第4章 非晶态结构与性质 知识点065hxh
- 格式:pdf
- 大小:398.24 KB
- 文档页数:21
第四章⾮晶态结构与性质第四章⾮晶态结构与性质内容提要熔体和玻璃体是物质另外两种聚集状态。
相对于晶体⽽⾔,熔体和玻璃体中质点排列具有不规则性,⾄少在长距离范围结构具有⽆序性,因此,这类材料属于⾮晶态材料。
从认识论⾓度看,本章将从晶体中质点的周期性规则形排列过渡到质点微观排列的⾮周期性、⾮规则性来认识⾮晶态材料的结构和性质。
熔体特指加热到较⾼温度才能液化的物质的液体,即较⾼熔点物质的液体。
熔体快速冷却则变成玻璃体。
因此,熔体和玻璃体是相互联系、性质相近的两种聚集状态,这两种聚集状态的研究对理解⽆机材料的形成和性质有着重要的作⽤。
传统玻璃的整个⽣产过程就是熔体和玻璃体的转化过程。
在其他⽆机材料(如陶瓷、耐⽕材料、⽔泥等)的⽣产过程中⼀般也都会出现⼀定数量的⾼温熔融相,常温下以玻璃相存在于各晶相之间,其含量及性质对这些材料的形成过程及制品性能都有重要影响。
如⽔泥⾏业,⾼温液相的性质(如粘度、表⾯张⼒)常常决定⽔泥烧成的难易程度和质量好坏。
陶瓷和耐⽕材料⾏业,它通常是强度和美观的有机结合,有时希望有较多的熔融相,⽽有时⼜希望熔融相含量较少,⽽更重要的是希望能控制熔体的粘度及表⾯张⼒等性质。
所有这些愿望,都必须在充分认识熔体结构和性质及其结构与性质之间的关系之后才能实现。
本章主要介绍熔体的结构及性质,玻璃的通性、玻璃的形成、玻璃的结构理论以及典型玻璃类型等内容,这些基本知识对控制⽆机材料的制造过程和改善⽆机材料性能具有重要的意义。
4.1 熔体的结构⼀、对熔体的⼀般认识⾃然界中,物质通常以⽓态、液态和固态三种聚集状态存在。
这些物质状态在空间的有限部分则称为⽓体、液体和固体。
固体⼜分为晶体和⾮晶体两种形式。
晶体的结构特点是质点在三维空间作规则排列,即远程有序;⾮晶体包括⽤熔体过冷⽽得到的传统玻璃和⽤⾮熔融法(如⽓相沉积、真空蒸发和溅射、离⼦注⼊等)所获得的新型玻璃,也称⽆定形体,其结构特点是近程有序,远程⽆序。
第4章非晶态构造与性质一、名词解释1.熔体与玻璃体:熔体即具有高熔点的物质的液体。
熔体快速冷却形成玻璃体。
2.聚合与解聚:聚合:各种低聚物相互作用形成高聚物解聚:高聚物分化成各种低聚物3.晶子学说与无规那么网络学说:晶子学说〔有序、对称、具有周期性的网络构造〕:1硅酸盐玻璃中含有无数的晶子2晶子的互相组成取决于玻璃的化学组成3晶子不同于一般微晶,而是带有晶体变形的有序区域,在晶子中心质点排列较有规律,远离中心那么变形程度增大4晶子分散于无定形物质中,两者没有明显界面无规那么网络学说〔无序不对称不具有周期性的网络构造〕1形成玻璃态的物质与晶体构造相类似,形成三维的空间网格构造2这种网络是离子多面体通过氧桥相连进而向三维空间规那么-4.网络形成体与网络变性体:网络形成体:能够单独形成玻璃的氧化物网络变性体:不能单独形成玻璃的氧化物5.桥氧与非桥氧:桥氧:玻璃网络中作为两个成网多面体所共有顶角的氧非桥氧:玻璃网络中只与一个成网多面体相连的氧二、填空与选择1.玻璃的通性为:各向同性、介稳性、由熔融态向玻璃态转化是可逆与渐变的,无固定熔点、由熔融态向玻璃态转化时,物理、化学性质随温度的变化连续性和物理化学性质随成分变化的连续性。
2.氧化物的键强是形成玻璃的重要条件。
根据单键强度的大小可把氧化物中的正离子分为三类:网络形成体、网络中间体和网络改变体;其单键强度数值范围分别为单键强度>335KJ/mol、单键强度介于250~335KJ/mol 和单键强度<250~335KJ/mol。
3.聚合物的形成可分为三个阶段,初期:石英颗粒的分化;中期:缩聚与变形;后期:在一定时间内分化与缩聚到达平衡。
4.熔体构造的特点是:近程有序、远程无序。
