四年级练习题 智取火柴
- 格式:doc
- 大小:22.00 KB
- 文档页数:1
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
- 1 -小学四年级奥数辅导讲座第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
最新的奥数公式大全时钟问题:1.追及距离(格数)除以速度差(1-1/12)= 时间2.两针重合公式:格数除以(1-1/12)=时间3.两针成直线公式:(格数±30)除以(1-1/12)4.两针垂直公式:(格数±15)除以(1-1/12)5.两针成6°公式:(格数±10)除以(1-1/12)6.两针成12°公式:(格数±20)除以(1-1/12)7.推广:两针成3°公式:(格数±5)除以(1-1/12)8.两针与某时刻距离相等(假设为相遇问题)公式:格数除以(1+1/12)9.镜子中的时刻:镜子中与实际时针只需将分针与时针互换。
例:镜子中6点20分即现实中的5点40分。
10.时针与分针成多少度公式:时针点数×5×6°-分针点数×5.5°11.从点到12点时针与分针共重合11次。
整数的计算公式:1.求和公式:和=(首项+末项)×项数÷22.项数公式:项数=(末项-首项)÷公差+13.末项公式:末项=首项+(项数-1)×公差。
另有:奇数个数的和除以项数等于中间数。
4.从1开始的连续自然数的平方求和公式:1+2+3+……n=n×(n+1)×(2n+1)÷65.从1开始的连续奇数的求平方和公式:1+3+5+……(2n-1)=n×(n+1)×(2n+1)÷66.从2开始的连续偶数的平方求和公式:2+4+6+……+2n=n×(n+1)×(2n+1)÷67.连续自然数的立方求和公式:1+2+3+……+n=[(1+2+3+……+n)]²8.平方差公式:a-b=(a+b)×(a-b);a-1=(a+1)×(a-1)9.公比是2的等比数列求和公式:S=2×(2ⁿ-1)10.等差数列的平均数公式:(首项+末项)÷211.裂项公式:① (2n+1)/(n(n+1))=1/1-1/(n+1)② (a+b)/(ab)=1/a+1/b③ 1/(n(n+1)(n+2))=1/2×[1/n(n+1)-1/(n+1)(n+2)]④ 1/[(n+1)²-1]=1/2×[1/(n+1)-1/(n+2)]数阵中的放射型和封闭型有不同的计算方法。
小学奥数基础教程(四年级)目录第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)小学奥数举一反三(四年级)目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第21讲速算与巧算(二)第22讲平均数问题第23讲定义新运算第24讲差倍问题第25讲和差问题第26讲巧算年龄第27讲较复杂的和差倍问题第28讲周期问题第29讲行程问题(一)第30讲用假设法解题第31讲还原问题第32讲逻辑推理第33讲速算与巧算(三)第34讲行程问题(二)第35讲容斥原理第36讲二进制第37讲应用题(三)第38讲应用题(四)第39讲盈亏问题第40讲数学开放题。
第十一讲 数学游戏在今天这节课中,我们来研究数学游戏中的必胜策略.由于策略的制定是没有固定模式的,教师在本节课中要引导学生通过具体问题具体分析,不断积累经验,以提高观察和分析问题的能力. 知识点:1、取火柴以及与其同类型的游戏中的策略2、其他游戏中的取胜策略.分析:同同应先报1,那么不管琪琪接下来报什么数(11或11以下的数),同同都可以说12.同理同同可以说出23、34、45、67、78、89、100.分析可知,如果同同想先到达100,他必须先到达89,如果同同说的和与100相差11,那么不管琪琪加什么数,同同都可以找到一个数,加在琪琪说出的和上,从而使总和为100.同理要先到达89,必须使琪琪与89相差11,也就是要先报出78.继续如此推下去,同同必须先报67、56、45、34、23、12和1,所以他应先报1.