整式的乘法公式平方差完全平方公式
- 格式:docx
- 大小:271.71 KB
- 文档页数:10
平方差公式和完全平方公式因式分解平方差公式和完全平方公式是数学中常用的因式分解方法,它们在解题过程中起到了十分重要的作用。
本文将为大家详细介绍这两个公式,帮助大家理解其原理和应用。
首先,我们来了解一下平方差公式。
平方差公式的表达形式为a² - b² = (a + b)(a - b)。
简言之,它告诉我们两个平方数相减的结果可以因式分解为两个因数的乘积:一个因数是两个平方数的和,另一个因数是两个平方数的差。
这个公式可以极大地简化计算,特别是在解方程或因式分解的题目中,往往能起到事半功倍的效果。
那么,我们来看一个应用平方差公式的例子。
假设我们需要将x² - 4x + 4进行因式分解。
我们可以使用平方差公式进行分解,将x² - 4x + 4看作是(a - b)²的形式,其中a为x,b为2。
根据平方差公式,我们可以得到(x - 2)²,也就是x² - 4x + 4的因式分解形式。
通过应用平方差公式,我们可以将一个多项式快速分解为一对平方数的差的乘积。
接下来,我们将介绍完全平方公式。
完全平方公式的表达形式为a² + 2ab + b² = (a + b)²。
它告诉我们一个二次多项式可以因式分解为两个相同的因数的平方。
与平方差公式类似,完全平方公式也可以在解题过程中提供方便。
我们来看一个应用完全平方公式的例子。
假设我们需要将x² + 6x + 9进行因式分解。
根据完全平方公式,我们可以将x² + 6x + 9看作是(a + b)²的形式,其中a为x,b为3。
带入完全平方公式,我们可以得到(x + 3)²,也就是x² + 6x + 9的因式分解形式。
通过应用完全平方公式,我们可以迅速将二次多项式转化为平方的形式。
在实际应用中,平方差公式和完全平方公式可以帮助我们进行因式分解,并简化问题的求解过程。
平方差公式与完全平方公式平方差公式:22))((b a b a b a -=-+说明:相乘的两个二项式中,a 表示的是完全相同的项,+b 和-b 表示的是互为相反数的两项。
所以说,两个二项式相乘能不能用平方差公式,关键看是否存在两项完全相同的项,两项互为相反数的项。
熟悉公式:例:(3a+2b)(3a-2b)中 3a 是公式中的a , 2b 是公式中的b(a 2+b 2)(a 2-b 2)中 a 2 是公式中的a , b 2是公式中的b(2a+b-c)(2a+b+c)中 2a+b 是公式中的a , c 是公式中的b 把下列空补充完整:(5+6x)(5-6x)中 是公式中的a , 是公式中的b (5+6x)(-5+6x)中 是公式中的a , 是公式中的b (x-2y)(x+2y)中 是公式中的a , 是公式中的b (-m+n)(-m-n)中 是公式中的a , 是公式中的b(a+b+c )(a+b-c)中 是公式中的a , 是公式中的b (a-b+c )(a-b-c)中 是公式中的a , 是公式中的b 例1:计算下列各题(a+3)(a-3)=a 2-32=a 2-9 (2x+21)(2x-21)=(2x)2-(21)2=4x 2-161仿练:( 2a+3b)(2a-3b)= (1+2c)(1-2c)= (-x+2)(-x-2)= (a+2b)(a-2b)= 例2:计算下列各题:1998×2002 =(2000-2)(2000+2)=20002-22=4000000-4=3999996 仿练: 1.01×0.99 = (20-91)×(19-98)= 例3:计算下列各题(a+b)(a-b)(a 2+b 2)=(a 2-b 2)(a 2+b 2)=(a 2)2-(b 2)2=a 4-b 4仿练:(a+2)(a-2)(a 2+4)= (x-12)(x 2+ 14)(x+ 12)= 例4:计算下列各题(-2x-y )(2x-y)=(-y-2x)(-y+2x)=(-y)2-(2x)2=y 2-4x 2 (4a-1)(-4a-1)=(-1+4a)(-1-4a)=(-1)2-(4a)2=1-16a 2仿练:(y-x)(-x-y)= (-2x+y)(2x+y)= (b+2a)(2a-b)= (a+b)(-b+a)= 例5;计算下列各题(a+2b+c )(a+2b-c)=[(a+2b )+c][(a+2b)-c]=(a+2b)2-c 2=a 2+4ab+b 2-c 2仿练:(a+b-3)(a-b+3)= (m-n+p)(m-n-p)=练习:1、(1)(1)x x +-2、(21)(21)x x +-3、(5)(5)x y x y +-4、(32)(32)x x +-5、(2)(2)b a a b +-6、(2)(2)x y x y -+--7、()()a b b a +-+8、()()a b a b ---9、(32)(32)a b a b +-10、5252()()a b a b-+11、(25)(25)a a +-12、(1)(1)m m ---13、11()()22a b a b ---14、(2)(2)ab ab ---15、10298⨯16、97103⨯17、4753⨯18、22()()()a b a b a b +-+19、(32)(32)a b a b +-20、(711)(117)m n n m ---21、(2)(2)y x x y ---22、(4)(4)a a +-+23、(25)(25)a a -+24、(3)(3)a b a b +-25、(2)(2)x y x y +-完全平方公式完全平方公式:2222)(b ab a b a +±=± 注意不要漏掉2ab 项(a 为首,b 为尾)口诀:首平方,尾平方,首尾之积二倍加减放中央(4m+n )2中 4m 是公式中的a , n 是公式中的b(-a-b)2中 -a 是公式中的a , b 是公式中的b(a+b-c)2中 a 是公式中的a , b-c 是公式中的b 或者(a+b-c)2中 a+b 是公式中的a , c 是公式中的b 仿练: (y-21)2中 是公式中的a , 是公式中的b (b-a )2中 是公式中的a , 是公式中的b(2a-b+c)2中 是公式中的a , 是公式中的b 熟悉公式变形1、a 2+b 2=(a+b)2 -2ab =(a-b)2+2ab2、(a-b )2=(a+b)2 -4ab ; (a+b)2=(a-b)2+4ab3、(a+b)2 +(a-b )2= 2a 2+2b 24、(a+b)2 --(a-b )2= 4ab 例1:计算下列各题2)(y x +=x 2+2xy+y 2 2)23(y x - =(3x)2-2(3x)(2y)+(2y)2=9x 2-12xy+4y 2仿练:2)21(b a += 2)12(--t = 2)313(c ab +-=2)2332(y x += 2)121(-x = (0.02x+0.1y)2=例2:利用完全平方公式计算: 1022=(100+2)2=1002+2×100+221972=(200-3)2=2002-2×200×3+32仿练:982= 2032=练习:计算 1、2(1)p + 2、2(1)p - 3、2()a b - 4、2()a b + 5、2(2)m + 6、2(2)m -7、2(4)m n +8、21()2y -9、2(3)x y -10、2(2)a b --11、21()a a+12、2(52)x y --13、2(2)a b -14、21()2x y -15、2(23)a b +16、2(32)x y -17、2(2)m n --18、2(22)a c +19、2(23)a -+20、21(3)3x y +21、2(32)a b +22、222()a b -+23、22(23)x y --24、2(1)xy -25、222(1)x y -添括号法则如果括号前面是正号,括到括号里的各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号. 也是:遇“加”不变,遇“减”都变.例:)(c b a c b a ++=++ )(c b a c b a +-=--练习运用法则:(1)a+b-c=a+( ) (2)a-b+c=a-( ) (3)a-b-c=a-( ) (4)a+b+c=a-( ) 2.判断下列运算是否正确. (1)2a-b-2c =2a-(b-2c) (2)m-3n+2a-b=m+(3n+2a-b ) (3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b )-(4c+5)在公式里运用法则例:计算:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x 2-(2y-3)2=x 2-(4y 2-12y+9)=x 2-4y 2+12y-9 (2)(a +b +c )2=[(a+b)+c]2=(a+b)2+2(a+b)c+c 2=a 2+2ab+b 2+2ac+2bc+c 2(3)(x +5)2-(x-2)(x-3)=x 2+10x+25-(x 2-5x+6)=x 2+10x+25-x 2+5x-6=15x+19练习:计算:(x +3)2-x 2 2)2(c b a +- 22)()(c b a c b a ---++。
新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。
本章的主要内容是整式的乘除运算、乘法公式以及因式分解。
本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。
整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。
本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。