5.熔体是物质在液相温度以上存在的一种高能量状态,在冷却的过程中可以出现结晶化、玻璃化和分相三种不同的相变过程。
-6.在玻璃性质随温度变化的曲线上有二个特征温度Tg〔脆性温度〕和Tf 〔软化温度〕,与这二个特征温度相对应的粘度分别为1012Pa·s和108Pa·s。
知识点066. 玻璃的结构理论
学说要点:
520℃-590 ℃实验依据
100 T(℃)
200 400
300 500
玻璃的网络是不规则的、非周期性的,因此玻璃的内能比晶体的内能要大
缺乏对称性和周期性的重复
石英玻璃
0 0.04 0.08 0.12 0.16 0.20 0.24 λ
方石英
λ
硅胶
sinθ
优点:缺陷:
优点:均匀性、连续性及无序性
缺陷:
硼硅酸盐玻璃分相与不均匀
光学玻璃氟化物与磷酸盐玻璃分相
•两大学说的相同点:
•两大学说的不同点:
近程有序远程无序
本章知识点回顾:
知识点060. 液体的一般性状与结构
知识点061. 硅酸盐熔体的聚合物结构理论知识点062. 熔体的粘度及变化
知识点063. 熔体的表面张力及变化
知识点064. 玻璃的通性、玻璃的形成与转变知识点065. 玻璃形成的条件
知识点066. 玻璃的结构理论。
第四章非晶态结构与性质【例4-1】一种用于制造灯泡的苏打-石灰-石英玻璃的退火点是514℃,软化点是696℃,计算这种玻璃的熔融范围和工作范围。
【解】按公式退火点:514+273=787K时粘度η=1012Pa·s软化点:696+273=969K时粘度η=4.5×106Pa·s,则:解之:△E=429 kJ/mol,得:Pa·s工作温度范围粘度一般为103~107 Pa·s,由于当η=103Pa·s时,℃当η=107Pa·s时,℃所以工作温度范围是682~877℃熔融范围粘度一般是10~100Pa·s当η=10Pa·s时,℃当η=50Pa·s时,4℃所以熔融温度范围是940~1009℃【例4-2】已知石英玻璃的密度为2.3g/cm’,假定玻璃中原子尺寸与晶体SiO2相同。
试计算玻璃原子堆积系数(APC)是多少?【解】设在体积为1nm3内SiO2原子数为n,则密度按题意ρ=2. 3g/cm3=2.3×10-21g/nm3,SiO2相对分子质量M=60.02g代入上式求得n:个/nm3在1nm中SiO2所占体积则:【例4-3】正硅酸铅玻璃密度为7.36g/cm3,求这个玻璃中氧的密度为若干?试把它与熔融石英(密度为2.2g/cm3)中的氧密度比较,试指出铅离子所在位置。
【解】正硅酸铅PbSiO3的相对分子质量为GM=207.2+28+16×3=283.2在1cm3中PbSiO3的个数为:个/cm3在PbSiO3玻璃中氧的密度为:g/cm3同样求得石英玻璃中SiO2的个数n2和氧的密度为ρ2:个/cm3,g/cm3显然ρ1>ρ2,即PbSiO3玻璃中氧的密度高于石英玻璃SiO2中氧的密度。
因而PbSiO3玻璃中Pb2+作为网络改变离子而统计均匀分布在Si-O形成的网络骨架空隙中。
【例4-4】一种玻璃的组成为80wt%SiO2和20wt%Na2O,试计算其非桥氧百分数?【解】将玻璃组成由质量百分比换算成摩尔百分比,如下表所示:wt%mol数mol%SiO280 1.33 80.6Na2O 20 0.32 19.4,,非桥氧%=【例4-5】有两种不同配比的玻璃,其组成如下,请用玻璃结构参数说明两种玻璃高温下粘度的大小?序号Na2Owt%Al2O3wt%SiO2wt%1 10 20 702 20 10 70【解】将玻璃组成由质量百分比换算成摩尔百分比,如下表所示:NoNa2O Al2O3SiO2Y wt%mol%wt%mol%wt%mol%1 10 10.6 20 12.9 70 76.5 2.722 20 20.4 10 6.2 70 73.4 3.66 对1#玻璃:, Al3+被视为网络改变离子,,,对2#玻璃:, Al3+作为网络形成离子,,,即:1#玻璃Y1<玻璃Y2,在高温下1#粘度<2#粘度。
