2017-2018学年甘肃省庆阳市镇原县平泉中学高一(上)数学期末试卷 及解析
- 格式:doc
- 大小:441.50 KB
- 文档页数:16
高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
高一数学期末练习题(必修一)答题时间90分钟.一、选择题:(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y = )A )43,21(- B ]43,21[- C ),43[]21,(+∞⋃-∞ D ),0()0,21(+∞⋃- 2. 二次函数2y ax bx c =++中,0a c ⋅<,则函数的零点个数是( ) A 0个 B 1个 C 2个 D 无法确定 3. 若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围 是( )A 3-≤aB 3-≥aC 5≤aD 5≥a 4. 方程05log 2=-+x x 在下列哪个区间必有实数解( ) A (1,2) B (2,3) C (3,4) D (4,5) 5. 函数y= | lg (x-1)| 的图象是 ( )6.3334)21()21()2()2(---+-+----的值 ( )A 437B 8C -24D -8 7.若y=log 56·log 67·log 78·log 89·log 910,则有 ( )A. y ∈(0 , 1) B . y ∈(1 , 2 ) C. y ∈(2 , 3 ) D. y =18.若函数()b ax x x f --=2的两个零点是2和3,则函数()12--=ax bx x g 的零点是()A .1- 和2-B .1 和2C .21和31 D .21-和31- 9.下述函数中,在]0,(-∞内为增函数的是( )A y =x 2-2B y =x3 C y =12x - D 2)2(+-=x y C10.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是()f x =0(x ∈R ),其中正确命题的个数是( )A 4B 3C 2D 1二、填空题(本大题共5小题,每小题5分,共25分)11.已知函数f(x)的定义域为[0,1],则f(2x )的定义域为 。
高一数学上期末试卷高一数学上期末试卷一、选择题:1.集合,,则 ( )A. B. C. D.2.下列四个函数中,与表示同一函数的是( )A. B. C. D.3.已知,则a,b,c的大小关系是 ( )A. B. C. D.4.若角的终边过点P ,则等于A . B. C. D.不能确定,与a的值有关5.式子的值等于A. B. - C. - D. -6.设,则函数的零点位于区间( )A. B. C. D.7.要得到函数y=2cos(2x- )的图象,只需将函数y=2cos2x的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位8.已知函数,则 ( )A. B. C. D.9.已知,则的值为 ( )A. B. C. D.10.《中华人民共和国个人所得税》规定,从2011年9月1日起,修改后的个税法将正式实施,个税起征点从原来的2000元提高到3500元,即原先是公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的`部分为全月应纳税所得额,新旧税款分别按下表分段累计计算:9月前税率表 9月及9月后税率表张科长8月应缴纳税款为475元,那么他9月应缴纳税款为( )A.15B.145C.250D.1200二、填空题:11.幂函数的图象过点,则 ____12.已知扇形半径为8,弧长为12,则中心角为弧度,扇形面积是 .13.函数在区间上是减函数,那么实数的取值范围 .14.函数的部分图象如图所示,则函数表达式为 .15.给出下列命题:(1)函数在第一象限内是增函数(2)函数是偶函数(3)函数的一个对称中心是(4)函数在闭区间上是增函数写出正确命题的序号三、解答题:16. 计算:(1)(2)18.已知(1)求的值;(2)求的值.19.设函数f(x)=cos(ωx+φ)的最小正周期为π,且 =32.(1)求ω和φ 的值;(2)在给定坐标系中作出函数f(x)在[0,π]上的图象.21.某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量(件)与销售单价 (元/件),可近似看做一次函数的关系(图象如下图所示 ).(1)根据图象,求一次函数的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为元,①求关于的函数表达式 ;②求该公司可获得的最大毛利润,并求出此时相应的销售单价.22.已知函数,在同一周期内,当时,取得最大值 ;当时,取得最小值 .(Ⅰ)求函数的解析式 ;(Ⅱ)求函数的单调递减区间;(Ⅲ)若时,函数有两个零点,求实数的取值范围.试卷答案一、选择题1.D2.D3.C4.C5.A6.C7.D8.A9.C 10.B二、填空题11.312.13.14.15.③三、解答题16.(1)3 (2)7/417.解:(1)A={x∣2(2) ={ x∣x<3或x≥7}={ x∣1(3)a>418.解:(1)(2)原式==19.(1)(2)略20.解:(Ⅰ)易知,函数f(x)的定义域为 ;(Ⅱ))函数f(x)=x- 是奇函数,理由如下:定义域关于原点对称,,f(-x)+f(x)=-x+ + x- =0,所以,函数f(x)是奇函数;(Ⅲ) 函数f(x)=x- 在上是增函数,证明如下:任取,且,则∵ ,∴ ,∵ ,∴∴ ,即∴函数f(x)=x- 在上是增函数.21.解:(1)由图像可知,,解得,,所以. …………6分(2)①由(1),, 10分②由①可知,,其图像开口向下,对称轴为,所以当时, .即该公司可获得的最大毛利润为62500元,此时相应的销售单价为750元/件…………13分。
新高一数学上期末试卷(带答案)一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞3.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦ C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.函数y =a |x |(a >1)的图像是( ) A .B .C .D .5.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c <<C .a c b <<D .c a b <<6.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭7.函数()2sin f x x x =的图象大致为( )A .B .C .D .8.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-19.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题13.函数20.5log y x =________14.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________.15.已知常数a R ∈,函数()21x af x x +=+.若()f x 的最大值与最小值之差为2,则a =__________.16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________.17.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.18.已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()x f x e =,则92f ⎛⎫= ⎪⎝⎭________. 19.若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.20.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.三、解答题21.