我们在进行竞赛与竞争时,往往要认真分析情况,制定出好的方案,使自己获胜,这种方案就是对策.在小学数学竞赛中,常有与智力游戏相结合而提出的一些简单的对策问题,它所涉及的数学知识都比较简单.但这类题的解答对我们的智力将是一种很有益的锻炼.这类问题也属于我们所说的“博弈问题”.在数学游戏中有一类取火柴游戏,它有很多种玩法,由于游戏的规则不同,取胜的方法也就不同.但不论哪种玩法,要想取胜,一定离不开用数学思想去推算.其核心思想有:逆推和对称分组.(一) 智取火柴以及同类型的游戏 专题精讲 教学目标想 挑 战吗?同同和琪琪玩游戏,同同说了任意一个从1到10的自然数,琪琪在同同说出的数上加上一个不能超过10的自然数,然后说出它们的和.接下来同同再在琪琪说出的和上加上一个不超过10的任意自然数,并说出新的和.琪琪接着再在新的和上加上一个不超过10的数,这样一个个接着相加,一直到最后的和是100为止.例如同同说9,琪琪说19,同同说28等等,谁第一个得到100,谁就获胜.如果同同先报数,他用什么方法可以取胜?【例1】桌子上放着60根火柴,甲、乙二人轮流每次取走1~3根.规定谁取走最后一根火柴谁获胜.如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:我们采用逆推法分析这道题.获胜方在最后一次取走最后一根;往前逆推,在倒数第二次取时,必须留给对方4根,此时无论对方取1,2或3根,获胜方都可以取走最后一根;再往前逆推,获胜方要想留给对方4根,在倒数第三次取时,必须留给对方8根……由此可知,获胜方只要每次留给对方的都是4的倍数根,则必胜.现在桌上有60根火柴,甲先取,不可能留给乙4的倍数根,而甲每次取完后,乙再取都可以留给甲4的倍数根,所以在双方都采用最佳策略的情况下,乙必胜.同学们再想一想为什么一定要留给对方4的倍数根,而不是5的倍数根或其它倍数根呢?提问:(1)甲取几根,乙取3减几根可以吗?不可以,那样的话,甲取3根,乙就没法取了.(2)甲取几根,乙取5减几根可以吗?不可以,那样的话甲取1根,乙就没法取了.所以关键在于规定每次只能取1~3根,1+3=4,在两人紧接着的两次取火柴中,后取的总能保证两人取的总数是4.利用这一特点,就能分析出谁采用最佳方法必胜,最佳方法是什么.由此出发,对于例题的各种变化,都能分析出谁能获胜及获胜的方法.[前铺]桌子上放着10根火柴,甲、乙二人轮流每次取走1~2根.规定谁取走最后一根火柴谁获胜.如果双方都采用最佳方法,甲先取,那么谁将获胜?分析:如果获胜方在最后取得最后一根火柴,那么在倒数第二次取时,必须留给对方3根,要想留给对方3根,倒数第三次取时,必须留给对方6根.要想留给对方6根,倒数第四次取时必须留给对方9根,而甲每次取完都能留给乙3的倍数根,所以在双方都采用最佳策略的情况下,甲必胜.[拓展一]在例1中将“每次取走1~3根”改为“每次取走1~6根”,其余不变,情形会怎样?分析:由例1的分析知,只要始终留给对方(1+6=)7的倍数根火柴,就一定获胜.因为60÷7=8……4,所以只要甲第一次取走4根,剩下56根火柴是7的倍数,以后总留给乙7的倍数根火柴,甲必胜.由此看出,在每次取1~n根火柴,取到最后一根火柴者获胜的规定下,谁能做到总给对方留下(1+n)的倍数根火柴,谁将获胜.[拓展二]将例1中“谁取走最后一根火柴谁获胜”改为“谁取走最后一根火柴谁输”,其余不变,情形又将如何?分析:最后留给对方1根火柴者必胜,按照例1中的逆推的方法分析,只要每次留给对方4的倍数加1根火柴必胜.甲先取,只要第一次取3根,剩下57根(57除以4余1),以后每次都将除以4余1的根数留给乙,甲必胜.由此看出,在每次取1~n根火柴,取到最后一根火柴者为负的规定下,谁能做到总给对方留下(1+n)的倍数加1根火柴,谁将获胜.[小结]我们可以把解决这类问题的一般方法总结为余数问题.,即如果有余数,则先取者胜,且取余数根数;如果没有余数,则后取者胜,每“回合”共取N+1根.【例2】今有两堆火柴,一堆35根,另一堆24根.两人轮流在其中任一堆中拿取,取的根数不限,但不能不取.规定取得最后一根者为赢.