《非晶物质常规物质第四态》阅读札记目录一、内容概要 (2)1. 非晶物质的定义与特性 (2)2. 常规物质与第四态的区别 (3)二、非晶物质的形成与结构 (4)1. 非晶形成的条件与过程 (5)2. 非晶材料的微观结构特点 (6)三、非晶物质的物理性质 (7)1. 热学性质 (8)2. 电学性质 (9)3. 光学性质 (10)四、非晶材料的应用 (11)1. 电子行业 (12)2. 能源领域 (13)3. 其他领域的应用 (15)五、非晶物质的研究与发展趋势 (16)1. 研究进展 (17)2. 发展前景 (19)六、结语 (20)1. 对非晶物质第四态的总结 (21)2. 对未来研究的展望 (22)一、内容概要由于《非晶物质常规物质第四态》并非一个公认的物理学概念或已发表的文献,我无法提供该标题的具体阅读札记。
在物理学中,我们通常讨论的是物质的固态、液态和气态,这些是一般意义上的“三态”。
非晶物质(amorphous substances)通常指的是无定形固体,它们在结构上缺乏长程有序性,但这并不构成一种独立的物质状态,而是更接近于液态的亚稳态。
1. 非晶物质的定义与特性又称为无定形物质,是一类具有规则结构和周期性的固体材料。
与晶体不同,非晶物质在微观结构上没有明显的晶格排列,因此其原子或分子之间的相互作用较弱。
这使得非晶物质具有许多独特的性质和应用领域。
非晶物质的力学性质也具有独特性,由于非晶结构中原子或分子之间的相互作用较弱,因此非晶物质在受力时容易发生塑性变形。
这种塑性变形往往是不连续的,即在某些区域会发生断裂,而在其他区域则保持完整性。
这种特殊的力学性质使得非晶物质在工程领域具有广泛的应用前景,如制造高强度、低密度的结构材料等。
非晶物质的光学性质也具有一定的特点,由于非晶结构中原子或分子之间的相互作用较弱,因此非晶物质对光的散射和折射表现出与晶体不同的规律。
这使得非晶物质在光学传感、激光技术等领域具有潜在的应用价值。
知识点063. 熔体的表面张力及变化温度组成
300 400
500
600 700
800
900
σ=σ0(1-bT ) 温度升高,质点热运动增加, 相互之间间距增加,相互作用力变小,表面张力降低
熔体聚合物结构的解释
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
注意K
2O和Cs2O是使表面张力下降。
硅酸盐熔体的聚
合物结构理论不能完全解释所有表面张力的变化规律
290 280 300 200
250 300 350
非极性气体
基本上无影响极性气体
表面张力有明显的降低
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
还原气氛氧化气氛
随堂练习:答:。
颗粒物质的非晶态与非晶合金的结构性质近年来,随着科学技术的不断发展,人们对颗粒物质的研究也越来越深入。
在颗粒物质中,非晶态材料成为研究的热点之一。
非晶态材料表现出与晶态材料不同的独特性质,其中非晶合金更是非晶态材料中的一种重要类型。
本文将从非晶态材料、非晶合金的概念、结构特点、性质等方面进行探讨,以期加深对颗粒物质的理解。
首先,我们来了解一下非晶态材料的概念。
非晶态材料,顾名思义,是指在固态下不具备规则的晶体结构,而呈现出无序的非晶态结构。
与之相对的是晶态材料,晶态材料具有长程有序的晶格结构。
非晶态材料的原子排列方式并不规律,呈现出无序的状况,因此其物理性质与晶态材料有很大的不同。
接下来,我们将重点探讨非晶合金的结构性质。
非晶合金是一种由两种或多种纯金属组成,而且具有非晶态结构的合金材料。
与传统的晶态合金相比,非晶合金具有更高的强度、硬度和韧性等性能,这极大地拓宽了合金材料的应用领域。