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32mg/m ,首次改良后所排放的废气中含有的污染物数量为31.94mg/m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型()0.5001)*(5n p n r r r r p R n N +-∈⋅=-∈,给出,其中n 是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08mg/m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. (参考数据:取lg 20.3=)22.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .23.设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围. 24.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数) 25.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁RB ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.B解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <,341x x =,从而得解【详解】解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示: 依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题3.B解析:B【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .5.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.6.A【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数, 则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.7.C解析:C 【解析】 【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.8.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.9.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.11.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.12.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性二、填空题13.【解析】【分析】先求得函数的定义域然后利用同增异减来求得复合函数的单调区间【详解】依题意即解得当时为减函数为减函数根据复合函数单调性同增异减可知函数的单调递增区间是【点睛】本小题主要考查复合函数的单 解析:[)1,0-【解析】 【分析】先求得函数的定义域,然后利用“同增异减”来求得复合函数的单调区间. 【详解】依题意220.50log 0x x ⎧>⎨≥⎩,即201x <≤,解得[)(]1,00,1x ∈-.当[)1,0x ∈-时,2x 为减函数,0.5log x 为减函数,根据复合函数单调性“同增异减”可知,函数y =递增区间是[)1,0-. 【点睛】本小题主要考查复合函数的单调区间的求法,考查函数定义域的求法,属于基础题.14.【解析】【分析】根据方程的解在区间内将问题转化为解在区间内即可求解【详解】由题:关于的方程的解在区间内所以可以转化为:所以故答案为:【点睛】此题考查根据方程的根的范围求参数的取值范围关键在于利用对数 解析:()23log 11,1-+【解析】 【分析】根据方程的解在区间()3,8内,将问题转化为23log x a x+=解在区间()3,8内,即可求解. 【详解】由题:关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内, 所以()224log 3log +-=x x a 可以转化为:23log x a x+=, ()3,8x ∈,33111,28x x x +⎛⎫=+∈ ⎪⎝⎭, 所以()23log 11,1a ∈-+ 故答案为:()23log 11,1-+ 【点睛】此题考查根据方程的根的范围求参数的取值范围,关键在于利用对数运算法则等价转化求解值域.15.【解析】【分析】将化简为关于的函数式利用基本不等式求出的最值即可求解【详解】当时当时时当且仅当时等号成立同理时即的最小值和最大值分别为依题意得解得故答案为:【点睛】本题考查函数的最值考查基本不等式的解析:【解析】 【分析】将()f x 化简为关于x a +的函数式,利用基本不等式,求出的最值,即可求解. 【详解】当x a =-时,()0f x =,当x a时,()222111[()]1()2 x a x af xax x a ax a ax a++===+++-+++-+,x a >-时,21()22ax a a ax a+++-≥+当且仅当x a=时,等号成立,0()2af x∴<≤=同理x a<-时,()02af x∴≤<,()22a af x∴≤≤,即()f x的最小值和最大值分别为,22a a,2=,解得a=.故答案为:【点睛】本题考查函数的最值,考查基本不等式的应用,属于中档题.16.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型函数的值域要注意二次函数的值解析:(]0,1【解析】【分析】分别求出(),()f xg x的值域,对a分类讨论,即可求解.【详解】()()222,log loga R f x x a a+∈=+≥,()f x的值域为2[log,)a+∞,()()22log([()])g x f f x f x a==+⎡⎤⎣⎦,当22201,log0,[()]0,()loga a f x g x a<≤<≥≥,函数()g x值域为2[log,)a+∞,此时(),()f xg x的值域相同;当1a>时,2222log0,[()](log)a f x a>≥,222()log[(log)]g x a a≥+,当12a <<时,2222log 1,log (log )a a a a <∴<+ 当22222,log 1,(log )log a a a a ≥≥>,222log (log )a a a <+,所以当1a >时,函数(),()f x g x 的值域不同, 故a 的取值范围为(]0,1. 故答案为:(]0,1. 【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题.17.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可. 【详解】偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩,即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃, 故答案为()(),20,2-∞-⋃ 【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.18.【解析】【分析】由已知条件得出是以2为周期的函数根据函数周期性化简再代入求值即可【详解】因为所以所以是以2为周期的函数因为当时所以故答案为:【点睛】本题主要考查函数的周期性和递推关系这类题目往往是奇【解析】 【分析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫ ⎪⎝⎭,再代入求值即可. 【详解】 因为()()1f x f x +=-,所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数, 因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为. 【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用.19.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【解析:10,4⎛⎫⎪⎝⎭【解析】 【分析】由已知可构造()2log xa a t x +=有两不同实数根,利用二次方程解出t 的范围即可.