问:先取者有何策略能获胜?分析:本题虽然也是取火柴问题,但由于火柴的堆数多于一堆,故本题的获胜策略与前面的例题完全不同.先取者在35根一堆火柴中取11根火柴,使得取后剩下两堆的火柴数相同.以后无论对手在某一堆取几根火柴,你只须在另一堆也取同样多根火柴.只要对手有火柴可取,你也有火柴可取,也就是说,最后一根火柴总会被你拿到.这样先取者总可获胜.请同学们想一想,如果在上面玩法中,两堆火柴数目一开始就相同,例如两堆都是35根火柴,那么先取者还能获胜吗?[拓展一]甲、乙两人轮流往一张圆桌面上放同样大小的硬币,规定每人每次只能放一枚,硬币平放且不能有重叠部分,放好的硬币不再移动.谁放了最后一枚,使得对方再也找不到地方放下一枚硬币的时候就赢了.说明放第一枚硬币的甲百战百胜的策略.分析:采用“对称”思想.设想圆桌面只有一枚硬币那么大,当然甲一定获胜.对于一般的较大的圆桌面,由于圆是中心对称的,甲可以先把硬币放在桌面中心,然后,乙在某个位置放一枚硬币,甲就在与之中心对称的位置放一枚硬币.按此方法,只要乙能找到位置放一枚硬币,根据圆的中心对称性,甲定能找到与这一位置中心对称的地方放上一枚硬币.由于圆桌面的面积是有限的,最后,乙找不到放硬币的地方,于是甲获胜.[拓展二]有3堆火柴,分别有1根、2根与3根火柴.甲先乙后轮流从任意一堆里取火柴,取的根数不限,规定谁能取到最后一根或最后几根火柴就获胜.如果采用最佳方法,那么谁将获胜?分析:根据上一例题的解法,谁在某次取过火柴之后,恰好留下两堆数目相等的火柴,谁就能取胜.甲先取,共有六种取法:从第1堆里取1根,从第2堆里取1根或2根;第3堆里取1根、2根或3根.无论哪种取法,乙采取正确的取法,都可以留下两堆数目相等的火柴(同学们不妨自己试试),所以乙采用最佳方法一定获胜.【例3】甲、乙二人轮流报数,必须报不大于6的自然数,把两人报出的数依次加起来,谁报数后加起来的数是2000,谁就获胜.如果甲要取胜,是先报还是后报?报几?以后怎样报?分析:采用倒推法(倒推法是解决这类问题一种常用的数学方法).由于每次报的数是1~6的自然数,2000-1=1999,2000-6=1994,甲要获胜,必须使乙最后一次报数加起来的和的范围是1994~1999,由于1994-1=1993(或1999-6=1993),因此,甲倒数第二次报数后加起来的和必须是1993.同样,由于1993-1=1992,1993-6=1987,所以要使乙倒数第二次报数后加起来的和的范围是1987~1992,甲倒数第三次报数后加起来的和必须是1986.同样,由于1986-1=1985,1986-6=1980,所以要使乙倒数第三次报数后加起来的和的范围是1980~1985,甲倒数第四次报数后加起来的和必须是1979,….把甲报完数后加起来必须得到的和从后往前进行排列:2000、1993、1986、1979、….观察这一数列,发现这是一等差数列,且公差d=7,这些数被7除都余5.因此这一数列的最后三项为:19、12、5.所以甲要获胜,必须先报,报5.因为12-5=7,所以以后乙报几,甲就报7减几,例如乙报3,甲就接着报4(=7-3).所以甲要获胜必须先报,甲先报5;以后,乙报几甲就接着报7减几.[说明]如果对方一定要先报数,那么你可以利用对方不懂得这个秘诀的条件,去占领下一个“制高点”,从而确保获胜.[拓展]如果游戏的规则改为“先达到2000者输”,应如何制定“作战”方针呢?分析:显然此时要想获胜,必须先达到1999,重复上面的分析,不难得到每次应占领的“制高点”是:1999,1993,1986,1979,……,19,12,5.因此获胜的策略是:(1)让自己先报4;(2)每次对方报a(1≤a≤6),你就是报7-a.这样,最终的胜利一定是属于你的.【例4】有一种“抢某个数字”的游戏,是两个人从自然数1开始轮流报数,规定每次至少报几个数与至多报几个数(都是自然数),最后谁报到规定的“某个数字”为胜.如“抢50”游戏,规定每次必须报1.2个自然数,从1开始,谁抢报到50为胜.例如甲先报l,乙就可接着报2或2,3;若乙报2,甲就可接着报3或3,4;若乙报2,3;甲就可接着报4或4,5.