非晶合金的结构特点主要体现在两个方面:首先,其原子排列是无序的,而且没有长程的周期性;其次,非晶合金的原子之间存在着大量的缺陷和界面,这些缺陷和界面对其性能产生了重要影响。
非晶合金的结构性质不仅与材料的成分有关,还与制备过程密切相关。
通过调控原子尺寸、合金化元素的选择以及快速冷却等手段,可以有效地控制非晶合金的结构和性能。
在非晶合金的制备过程中,瞬时过冷状态和无序堆积状态是重要的中间态,通过这些中间态的形成与转变,可以获得具有理想非晶态结构的材料。
此外,非晶合金还具有良好的玻璃形成能力,可以制备成薄膜、纤维、粉末等多种形式,并且具有广泛的应用前景。
非晶合金的结构性质对其物理性质产生了明显影响。
首先,非晶合金相比于晶态合金具有更高的强度和硬度。
这是由于非晶合金的无序结构导致局部晶格的短程有序,进而限制了位错的运动。
其次,非晶合金在断裂过程中呈现出韧性断裂特点。
与晶体材料的脆性断裂不同,非晶合金断裂过程中的塑性变形范围较大,能够吸收更多的能量,从而提高了材料的韧性。
知识点062. 熔体的粘度及变化
流动度ф=1/η
熔体温度(℃)粘度(Pa·s)水20 0.001006 熔融NaCI 800 0.00149
钠长石1400 17780 80%钠长石十20%钙长石1400 4365
瓷釉1400 1585
拉丝法
转筒法
落球法
振荡阻滞法
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
温度组成 0
lg T T B A -+=η 粘度随温度升高按指数规律降低! 适应范围T g ~T f 不适应!
0 1600
2000 1000 800 600
聚合物结构理论的解释:
在组成一定时,温度的升
高使硅酸盐熔体中低聚合度的
络阴离子团浓度增加,高聚合
度络阴离子团浓度下降,质点
的移动变得相对容易,体系的
粘度以指数规律下降。
聚合物结构理论的解释
□○△
解聚:
发生:O/Si比较低时。
结果:降低粘度。
发生:O/Si比较高时。
结果:增加粘度。
K K Li Li Na Na
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
Si
Mg Zn Ca Sr Ba Pb
Ni Ca Mn Cu Cd 1.00
15 14 13 12 11 10
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
随堂练习:答:。
知识点065. 玻璃形成的条件
玻璃化和分相后的状态都有向晶体转化的倾向
析晶放出的能量与形成玻璃放出的能量较为接近的体系,从玻璃向晶体转化的驱动力很小,形成玻璃后可以长时间稳定存在,因此更容易形成玻璃
从熔体中形成晶体时,成核、生长速率与过冷度的关系
u
Iv
u
u
ΔT Iv
更容易析晶 更容易形成玻璃
A
B C
10-4 10-2 102 104 106 108 1010
1
120
100 80 60
40 20 过冷度(K )
时间(s )
V β/V ≈(π/3)I v u 3t 4
析晶区 玻璃区
过冷度越大,析晶需要的冷却时间越短
过冷度过大,析晶需要的冷却时间却变长
A
B C
10-4 10-2 102 104 106 108 1010
1
120
100 80 60
40 20 过冷度(K )
时间(s )
析晶区 玻璃区
析晶的最短时间t n 析晶的过冷度ΔT n
临界冷却速率 ΔT n / t n
聚合物结构理论的解释
离子键化合物
金属键物质
纯粹共价键化合物
离子键和金属键向共价键过渡
极性共价键
近程有序。
远程无序
金属共价键
近程有序。
远程无序
形成玻璃必须具有离子键或金属键向共价键过渡的混合键型
随堂练习:答:
随堂练习:答:
课后习题:P202-204 4.5, 4.14, 4.21, 4.23。