第五章讲义坝基稳定性
- 格式:ppt
- 大小:601.00 KB
- 文档页数:4
σ
6.2 坝基岩体稳定性
一、坝基岩体滑动破坏的类型
表层滑动、浅层滑动和深层滑动三种类型。
二、坝基岩体滑动的边界条件分析
滑动面
切割面
临空面
三、坝基抗滑稳定性分析
(一)原理
评价参数:安全系数K
K=抗滑力/滑动力
K>1 抗滑稳定性好
K<1 不稳定
K=1 临界状态
K= U=G+F (竖直方向的合力)
二)、f 、C 值的确定
1.对地基岩体取样试验(实验室试验/现场原位试验)
→试验值f (峰值)→进行一次修正得到试验值f0 →二次修正得到建议值fk →三次修正得到设计值。
2.试验值f 的确定
室内试验:直剪试验 三轴试验 现场原位试验:
3、试验值f0确定:
⑴ 软岩(干抗压强度小于30MPa )取屈服极限做实验值=峰值×0.7(或0.8)
⑵硬质岩取比例极限做实验值=峰值×0.6 4、建议值fk 确定:
fk=Ψ(f) f0
Ψ(f)为与工程地质条件\ 岩体结构面特征\地下水动态有关的参数
地基处理
1、清基
土石坝清基至弱风化带中部。
高坝清至微风化带或弱风化带下部
2、坝基岩体加固 ∑∑+∙H CA f U c f +=ϕστtan c
固结灌浆
锚固
高倾角软弱破碎带的处理:混凝土塞、混凝土量、混凝土拱缓倾角软弱破碎带的处理:混凝土键。
重力坝的坝基稳定性分析摘要:作为可再生清洁能源,水力资源是中国能源的重要组成部分,在能源平衡和能源工业的可持续发展中占有重要地位。
水电建设中最重要的一环就是大坝的建设,作为发电的载体,要充分保证大坝的安全与稳定。
而作为应用最广泛的重力坝,从地形地质条件、坝基岩体的抗滑抗渗稳定性以及地震带来的砂土液化等方面对坝基的安全稳定性进行多角度分析显得至关重要。
关键词:坝基稳定性;抗滑稳定性;抗渗稳定性;地震液化进入21世纪,我国的能源结构将要发生重大的变化,像水能等清洁能源将逐步取代煤炭等化石能源。
随着越来越多的重力坝开工建设,遇到的问题也是越来越多,特别是坝基的稳定性问题,本文主要是对重力坝坝基的稳定性问题进行分析。
1.重力坝对地质、地形条件的要求重力坝主要依靠坝身的自重与地基间产生足够大的摩阻力来保持稳定,因此重力坝对地基的要求较高,一般都建在基岩之上,也可以建在较好的土质地基上面。
1.1大坝与基岩接触面抗剪强度足够大,坝基岩体内没有软弱结构面和可能滑动的岩体或者其本身的抗剪强度就满足抗滑稳定的要求。
1.2坝基具有良好的抗渗性,在水库上下游的水头差作用下不至于发生大量渗漏和产生过大的扬压力,也不会发生泥化和软弱夹层、断层破碎带的渗透变形。
1.3坝基两岸的山体比较稳定,不存在潜在的滑坡体;坝区附近有充足的、符合要求的混凝土骨料或石料,以节省材料的成本,加快施工进度。
2.坝基岩体的抗滑稳定性分析很多坝基中含有结构面、风化裂隙以及软弱夹层等不利的地质条件,而这些地质条件的构造特征及组合形式会对坝基的稳定性造成影响。
2.1重力坝坝基的滑动破坏类型有三种:表层滑动、浅层滑动、深层滑动,构成岩体滑动的边界条件有滑动面、切割面和临空面。
各种软弱结构面及其空间组合控制着坝基的可能破坏形式。
这些因素对于坝基岩体抗滑稳定的定性分析至关重要。
2.2影响坝基抗滑稳定性的因素有坝体自重、水压力、扬压力、淤砂压力、地震力和波浪压力等。
第五节土石坝的稳定分析
一、目的
分析坝体及坝基在各种不同的工作条件下可能产生的稳定破坏形式,通过必要的力学计算,校核坝剖面的安全度,经过反复修改定出经济剖面。
确定土坝稳定性,主要指边坡的抗滑稳定。
二、坝坡的滑动面形式
坝坡的滑动面形式主要与坝体结构型式、筑坝材料和地基情况、坝的工作条件等因素有关。
1、曲线滑动面:滑动面通过粘性土部位时,
2、折线滑动面:滑动面通过非粘性土部位时;
3、复式滑动面:滑动面通过粘性土和非粘性土构成的多种土质坝时。
图6-17 坝坡坍滑破坏形式
1-坝壳或者坝体;2-防渗体;3-滑动面;4-软弱夹层
三、荷载及其组合
(一)作用力
1、自重:水上——湿容重,水下——浮容重。
2、渗透力:与渗透坡降有关。
3、孔隙水压力:总应力法和有效应力法.