依次下去,谁能报到50为胜.如果你是甲,并且先报数,有没有必胜的策略?分析:由于每次必须报1~2个自然数,那么甲先报1次后,就可保证每次与乙刚报的数字数目之和为3.如乙报1个数,甲就接着报2个数;若乙报2个数,甲就接着报1个数.因此,甲若想必胜,报完第一次数剩下的数的个数必须是3个倍数才可以.而50=3×16+2,因此甲有必胜的策略:甲先报1,2,然后,乙若报1个数,甲就报2个数;乙若报2个数,甲就报1个数.[拓展]若是抢别的数字,规定每次必须报别的一定数目的自然数,先报数的人还有没有必胜的策略?分析:借鉴前面经验,若是“抢40”游戏,规定每次必须报1~3个自然数,从1开始轮流往后报数.若甲先乙后,则乙有必胜的策略.因为乙可以保证每次与甲刚报完的数字数目之和为4,而40=4×10刚好是4的倍数.推广开来,若是“抢数字a”游戏,每次必须报1~n个自然数,从1开始轮流往后报数,且甲先乙后,那么会有两种情况:情况1:若a是(1+n)的整数倍,则后报数的乙有必胜的策略;情况2:若a不是(1+n)的整数倍,则先报数的甲有必胜的策略,且甲先报的数字个数必须是数字.除以(1+n)的余数.说明:“抢数字”游戏还有很多与之类似的变形游戏.如果你对“抢数字”游戏的规则与玩法非常熟悉的话,那么类似的变形游戏就会“如鱼得水”.不费功夫了.[小笑话]某天军训中,教练对同学说:“第一排报数!”小明惊讶的看着教练.教练很奇怪的又说了一遍:“第一排报数!”小明还是很无奈很惊讶的看着教练.教练又大声说了一遍:“第一排报数!”于是小明极其不情愿的走到大树前抱着树.(二)其它游戏中的取胜策略【例5】有100个人站成一排,从左到右依次进行1,2报数,凡是报1的人离开队伍,剩下的人继续从左到右进行1,2报数,最后留在队伍中的人获胜,如此下去,要想获胜,应站在队列中的第几个位置?分析:将这100个人从左到右依次编号为1,2,3,…,98,99,100.第一次报完后.剩下的是2的倍数, 2,4,6,8,10,…,96,98,100.第二次报完后,剩下的是4的倍数,4,8,12,16,…,92,96,100.第三次报完后,剩下的是8的倍数,8,16,24,…,80,88,96.第四次报完后,剩下的是16的倍数,16,32,48,64,80,96.第五次报完后,剩下的是32的倍数,32,64,96.第六次报完后,还剩下一人,也就是第64人.所以要想获胜,应站在队伍中的第64个位置.[数学趣题]神父的诡计一艘不大的船只在海上遇到了风暴,摆在船上25位乘客面前的路只有两条:要么全部乘客与船只同归于尽;要么牺牲一部分人的生命,把他们抛进大海,减轻船的载重量,船及其他人还有得救的可能,但是这样做至少得把一半以上的人抛进海里.大家都同意走第二条路,然而谁也不愿意自动跳进海里.乘客里有11个基督徒,其中一个是神父,于是大家就公推神父出个主意.奸诈的神父想了一下,就让大家坐成一个环形,并且从他依序报数,“1,2,3”,规定报到“3”的人就被抛进海里,下一个继续由“1”报起,同时声称这是上帝的旨意,大家的命运都由上帝来安排,不得抗拒.结果有14个人被抛进海里,而剩下的11个人全部都是基督徒.大难不死的其它10个基督徒突然醒悟过来,原来神父是用诡计救了他们.请你想想,这11个人应在什么位置,才可以避免被抛进海里去呢?分析:神父只要让11个基督徒占领1、4、5、8、10、13、14、17、19、22、23这11个位置,就可以保证他们不被抛进海里.【例6】 在一个6×5的棋盘上,甲、乙二人轮流往棋盘的方格内放棋子.甲先放第一枚棋子,乙只能在与这枚棋子所在格相邻的格内放棋子(相邻格指有公共边的两个格).甲再放时又必须放在乙刚放的棋子的相邻格内,以后照此规则放.谁无法放棋子时谁失败.那么谁会有必胜的策略呢?分析:若甲有必胜的策略,则在甲放入第一枚棋子后,只要乙能放,那么甲就能放;反之,若乙有必胜的策略,则只要甲能放,乙就能放.因本题中给出的是6×5的棋盘,可分成15个1×2的小块,如下图,有AA ,BB 两种,无论甲放入哪里的A 或B 方格中,乙都放在同一小块的A 或B 方格内.