其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。
在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。
首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。
在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。
15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。
乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,?x ?y ???y ?x ??x 2?y 2 ② 符号变化,??x ?y ???x ?y ????x ?2?y 2? x 2?y 2 ③ 指数变化,?x 2?y 2??x 2?y 2??x 4?y 4 ④ 系数变化,?2a ?b ??2a ?b ??4a 2?b 2⑤ 换式变化,?xy ??z ?m ???xy ??z ?m ????xy ?2??z ?m ?2? x 2y 2??z 2?2zm +m 2??x 2y 2?z 2?2zm ?m 2 ⑥ 增项变化,?x ?y ?z ??x ?y ?z ???x ?y ?2?z 2 ?x 2?2xy ?y 2?z 2⑦ 连用公式变化,?x ?y ??x ?y ??x 2?y 2???x 2?y 2??x 2?y 2??x 4?y 4⑧ 逆用公式变化,?x ?y ?z ?2??x ?y ?z ?2???x ?y ?z ???x ?y ?z ????x ?y ?z ???x ?y ?z ???2x ??2y ?2z ? ??4xy ?4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数n m aa a nm nm+=•),(都是正整数)(n m aa mnn m =)()(都是正整数n b a ab nn n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m aa a nm n m 都是正整数【注意】(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得 的商相加,单项式除以多项式是不能这么计算的。
一、选择(每题2分,共24分)1.下列计算正确的是().A.2x2·3x3=6x3B.2x2+3x3=5x5C.(-3x2)·(-3x2)=9x5D.54x n·25x m=12x m+n2.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为().A.5y3+3y2+2y-1 B.5y3-3y2-2y-6C.5y3+3y2-2y-1 D.5y3-3y2-2y-13.下列运算正确的是().A.a2·a3=a5B.(a2)3=a5C.a6÷a2=a3D.a6-a2=a44.下列运算中正确的是().A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空(每题2分,共28分)6.-xy2的系数是______,次数是_______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算(每题3分,共24分)13.(2x2y-3xy2)-(6x2y-3xy2)14.(-32ax4y3)÷(-65ax2y2)·8a2y17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203五、先化简,再求值(每题4分,共8分)22.(x+4)(x-2)(x-4),其中x=-1.23.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题(每题4分,共12分)24.已知2x+5y=3,求4x·32y的值.25.已知a2+2a+b2-4b+5=0,求a,b的值.幂的运算一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。
整式的乘法公式教案一、教学目标:1. 知识与技能:(1)理解并掌握整式的乘法公式,包括平方差公式和完全平方公式;(2)能够运用整式的乘法公式进行简便计算。
2. 过程与方法:(1)通过实例演示和练习,引导学生发现整式乘法公式;(2)培养学生运用公式进行计算的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生积极主动探究问题的习惯。
二、教学重点与难点:1. 教学重点:(1)掌握整式的乘法公式;(2)能够运用整式的乘法公式进行计算。
2. 教学难点:(1)整式乘法公式的推导过程;(2)灵活运用整式乘法公式解决实际问题。