4、地震力:地震区应考虑地震惯性力。
地震惯性力壳拟静力法计算。
(二)荷载组合:
正常运用:
(1)水库蓄满水(一般为正常蓄水位)形成稳定渗流时,验算下游坝坡稳定。
(2)水库水位为最不利水位时,上游坡的计算。
(3)库水位降落,使上游坡产生渗透压力时的稳定计算
非常运用:
(1)库水位骤降时的上游坝坡的计算
(2)施工期(含竣工期)考虑孔隙水压力上下游坝坡稳定计算
(3)地震情况下,上下游坝坡计算
(4)校核水位时下游坡的计算
四、稳定分析方法
强度分析法和刚体极限平衡法。
1、圆弧滑动法:针对粘性土的坝坡;
2、折线滑动法:针对非粘性土的坝坡;
图6-18 坝坡稳定计算示意图
图6-19 非粘性土坡稳定计算示意图。
1 工程概况该贮灰场位于某石油厂热电厂原有灰场内。
初期坝坐落于三面环山的U字型沟谷内,左右山体宽厚。
从地貌上看该场地贮灰前为山前沉积坡地,属残坡积地貌,地形起伏较大,灰场贮灰坝后属冲积平原地貌,地形较为平坦,地表高程介于173.97~160.04米。
初期坝及一、二级子坝为碎石土坝体,碎石成分为中风化及强风化的油页岩,坝体密实。
初期坝及一、二级子坝坝高均为5.0米,初期坝全长373.0米,高5.0米,坝顶宽4.0米,坝基宽约为29.0米,初期坝坝基座落于强夯处理后的油母页岩残渣(人工素填土)上,筑坝材料为油母页岩残渣。
随着单机容量的增加,贮灰场的规模也同步扩大,拟在二级子坝前灰渣上修筑三级子坝,坝高5.0米,轴线与二级子坝平行,坝轴线间距离约为20.5米。
初期坝上、下游设计边坡均为1:2.5,子坝上游设计边坡为1:2.0,下游设计边坡为1:2.5,二级子坝上、下游设计边坡均为1:2.5。
勘察资料表明,初期坝及一、二级子坝坝体整体性好,未见断裂及节理裂隙,亦无滑动痕迹。
从浸润线位置看,一级子坝、二级子坝坝体内未见浸润线,坝体无渗漏现象,说明坝体施工质量较好,坝体排水性能好。
从运行上看,初期坝及一、二级子坝已安全运行十年,因此可以认为坝体稳定,无不良地址现象,可以进行加高。
[1]2 渗流的数值模拟原理渗流场和温度场比拟方法是以温度场中热流的流动与地下水在多孔介质中的运动在数学描述上的相似性为基础而设计的。
借助于这种相似性才得以用热流来模拟渗流以解决渗流的某些实际问题。
温度模拟方法的核心问题就是以温度场模型代替渗流区域,根据温度场数学模型中测得的各点温度值绘制等温线,以模拟渗流场相应点的水头值及等水头线,利用这种相似可以计算出渗流场中各渗流要素。
用温度场中的温度T来比拟渗流场中的水头H,用热传导率来比拟渗透系数,热流速度来比拟渗流速度。
这样,热流定律中的各物理量与达西定律中的各物理量一一对应。
因此,以热流定律为基础的温度场的控制方程与以达西定律为基础的渗流场的控制方程在数学上均以拉普拉斯方程的形式表示出来。