所以乙有必胜的策略. B B B BB B B B B B BB B B A A A A A A AA A A A A A AA A[拓展]若本题中给出的是5×5的棋盘,则甲有必胜的策略.推广一下,若给的是奇数×奇数的棋盘,则先放棋子的有必胜的策略.否则,后放棋子的有必胜的策略.【例7】 右图是一种“红黑棋”,甲、乙两人玩棋,分别取红、黑两方.规黑黑黑黑黑黑红红红红红红定:下棋时,每人每次只能走任意一枚棋,每枚棋子每次可以走一格或几格.红棋从左向右走,黑棋从右向左走,但不能跳过对方棋子走,也不能重叠在对方有棋子的格中.一直到谁无法走棋时,谁就失败.甲先乙后走棋,问甲有没有必胜的策略?分析:甲若想必胜,那么甲走一次棋后,“乙能走甲就能走”,观察棋盘,第二、三行都有9个空格,第四、五行都有5个空格,而第一行只有1个空格,第六行有3个空格,因此甲第1次只要将第六行也变为1个空格,那么就形成一种对称局面,“乙能走甲就能走”.因此甲有必胜的策略:甲先把第六行的红棋向右走两格,使中间只有一个空格.以后乙走第一行,甲就相应地走第六行;乙走第二行,甲就相应地走第三行;乙走第三行;甲就相应地走第二行;乙走第四行,甲就相应地走第五行,乙走第五行,甲就相应地走第四行;乙走第六行,甲就相应地走第一行.且每次甲与乙走的格数要相同,那么最后肯定是乙无法走棋失败,甲必胜.【例8】 右图是一张3×3的方格纸,甲、乙两人轮流在方格中写下2,4,5,6,7,8,9,10,11九个数字中的一个,数字不能重复.最后,甲的得分是上、下两行六个数之和,乙的得分是左、右两列六个数之和,得分多者为胜.如果甲先乙后,那么甲有没有必胜的策略?分析:观察右图,图中四个角的数是甲、乙两人所共有的,所以胜负只与放在A 、B 、C 、D 四个格内的数字有关.甲若想获胜,必须让A ,C 两格内的数字之和大于B ,D 两格内的数字之和.观察所给的九个数字,2+1l<4+10.因此,只要甲将2填入B 或D 方格中,以后无论乙怎样填,甲第二次只要把10或1l 填人A 或C ,甲就必胜.所以甲有必胜的策略:甲先把2填入B 格,若乙将1 1填入D ,甲就将10填入A ;若乙将4填入A ,甲就将11或10填入C ,这样甲就必胜.【例9】 两个人进行如下游戏,即两个人轮流从数列1,2,3,…,100,101中删去9个数,经过这样的11次删除后,还剩下两个数,如果这两个数的差是55,这时判第一个删数的人获胜,问谁能获胜?分析:按照题目中的要求,剩下两个数的差是55,就判第一个勾数的人获胜,那么我们就把差是55的数分组(1,56),(2,57),(3,58),(4,59),(5,60),…,(45,100),(46,101),还剩下47,48,49,50,51,52,53,54,55没有分组,即第一次若把这九个数去掉,剩下的数正好两个一组,每组数的差为55,剩下的工作就是要如何保证剩下的都是成组的数,若对手接下来删去的9个数是每组一个,那么甲就把每个数成组的另一个数删去即可,剩下的还是成组的数,若对手删去的是一个组的两个数,外加7个单独的,那么甲便把这7个数成组的另外一个删去,再删去一组数,还可以保证剩下的都是成组的数;若对手删去的是2个组的4个数,外加5个单独的,我们便也用同样的方式,……不论对手怎样删,我们都能保证剩下的为成组的数,一共删了(101-2)÷9=11次,即可保证最后两个数的差为55,从而判第一个删数的人获胜.【例10】 桌子上有8颗瓜子,甲、乙两人轮流拿瓜子,他们规定,假如甲先拿(当然,乙也可以先拿),甲可拿任意颗瓜子,但不能拿光,接着乙拿,乙可以拿不多于甲所拿瓜子的2倍,又轮到甲拿,甲可以拿不多于乙拿瓜子的2倍,这样交替进行,谁最后把瓜子拿光就算胜利.D B A C分析:假如甲先拿,且拿3颗以上,则剩下的瓜子可由乙一次拿走,于是乙胜,甲输;甲为了不让乙胜,显然不能拿多于3颗的瓜子数,而只能拿2或1颗.若甲决定拿2颗,乙就可以拿1(或2、3、4)颗,如乙拿2或3或4都将认输,故乙只能拿1颗.现在桌子上只剩下5颗瓜子,且又轮到甲拿瓜子,因刚才乙只拿了一颗,故甲可拿1或2颗瓜子,如拿2颗,乙就能把剩下的瓜子拿光而获胜.