s yj=2.50×2.00×2.00=10.00kN
2、锚喷支护边坡时,锚杆的轴向拉力承载力标准值和设计值可按下式计算:
N ak=H tk/cosα=10.00/cos15=10.35 kN
N a=r Q×N ak=1.30×10.35=13.46 kN
3、锚杆的杆体计算:
A s≥r0×N a/(ζ2×f y)=1.00×13.46/(0.92×215000.00)×1000000=68.04 mm2
所需钢筋根数n≥A s/ (3.142×d×d/4)=68.04/(3.142×8.00×8.00/4)=1.35
取n=2
【所需钢筋根数为2根】
4、锚杆锚固段长度计算:
a.锚杆锚固体与地层的锚固长度l a1应满足下式
l a1≥N ak/(ζ1×π×D×f rb)=10.35/(1.33×3.14×0.48×50.00)=0.10 m
b.
l a2
1.
2.
3.
4. 5MPa。
5.
0.4MPa。
6. 喷射混凝土面板厚度不应小于50mm,含水岩层的喷射混凝土面板厚度和钢筋网喷射混凝土面板厚度不应小于100mm。
Ⅲ类岩体边坡钢筋网喷射混凝土面板厚度和钢筋混凝土面板厚度不应小于150mm。
钢筋直径宜为6~12mm,钢筋间距宜为150~300mm,宜采用双层配筋,钢筋保护层厚度不应小于25mm。
7. 永久性边坡的现浇板厚度宜为200mm,混凝土强度等级不应低于C20。
应采用双层配筋,钢筋直径宜为8~14mm,钢筋间距宜为200~300mm。
面板与锚杆应有可靠连接。
8. 面板宜沿边坡纵向每20~25m的长度分段设置竖向伸缩缝。
9. Ⅲ类岩体边坡应采用逆作法施工,Ⅱ类岩体边坡可部分采用逆作法施工。