泊松过程
- 格式:docx
- 大小:77.71 KB
- 文档页数:4
泊松过程一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。
泊松过程是由法国著名数学家泊松(Poisson, Simeon-Denis)(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。
Poisson过程(Poisson process,大陆译泊松过程、普阿松过程等,台译卜瓦松过程、布瓦松过程、布阿松过程、波以松过程、卜氏过程等),是以法国数学家泊松(1781 - 1840)的名字命名的。
泊松过程是随机过程的一种,是以事件的发生时间来定义的。
我们说一个随机过程N(t) 是一个时间齐次的一维泊松过程,如果它满足以下条件:在两个互斥(不重叠)的区间内所发生的事件的数目是互相独立的随机变量。
在区间内发生的事件的数目的概率分布为:其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。
所以,如果给定在时间区间之中事件发生的数目,则随机变数呈现泊松分布,其参数为。
更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得•在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变数是独立的。
•在每一个时间区间或空间区域内的事件数是一个随机变数,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变数。
)泊松过程是莱维过程(Lévy process)中最有名的过程之一。
时间齐次的泊松过程也是时间齐次的连续时间Markov过程的例子。
一个时间齐次、一维的泊松过程是一个纯出生过程,是一个出生-死亡过程的最简单例子。
泊松过程
泊松过程是由法国著名数学家泊松(Poisson, Simeon-Denis)(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来辛钦于50年代在服务系统的研究中又进一步发展了它。
它是一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数的过程。
一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变数是独立的。
在每一个时间区间或空间区域内的事件数是一个随机变数,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变数。
)泊松过程是莱维过程(Lévy pro cess)中最有名的过程之一。
时间齐次的泊松过程也是时间齐次的连续时间Markov过程的例子。
一个时间齐次、一维的泊松过程是一个纯出生过程,是一个出生——死亡过程的最简单例子。
对泊松过程,通常可取它的每个样本函数都是跃度为1的左(或右)连续阶梯函数。
可以证明,样本函数具有这一性质的、随机连续的独立增量过程必是泊松过程,因而泊松过程是描写随机事件累计发生次数的基本数学模型之一。
直观上,只要随机事件在不相交时间区间是独立发生的,而且在充分小的区间上最多只发生一次,它们的累
计次数就是一个泊松过程。
泊松过程泊松过程是指一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。
泊松过程是由法国著名数学家泊松(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。
泊松过程是随机过程的一种,是以事件的发生时间来定义的。
我们说一个 随机过程 N(t)是一个时间齐次的一维泊松过程,如果它满足以下条件:在两个互斥(不重迭)的区间内所发生的事件的数目是互相独立的随机变量。
在区间[t,t + τ]内发生的事件的数目标机率分布为:其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。
所以,如果给定在时间区间[t,t + τ]之中事件发生的数目,则随机变量N(t + τ) - N(t)呈现泊松分布,其参数为λτ。
更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得在一个时间区间或空间区域内的事件数,和另一个互斥(不重迭)的时间区间或空间区域内的事件数,这两个随机变量是独立的。
在每一个时间区间或空间区域内的事件数是一个随机变量,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变量。
) 考虑一个泊松过程,我们将第一个事件到达的时间记为T1。
此外,对于n>1,以Tn记在第n-1个事件与第n个事件之间用去的时间。
序列{Tn,n=1,2,...}称为到达间隔时间列。
Tn(n=1,2,...)是独立同分布的指数随机变量,具有均值1/λ。
Definition of the Poisson processWe describe the situation by the counting process N(t), t > 0, which counts the number of events that have occurred between time 0 and time t. Our model has a single parameter, λ > 0, which isthe average arrival rate per unit time. Before defining the model formally, we make some preliminary calculations based on the following three natural assumptions:• The probability of an event occurring in a short interval of time [t,t+h] is λh+o(h) as h → 0.• The probability of two or more events occurring in interval [t, t + h] is o(h) as h → 0.• The numbers of events occurring in disjoint time intervals are independent.Examples:1.Insurance claims. Insurance companies often model customers’ claims using renewalideas. In this case the interarrival distribution is a crucial element of the calculation ofwhat insurance premium to charge.2.Counter processes. Many devices can be described as counters in that they attempt torecord the occurrence of successive signal pulses impinging on some instrument. Forexample Geiger counters for recording ionization events, or scintillation counters forrecording passage of a subatomic particle.3.Traffic flow. The times at