所以甲只能拿1颗,接着拿瓜子的乙也可拿1或2颗,为保证胜利,乙也拿1颗,这样桌子上只剩下3颗瓜子,仍轮到甲拿瓜子,且只能拿1颗或2颗,不管怎样拿,甲都是输定了.若甲决定拿1颗,则乙就拿2颗,此时桌上只剩下5颗且甲拿,情形和以上一样.故无论何种取法甲必输.这个数字游戏和斐波那契数列:1,1,2,3,5,8,13,21,…有关.8为该数列中的一项.事实上是:如果甲、乙两人都清楚这个游戏的“窍门”,那么如瓜子数是该数列的某一项,则先拿者输,如瓜子数不是该数列的某一项,则先拿者赢.专题展望本讲主要讲了游戏中的取胜策略问题,希望同学们通过本讲的学习掌握在游戏中取胜的数学思想方法,在游戏中学到知识,请同学们再接再厉,加油!练习十一1.(例1)桌上放着40根火柴,甲、乙二人轮流取,每次可取1到3根,规定谁取到最后一根谁获胜.假设甲先取,那么谁一定获胜,如何获胜?分析:乙一定获胜.每次可取1~3根,则甲、乙每轮所取的火柴之和总可以凑成4,例如,甲取1根,乙就取3根;甲取2根,乙就取2根;甲取3根,乙就取1根,因为40是4的倍数,无论甲如何取,乙总有相应的取法使得这一轮里火柴共被取走4根,因此,乙必定可以取走最后一根火柴.2.(例2)有两堆枚数相等的棋子,甲、乙两人轮流在其中任意一堆里取,取的枚数不限,但不能不取,谁取到最后一枚棋子谁获胜.如果甲后取,那么他一定能获胜吗?分析:甲必胜.3.(例3)两人轮流报数,但报出的数只能是1至10的自然数.同时把所报数一一累加起来,谁先使这个累加和达到100,谁就获胜.问怎样才能确保获胜?分析:这个问题可以倒着想,要想使总和先达到100,应该最后给对方留下多少个数呢?由于每个人报的数最大是10,最小是1,因此对方最后一次报完数后,总和最大是99,最小是90,所以最后一次应该给对方留下11个数,也就是说要先达到100,就必须先达到89.如何抢到89这个数呢?采用同样的分析方法可知,应先达到78.依此类推,可以得到每次报数应占领的“制高点”是:100,89,78,67,56,45,34,23,12,1.所以获胜的策略是:(1)先报1;(2)每次对方报a(1≤a≤10),你就报11-a.这样,每次你都能占领一个“制高点”,以确保获胜..4.(例7)下图是一副“1999”棋,甲、乙两人玩棋,分别取红、黑两方分析:甲胜.利用对称性,甲先走第二行的8步.此时,前两行相同,后两行相同.以后,当乙走某行的a步时,甲就走对应行的a步,总保持前两行相同,后两行相同.只要乙能走棋,甲必能走棋,所以乙先无棋可走,甲胜.5.(例9)黑板上写着一排相连的自然数1,2,3,…,51.甲、乙两人轮流划掉连续的3个数.规定在谁划过之后另一人再也划不成了,谁就算取胜.问:甲有必胜的策略吗?分析:甲先划,把中间25,26,27这三个数划去,就将1到51这51个数分成了两组,每组有24个数.这样,只要乙在某一组里有数字可划,那么甲在另一组里相对称的位置上就总有数字可划.因此,若甲先划,且按上述策略去进行,则甲必能获胜.数学故事大海盗雷斯家族世代都是海盗头子,到十六世纪中叶时,更是盛况空前,希尔顿·雷斯和艾登·雷斯兄弟各自拥有自己强大的海盗军队,在地中海一带不可一世.终于有一天两兄弟闹不和,都想掌握整个家族,享用家族世代积攒的财宝.但是他们又都不敢跟对方开战,因为他们都没有必胜的把握,而且就算战胜了对方自己的军队也必定伤亡惨重,也许从此就一蹶不振,所以双方一直僵持不下,难以解决.他们的父亲眼见分裂之势已成,无法挽回,又不忍见两个儿子自相残杀,于是想了一个办法,以使事情顺利解决.于是他找了一天把两个儿子召集在一起,说道:“我知道要你们像以前一样相处是不可能了,但你们要是自相残杀岂不是让我们的敌人占了便宜,或许我们的家族也会有灭亡的危险,所以我想了一个办法,能令你们和平地分成两个强大的海盗军团,但你们要答应我遵守我所说的规则!”两兄弟见父亲说的有理便答应了.于是老人接着说:“是这样的,我相信你的军队实力足以自立当世.