三、教学准备:1. 教师准备:(1)教学课件或黑板;(2)练习题。
2. 学生准备:(1)预习整式乘法公式;(2)准备笔记本,记录重点知识。
四、教学过程:1. 导入:(1)复习相关知识,如整式的加减法;(2)提问:能否将整式的加减法推广到乘法?2. 知识讲解:(1)通过实例演示,引导学生发现整式乘法公式;(2)讲解平方差公式和完全平方公式的推导过程;(3)强调公式中的各项系数和指数的变化规律。
3. 练习与讲解:(1)让学生分组讨论,互相解答疑问;(2)选取典型题目进行讲解,分析解题思路;(3)引导学生运用整式乘法公式进行计算。
4. 课堂小结:(1)回顾本节课所学内容,总结整式乘法公式的特点;(2)强调学生在练习中需要注意的问题。
五、课后作业:1. 请学生完成课后练习题,巩固整式乘法公式的运用;2. 鼓励学生自主探究,发现整式乘法公式的拓展应用。
六、教学拓展:1. 平方差公式的拓展:(1)引导学生发现平方差公式的推广形式;(2)举例说明平方差公式在实际问题中的应用。
2. 完全平方公式的拓展:(1)引导学生发现完全平方公式的推广形式;(2)举例说明完全平方公式在实际问题中的应用。
七、课堂练习:1. 请学生独立完成练习题,检验对整式乘法公式的掌握程度;2. 教师选取部分学生的作业进行点评,指出优点和不足。
乘法公式的复习一、平方差公式(a+b)(a-b)=a2-b2概括小结公式的变式,正确灵巧运用公式:①地点变化, x y y x x2y2②符号变化, x y x y x 2 y2 x 2 y2③指数变化, x2 y2x2y2x4y4④系数变化, 2a b2a b4a2b2⑤换式变化, xy z m xy z mxy 2z m2x2y2z m z mx 2y2z22zm zm mx 2y2z222zm m⑥增项变化, x y z x y zx y 2z2x y x y z2x2xy xy y2 z2x22xy y2z222⑦连用公式变化,x y x y x y2222x y x y44x y⑧逆用公式变化,x y z 2x y z 2x y z x y z x y z x y z2x2y 2z4xy 4xz完整平方公式活用: 把公式自己适合变形后再用于解题。
这里以完整平方公式为例,经过变形或从头组合,可得以下几个比较实用的派生公式:1. a22ab a2b2 b2. a22ab a2b2 b3. a2a22 a 2b2b b4. a2a24ab b b灵巧运用这些公式,常常能够办理一些特别的计算问题,培育综合运用知识的能力。
例 1.已知a b 2 , ab 1,求a2b2的值。
例 2.已知a b 8, ab2,求 (a b)2的值。
解:∵ (a b) 2 a 22ab b 2(a b)2a22ab b 2∴∵(a b) 2(a b) 24ab∴ (a b) 24ab =(a b) 2 a b 8, ab 2∴ ( a b) 282 4 2 56例 3已知 a b4, ab5,求 a2b2的值。
解:2222a ab ab425262三、学习乘法公式应注意的问题(一)、注意掌握公式的特色,认清公式中的“两数”.例 1 计算 (-2 x2-5)(2 x2-5)剖析:本题两个因式中“-5 ”同样,“2x2”符号相反,因此“-5 ”是公式 ( a+b)( a- b)= a2- b2中的a,而“ 2x2”则是公式中的b.例 2 计算 (- a2+4b) 2剖析:运用公式 ( a+b) 2=a2+2ab+b2时,“ - a2”就是公式中的a,“4b”就是公式中的b;若将题目变形为 (4 b- a2) 2时,则“ 4b”是公式中的 a,而“ a2”就是公式中的 b.(解略)(二)、注意为使用公式创建条件例 3 计算 (2 x+y- z+5)(2 x- y+z+5) .剖析:粗看不可以运用公式计算,但注意察看,两个因式中的“2x”、“5”两项同号,“y”、“z”两项异号,因此,可运用添括号的技巧使原式变形为切合平方差公式的形式.例 5 计算 (2+1)(2 2 +1)(2 4+1)(2 8+1) .剖析:本题乍看无公式可用,“硬乘”太繁,但若添上一项( 2-1 ),则可运用公式,使问题化繁为简.(三)、注意公式的推行计算多项式的平方,由( a+b) 2=a2+2ab+b2,可推行获得:( a+b+c) 2=a2+b2+c2+2ab+2ac+2bc.可表达为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例 6 计算 (2 x+y-3) 2解:原式 =(2 x) 2+y2 +(-3) 2+2·2x·y+2·2x(-3)+2 ·y(-3)=4x2+y2+9+4xy-12 x-6 y.(四)、注意公式的变换,灵巧运用变形公式例 7 已知:x+2y=7,xy=6,求 ( x-2 y) 2的值.