窄带随机过程的模拟
- 格式:pdf
- 大小:461.13 KB
- 文档页数:14
随机过程数学建模分析任何通信系统都有发送机和接收机,为了提高系统的可靠性,即输出信噪比,通常在接收机的输入端接有一个带通滤波器,信道内的噪声构成了一个随机过程,经过该带通滤波器之后,则变成了窄带随机过程,因此,讨论窄带随机过程的规律是重要的。
一、窄带随机过程。
一个实平稳随机过程X(t),若它的功率谱密度具有下述性质:中心频率为ωc,带宽为△ω=2ω0,当△ω<<ωc时,就可认为满足窄带条件。
若随机过程的功率谱满足该条件则称为窄带随机过程。
若带通滤波器的传输函数满足该条件则称为窄带滤波器。
随机过程通过窄带滤波器传输之后变成窄带随机过程。
图1 为典型窄带随机过程的功率谱密度图。
若用一示波器来观测次波形,则可看到,它接近于一个正弦波,但此正弦波的幅度和相位都在缓慢地随机变化,图2所示为窄带随机过程的一个样本函数。
图1 典型窄带随机过程的功率谱密度图图2 窄带随机过程的一个样本函数二、窄带随机过程的数学表示1、用包络和相位的变化表示由窄带条件可知,窄带过程是功率谱限制在ωc附近的很窄范围内的一个随机过程,从示波器观察(或由理论上可以推知):这个过程中的一个样本函数(一个实现)的波形是一个频率为ƒc且幅度和相位都做缓慢变化的余弦波。
写成包络函数和随机相位函数的形式:X(t)=A(t)*cos[ωc t+ Φ(t)]其中:A(t)称作X(t)的包络函数; Φ(t)称作X(t)的随机相位函数。
包络随时间做缓慢变化,看起来比较直观,相位的变化,则看不出来。
2、莱斯(Rice)表示式任何一个实平稳随机过程X(t)都可以表示为:X(t)=A c(t) cosωc t-A S(t) sinωc t其中同相分量:A c(t)= X(t) cosφt= X(t) cosωc t+sinωc t=LP[X(t) *2cosωc t]正交分量:A S(t) = X(t)sinφt=cosωc t— X(t) sinωc t= LP[-X(t) *2sinωc t](LP[A]表示取A的低频部分)。
随机过程数学建模分析任何通信系统都有发送机和接收机,为了提高系统的可靠性,即输出信噪比,通常在接收机的输入端接有一个带通滤波器,信道内的噪声构成了一个随机过程,经过该带通滤波器之后,则变成了窄带随机过程,因此,讨论窄带随机过程的规律是重要的。
一、窄带随机过程。
一个实平稳随机过程X(t),若它的功率谱密度具有下述性质:中心频率为ωc,带宽为△ω=2ω0,当△ω<<ωc时,就可认为满足窄带条件。
若随机过程的功率谱满足该条件则称为窄带随机过程。
若带通滤波器的传输函数满足该条件则称为窄带滤波器。
随机过程通过窄带滤波器传输之后变成窄带随机过程。
图1 为典型窄带随机过程的功率谱密度图。
若用一示波器来观测次波形,则可看到,它接近于一个正弦波,但此正弦波的幅度和相位都在缓慢地随机变化,图2所示为窄带随机过程的一个样本函数。
图1 典型窄带随机过程的功率谱密度图图2 窄带随机过程的一个样本函数二、窄带随机过程的数学表示1、用包络和相位的变化表示由窄带条件可知,窄带过程是功率谱限制在ωc附近的很窄范围内的一个随机过程,从示波器观察(或由理论上可以推知):这个过程中的一个样本函数(一个实现)的波形是一个频率为ƒc且幅度和相位都做缓慢变化的余弦波。
写成包络函数和随机相位函数的形式:X(t)=A(t)*cos[ωc t+ Φ(t)]其中:A(t)称作X(t)的包络函数; Φ(t)称作X(t)的随机相位函数。
包络随时间做缓慢变化,看起来比较直观,相位的变化,则看不出来。
2、莱斯(Rice)表示式任何一个实平稳随机过程X(t)都可以表示为:X(t)=A c(t) cosωc t-A S(t) sinωc t其中同相分量:A c(t)= X(t) cosφt= X(t) cosωc t+sinωc t=LP[X(t) *2cosωc t]正交分量:A S(t) = X(t)sinφt=cosωc t— X(t) sinωc t= LP[-X(t) *2sinωc t](LP[A]表示取A的低频部分)。