你们惟一想争的只是家族的财宝,我把财宝中最贵重的部分装在一个箱子中,其余的分别平均装在99个箱子中,你们两个轮流来我这里取箱子,每次取1到lO箱都可以,不能少取也不能多取,我会把最贵重的一箱放在最后,你们取到的箱子都归自己所有,谁取到最贵重的一箱谁就继续留在这里,而另一方必须离开地中海到别处发展,以免互相之间产生摩擦,手足相残.”两兄弟均觉依照这个办法虽然自己有可能被赶出家门,但机会是平等的,还算公平,便答应了.等父亲把财宝准备好,又出现了一个问题:谁先取呢?于是讨论决定:双方划拳,胜者决定先取还是后取.划拳的结果是希尔顿.雷斯赢了,他想了一下决定先取.于是两兄弟轮流到父亲处取财宝,几轮下来最后一箱贵重的财宝被希尔顿·雷斯取走了.艾登·雷斯依照约定离开了地中海,再也没有回来.父亲虽然眼见家族分裂老怀伤感,但见两兄弟相安无事也心怀安慰.几十年后,雷斯家族日趋没落,雷斯兄弟也各自在战斗中被西班牙皇家海军击败,他们逃出来后流落异乡,从此一蹶不振.一日,他们在某个小镇碰见,十分高兴,于是来到酒吧喝酒,后来聊到当年的分裂,艾登·雷斯说:“唉,当初运气不佳,被你碰巧取到了大财宝,我才被迫背井离乡!”那知希尔顿·雷斯哈哈一笑,说到:“我决定先取的时候就知道我赢定了!”艾登·雷斯非常诧异,问道:“怎么会?你怎么能知道我每次会取几箱呢?”希尔顿·雷斯回答道:“不用知道,我先取一箱,以后每次所取的箱数都与你取的凑够1l箱,这样我就赢定了.”艾登·雷斯想了一下顿时恍然大悟,后悔当时没有明白.。
(一) 时钟问题一.追及距离(格数)÷速度差(1-121)= 时间 1.两针重合公式:格数÷(1-121) 2.两针垂直公式:(格数±15)÷(1-121) 3.两针成直线公司:(格数±30)÷(1-121)推广:两针成30°公式:(格数±5)÷(1-121) 两针成60°公式:(格数±10)÷(1-121)两针成120°公式:(格数±20)÷(1-121)4.两针与某时刻距离相等(假设为相遇问题)公式:格数÷(1+121) 5.镜子中的时刻:镜子中与实际时针只需将分针与时针互换。
例:镜子中6点20分即现实中的5点40分。
6.时针与分针成多少度公式:时针点数×5×6°- 分针点数×5.5° 7.从0点到12点时针与分针共重合11次。
(二) 整数的计算公式:1.求和公式:和=(首项+末项)×项数÷2 2.项数公式:项数=(末项-首项)÷公差+13.末项公式:末项=首项+(项数-1)×公差 另有:奇数个数的和除以项数等于中间数 4.从1开始的连续自然数的平方求和公式:21+22+23+ (2)n =6)12()1(+⨯+⨯n n n从1开始的连续奇数的求平方和公式:21+23+25+……(2n -1)2= 61×n ×(n+1)×(n+2)从2开始的连续偶数的平方求和公式:22+24+26+……+2n 2= 61×n ×(n+1)×(n+2)5.连续自然数的立方求和公式:13+23+33+……+n 3 = (1+2+3+……+n )26.平方差公式:a 2-b 2=(a +b )×(a -b ) a -1=(a +1)×(a -1) 7.公比是2的等比数列求和公式:S=2+22+23+24……+2n = 21+n -28.等差数列的平均数公式:(首项+末项)÷2 9.裂项公式:①)1(1+⨯n n =n 1-11+n 211⨯+321⨯+431⨯=1-21+21-31+31-41②)(1k n n +⨯=(n 1-k n +1)×k 1有公差的分母,分拆成首项与末项的差乘以公差的倒数。
小学奥数基础教程(四年级)第1讲速算及巧算(一)第2讲速算及巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题及归总问题第12讲年龄问题第13讲鸡兔同笼问题及假设法第14讲盈亏问题及比较法(一)第15讲盈亏问题及比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算及巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算及巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