which successive cars pass a monitoring station on a longsingle- lane road can be modelled as a renewal process. Much more generally, any sort of “traffic” can fit a similar model, such as data packets arriving at a server across a network connection. Questions of congestion can be answered using renewal theory and therelated theory of queues.4.Inventory systems. A large department store needs to know how much stock of aparticular item to hold, and a schedule for replenishment. The pattern of demands canoften be modelled as a renewal process.In any of these or other similar situations in which events occur randomly in time at some uniform average rate, an assumption of ‘total randomness’ leads to the Poisson process as a model.。
随机过程第三章泊松过程泊松过程是随机过程中的一类重要过程,在许多领域都有广泛应用,如排队论、可靠性分析、金融工程等。
泊松过程的概念由法国数学家泊松提出,它具有无记忆性、独立增量和平稳增量等重要特征。
在本文中,我们将介绍泊松过程的定义、性质以及一些实际应用。
泊松过程的定义:设N(t)是在区间[0,t]内发生的事件个数,若满足以下三个条件,则称N(t)是具有独立增量和平稳增量的泊松过程:1.N(0)=0,表示在时间0之前没有事件发生;2.对于任意的s<t,N(t)-N(s)的分布只与时间间隔t-s有关,与s时刻之前的事件个数无关,这表明泊松过程具有无记忆性;3.对于任意的s<t,N(t)-N(s)的分布是一个参数为λ(t-s)的泊松分布,其中λ是过程的强度参数。
泊松过程具有很多重要的性质。
首先,泊松过程的均值和方差等于其强度参数λ。
其次,泊松过程的增量独立,即在非重叠区间上的增量相互独立。
此外,泊松过程的时间间隔也是独立同分布的指数分布。
泊松过程具有广泛的应用。
在排队论中,泊松过程可用于描述到达队列的顾客数量。
在可靠性分析领域,泊松过程可用于描述设备的故障次数。
在金融工程中,泊松过程可用于模拟股票价格的变动和交易的发生。
在实际应用中,对于给定的泊松过程,我们通常感兴趣的是估计其强度参数λ。
常用的估计方法有最大似然估计和矩估计。
最大似然估计通过最大化观测到的事件发生次数和估计的事件发生率之间的似然函数,来估计λ的值。
矩估计则是通过将观测到的事件个数的平均值等于λ的估计值,来确定λ的值。
此外,在泊松过程的应用中,我们还可能遇到泊松过程的两个重要扩展:非齐次泊松过程和二维泊松过程。
非齐次泊松过程是指强度参数λ是时间的一个函数,而不是常数。
二维泊松过程是指同时考虑两个独立的泊松过程,其事件发生次数可能影响到对方的发生次数。
综上所述,泊松过程是一种重要的随机过程,具有无记忆性、独立增量和平稳增量等特征。
泊松过程
泊松过程可以用数学语言来表达。
满足以下三个条件的随机过程X = {X(t),t ≥0}被称为泊松过程。
在基础书中,泊松过程是及时定义的过程。
①P(X(0)= 0)= 1。
②不相交区间的增量是相互独立的,即对于0≤t1<t2 <... <tn,X(t1),X(t2)-X(t1),...,X(tn)-X(tn-1)独立。
③增量X (t)-X(s)(t> s)的概率分布为泊松分布,即Λ(t)为非递减非负函数。
如果X仍然满足④X(t)-X(s)的分布仅取决于ts,则X被称为齐次泊松过程;那么Λ(t)=λt,其中常数λ> 0称为过程强度,因为EX(t)=Λ(t)=λt,所以λ等于每单位时间的平均事件数。
通过时间尺度的转换,非均匀泊松过程可以转化为均匀泊松过程。
对于泊松过程,通常它的每个样本函数都是一个左跳(或右跳)连续阶跃函数,跳跃为1。
可以证明具有样本函数此属性的随机连续独立增量过程必须是泊松过程。
因此,泊松过程是描述随机事件累积发生的基本数学模型之一。
凭直觉,只要随机事件在不相交的时间间隔内独立发生,并且仅在足够小的间隔内发生一次,它们的累积数就是一个泊松过程。
在许多应用中,这些条件都可以满足。
例如,可以将某个系统在周期[0,t)内的故障数量以及加热t 秒钟后真空管的阴极发射的电子总数视为泊松过程。
泊松过程
泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。
也就是说,每次事件的发生是相互独立的。
那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。
而泊松过程呢,就适合刻画“稀有事件流”的概率特性。
比较:泊松分布
泊松过程的主要公式:
其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。
泊松分布则是给定了时间。
泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。
如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。
泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。
而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的
频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。
复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。
复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。
更新过程:
上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。
有一条定理:
这个定理是可以证明的,Fn(t)是分布函数,就是说:在t时刻,更新函数值就是在这个时刻,n取遍所有值的分布之和。
那么是否可以这样理解,更新过程和泊松过程的区别就是更新间隔序列不同,那么如果已知了更新间隔序列的概率密度函数,就可以求解该过程的更新函数了,详细的推导就不写了。
扔结论出来:
对间隔序列概率密度函数做拉氏变换得到Lf(s),然后求
Lm(s)=Lf(s)/s(1-Lf(s)),再对Lm(s)进行逆变换,就得到了m(t),
这就是更新函数。
拉普拉斯变换就是对原函数乘以e^(-st)再对t求积分,于是消去了t,单位变成了s,具体的物理意义就不在这里谈了,什么拉氏变换,傅里叶变换,Z变换,多得很,大家觉得很麻烦啊,就在实数域运算多简洁明了,但是有一点,进行变换一定不是为了问题复杂化,而是为了简化问题。
列一些常用的拉氏变换表:
另外,更新过程中还有一些定理:
基本更新定理:就是说时间趋于无穷时,更新速率收敛于1/平均更新时间。
关键更新定理,和blackwell定理差不多,大致也是讲的是和平均更新时间有关的一些东西,在数学上比较严谨,但是原理不难。