实验四 窄带信号的仿真和分析一、实验目的1熟悉窄带随机过程的定义,了解窄带随机过程产生的原理与方法。
2估计实验产生的窄带随机过程的功率谱。
二、实验仪器1计算机一台。
2 MATLAB 软件。
三、实验原理如果带通信号的带宽与中心频率相比非常小,即|ω2-ω1|<<ω0(或ωm<<ω0),则称它为窄带信号或准单频信号。
222000002022()cos[()]()()()()()cos()()sin()()()cos()()sin()()cos ()()()cos ()()(;/),0n v v v n n v n v n r A r n n s t A t t v t s t n t v t i t t q t t n t i t t q t t i t A t i t q t A t q t r rA f r t e I r σωωωωωϕσσ+=+Φ=+=-=-=Φ+=Φ+⎛⎫=≥ ⎪⎝⎭只有噪声时,输出噪声幅度服从正态分布,而包络服从瑞利分布。
四 实验内容本实验模拟产生一个窄带随机过程。
首先产生两个相互独立的随机过程 Ac(t)和As(t), 并将用两个正交载波 cos 2πf0t 和 sin 2πf0t 进行调制,如下图所示,然后进行抽样得到窄带过程的抽样。
πf 0tnTπf 0nT4.1 窄带随机过程的产生实验步骤:步骤一,理解窄带随机过程产生的框图,如图所示。
步骤二,根据所设计框图,产生两个独立的白噪声,并设计一个低通滤波器(本实验选择为)。
白噪声通过同一个低通滤波器产生两个相互独立的随机过程Ac(t)和As(t)的抽样Ac(n)和As(n);步骤三,用两个正交载波cos2πf0nT和sin2πf0nT(T为抽样间隔,假定T=1,f0=1000/π)分别对Ac(n)和As(n)进行调制,然后通过两者相减得到窄带随机过程的抽样值;步骤四,根据计算相关函数和功率谱的数学表达式估计其值;步骤五,MATLAB编程完成上述内容。
实验报告实验题目:窄带随机过程的模拟一、实验目的了解随机过程特征估计的基本概念和方法,学会运用MATLAB软件产生各种随机过程,对随机过程的特征进行估计,并通过实验了解不同估计方法所估计出来的结果之间的差异。
二、实验原理(1)高斯白噪声的产生提示:利用MATLAB函数randn产生(2)自相关函数的估计111()()ˆ()1ˆ()N m n x N m x n m n n x n m x n N R m R m x x N m --=--+=⎧+⎪⎪=⎨⎪=⎪-⎩∑∑对有偏估计对无偏估计提示:MATLAB 自带的函数为xcorr(),阐述xcorr 的用法(3)功率谱的估计利用周期图方法估计功率谱,21ˆ()()xG X N=ωω 其它谱估计方法:…….提示:MATLAB 自带的函数为periodogram(),阐述periodogram()的用法;阐述其它谱估计方法的用法。
(4)均值的估计111ˆ()N x n mx n N -==∑ 提示:MATLAB 自带的函数为mean()(5)方差的估计12211ˆ[()]N xn x n x N -==-∑σ提示:MATLAB 自带的函数为var()(6) AR(1)模型的理论自相关函数和理论功率谱对于AR(1)模型()(1)()X n aX n W n =-+,自相关函数为2||2()1m X a R m a =-σ ,其功率谱为22()(1)X j G aeωσω-=-。
三、实验内容1. 相关高斯随机序列的产生按如下模型产生一组随机序列()(1)()x n ax n w n =-+,其中()w n 为均值为1,方差为4的正态分布白噪声序列。
(1)产生并画出a=0.8和a=0.2的x(n)的波形; (2)估计x(n)的均值和方差;(3)估计x(n)的自相关函数,并画出相关函数的图形。
2. 两个具有不同频率的正弦信号的识别设信号为12()sin(2)2cos(2)()x n f n f n w n ππ=++,1,2,,n N = ,其中()w n 为零均值正态白噪声,方差为2σ。