同及同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析及解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数及80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数及80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
火柴棒趣味数学思维游戏提升级(附完整答案)训练中小学生逻辑思维能力的好帮手提升级:二维变换等式二维变换等式是指在错误等式中,在数字间或数字与运算符间移动1根火柴棒,使2个数字或运算符变化,从而使错误的等式变成正确的等式。
二维变换等式需要先分析给定错误等式中的数字运算偏差情况,判断其中的哪个数字需要变换、变大还是变小、加减号之间是否需要变换,同步需要考虑的是变换如果涉及到增加或减少火柴棒的来源或去向。
二维变换等式虽然也是只移动一根火柴棒,但是会涉及到2个数字或运算符的变换,所以难度比一维变换等式稍微有所增大,有的会有多种答案,属于提升级的,对你的逻辑思维能力有一定的挑战。
二维变换等式之一★★下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
二维变换等式之二★★下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
二维变换等式之三★★下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
二维变换等式之五★★下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
二维变换等式之六★★下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
二维变换等式之七★★下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
二维变换等式之九★★下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
二维变换等式之十★★下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
二维变换等式之十一★★下图由火柴拼出的等式是一个错误的等式,只许移动1根火柴,使错误的等式变成正确的等式。
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
练习十四智取火柴
1.桌上有30根火柴,小唐和小杨轮流从中拿取,规定每人每次可取1~3根,且取最后一根者为赢。
问:小杨怎么才能赢?
2.有1999个球,甲、乙两人轮流取球,每人每次至少取一个,最多取5个,取到最后一个球的人为输。
如果甲先取,那么谁将获胜?他是怎么取的获胜?
3.甲、乙二人轮流报数,甲先乙后,每次每人报1~4个数,谁报到第888个数谁胜。
甲能获胜吗?
4.有两堆枚数相等的棋子,甲、乙两人轮流在其中任意一堆里取,取的枚数不限,但不能不取,谁取到最后一枚棋子谁获胜。
如果甲后取,那么他一定能获胜吗?
5.黑板上写着一排相连的自然数1,2,3,…,51。
甲、乙两人轮流划掉连续的3个数。
规定在谁划过之后另一人再也划不成了,谁就算取胜。
问:甲有必胜的策略吗?
6.有三行棋子,分别有1,2,4枚棋子,两人轮流取,每人每次只能在同一行中至少取走1枚棋子,谁取走最后一枚棋子谁胜。
问:要想获胜是先取还是后取?
7,有198个球,小张和小杨轮流取,每次最少取1个最多取4个,谁取到最后一根,谁就输.小张如果先取,他怎么取才能赢?
8,1111个空格排成一行,最左端空格中放有一枚棋子,甲先乙后轮流向右移动棋子,每次移动1~7格。
规定将棋子移到最后一格者输。
甲为了获胜,第一步必须向右移多少格。