例 10 计算 (2 a+3b) 2-2(2 a+3b)(5 b-4 a)+(4 a-5 b) 2剖析:本题能够利用乘法公式和多项式的乘法睁开后计算,但逆用完整平方公式,则运算更为简易.四、如何娴熟运用公式:熟习常有的几种变化有些题目常常与公式的标准形式不相一致或不可以直接用公式计算,此时要依据公式特色,合理调整变化,使其知足公式特色.常有的几种变化是:1、地点变化如(3x+5y)(5y-3x)互换3x和5y的地点后即可用平方差公式计算了.2、符号变化如(-2m-7n)(2m-7n)变成-(2m+7n)(2m -7n)后即可用平方差公式求解了(思虑:不变或不这样变,能够吗?)3、数字变化如 98×102,992,912平分别变成(100-2)(100+2),(100-1)2,(90+1)2后即可以用乘法公式加以解答了.4、系数变化如( 4m+ n)(2m-n)变成2(2m+ n)(2m-n)2444后即可用平方差公式进行计算了.(四)、注意公式的灵巧运用有些题目常常可用不一样的公式来解,此时要选择最适合的公式以使计算更简易.如计算( a2+1)2·(a2-1)2,若分别睁开后再相乘,则比较繁琐,若逆用积的乘方法例后再进一步计算,则特别简易.即原式 =[ (a2+1)(a2-1)]2=(a4-1) 2=a8-2a4+1.对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用.如计算(1-1)(1-1)(1-1)( 1223242-192)(1-1102),若分别算出各因式的值后再行相乘,不单计算繁难,并且简单犯错.若注意到各因式均为平方差的形式而逆用平方差公式,则碰巧解本题.即原式 =(1-1)(1+1)(1-1)(1+ 1)× ×( 1-1)(1+ 1)22331010 = 1× 3× 2× 4× × 9×11= 1× 11= 11.2233101021020有时有些问题不可以直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有: a2+b2=(a+b)2-2ab,a2+b2=(a-b)2+2ab 等.用这些变式解相关问题常能收到事半功倍之效.2222如已知 m+n=7,mn=-18,求 m+n,m-mn+ n 的值.面对这样的问题即可用上述变式来解,2222即 m+n =(m+n)-2mn=7-2×(- 18)=49+36=85,2222m-mn+ n= (m+n)-3mn=7-3×(- 18) =103.以下各题,难不倒你吧?!1、若a+ 1 =5,求( 1)a2+ 12,(2)(a-1)2的值.a a a2、求( 2+1)(22+1)(24+1)(28+1)( 216+1)(232+1)(264+1)+1的末位数字.(答案: 1. (1)23;(2) 21.2. 6)五、乘法公式应用的五个层次乘法公式: (a +b)(a -b)=a 2-b2,(a ±b)=a 2±2ab+b2,(a ±b)(a 2±ab+b2)=a 3±b3.第一层次──正用即依据所求式的特色,模拟公式进行直接、简单的套用.例1计算( - 2x-y)(2x -y) ..第二层次──逆用,马上这些公式反过来进行逆向使用.例2计算第三层次──活用:依据待求式的构造特色,探访规律,连续频频使用乘法公式;有时依据需要创建条件,灵巧应用公式.例 3 化简: (2 +1)(2 2+1)(2 4+1)(2 8+1) +1.剖析直接计算繁琐易错,注意到这四个因式很有规律,假如再增加一个因式“ 2-1”即可连续应用平方差公式,从而问题水到渠成.解原式 =(2 -1)(2 +1)(2 2+1)(2 4+1)(2 8+1) +1=(2 2-1)(2 2+1)(2 4+1)(2 8+1) +1=216.第四层次──变用:解某些问题时,若能娴熟地掌握乘法公式的一些恒等变形式,如a2+b2=(a +b) 2-2ab,a3+b3=(a +b) 3-3ab(a +b) 等,则求解十分简单、明快.例 5 已知 a+b=9,ab=14,求 2a2+2b2的值.解:∵a+b=9,ab=14,∴ 2a2+2b2 =2[(a +b) 2-2ab]=2(9 2-2·14)=106 ,第五层次──综合后用:将 (a + b) 2=a2+ 2ab+ b2和(a -b) 2 =a2-2ab+ b2综合,可得 (a +b) 2+(a - b) 2=2(a 2+b2 ) ;(a +b) 2-(a -b) 2=4ab;等,合理地利用这些公式办理某些问题显得新奇、简捷.例 6 计算: (2x +y-z+5)(2x -y+z+5) .解:原式= 1[(2x+y-z+5)+(2x-y+z+5)]2-1[(2x+y-z+5)-(2x-y+z+5)]244=(2x +5) 2-(y - z) 2=4x2+20x+25-y2+2yz -z2乘法公式的使用技巧:①提出负号:关于含负号许多的因式,往常先提出负号,以防止负号多带来的麻烦。