【详解】()2()log x a f x a t =+为增函数,且[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,(),()f m m f n n ∴==,∴相当于方程()f x x =有两不同实数根,()2log x a a t x ∴+=有两不同实根,即2x x a a t =+有两解, 整理得:20x x a a t -+=, 令,0xm a m => ,20m m t ∴-+=有两个不同的正数根,∴只需1400t t ∆=->⎧⎨>⎩即可,解得104t <<, 故答案为:10,4⎛⎫ ⎪⎝⎭【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题.20.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立,则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.三、解答题21.(1)()0.50.5*20.065n n r n N -=-⨯∈ (2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可; (2)结合题意解指数不等式即可. 【详解】解:(1)由题意得02r =,1 1.94r =, 所以当1n =时,()0.510015pr r r r +=--⋅,即0.51.942(2 1.94)5p+=--⋅,解得0.5p =-,所以0.50.520.065*()n n r n -=-⨯∈N , 故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N .(2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得,0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 将lg 20.3=代入,得5lg 230211 5.31lg 27⨯+=+≈-,又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. 【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题. 22.(1)2a =(2)17,8⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(1)依题意代数求值即可;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论. 【详解】 (1)()32f =-,()12log 1032a ∴-=-,即211032a -⎛⎫-= ⎪⎝⎭,解得2a =; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设不等式可转化为()g x m >在[]3,4x ∈上恒成立,()g x 在[]3,4上为增函数,()31min 2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭,178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭.【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.23.(1)()24x xg x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭【解析】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,xxa a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3xf x =,且(2)18f a +=∴⇒∵∴(2)法一:方程为令,则144t ≤≤- 且方程为在有两个不同的解.设2211()24y t t t =-=--+,y b =两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解. 法二: 方程为,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦1=1-40413{0416(4)012b b f b f b ∆>⇒<⎛⎫∴≤⇒≥⎪⎝⎭≤⇒≥- 解得31,164b ⎡⎫∈⎪⎢⎣⎭考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错.24.(1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克【解析】 【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =; 当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+,故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩.(2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩,当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=; 当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克. 【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题. 25.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得26.见解析 【解析】 【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
高一数学上册期末试卷(含答案)高一数学上册期末试卷(含答案)第Ⅰ卷一.选择题(本大题共12小题,每小题5分,共60分)1.如果集合A={x|ax2-2x-1=0}只有一个元素则a的值是( )A.0B.0或1C.-1D.0或-12. 的值为( )A. B. C. D.3.若tan α=2,tan β=3,且α,β∈0,π2,则α+β的值为( )A.π6B.π4C.3π4D.5π44.已知,则 ( )A. B. C. D. 或5.设则( )A B C D6.若x∈[0,1],则函数y=x+2-1-x的值域是( )A.[2-1,3-1]B.[1,3 ]C.[2-1,3 ]D.[0,2-1]7若,则 ( )A. B. C.- D.8.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点成中心对称,,则 ( )A. B. C. D.9.已知函数的值域为R,则实数的范围是( )A. B. C. D.10.将函数y=3sin2x+π3的图像向右平移π2个单位长度,所得图像对应的函数( )A.在区间π12,7π12上单调递减B.在区间π12,7π12上单调递增C在区间-π6,π3上单调递减 D在区间-π6,π3上单调递增11.函数的值域为( )A.[1,5]B.[1,2]C.[2,5]D.[5,3]12.设是定义在上的偶函数,对,都有,且当时,,若在区间内关于的方程恰有3个不同的实数根,则的取值范围是( )A. B. C. D.第II卷(非选择题,共70分)二.填空题(本大题共4小题,每小题5分,共20分,请将答案填在答题纸上)13.已知则的值为------14.3tan 12°-34cos212°-2sin 12°=________.15.已知 ,试求y= 的`值域—16.设(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤fπ6对一切x∈R恒成立,则以下结论正确的是_____(写出所有正确结论的编号).① ;② ≥ ;③f(x)的单调递增区间是kπ+π6,kπ+2π3(k∈Z);④f(x)既不是奇函数也不是偶函数;17.(本题满分8分)已知:,,,,求18.(本题满分10分)已知函数,且(Ⅰ)求的值; (Ⅱ)判断并证明函数在区间上的单调性.19.(本题满分10分)已知函数 ((1)若是最小正周期为的偶函数,求和的值;(2)若在上是增函数,求的最大值.20(本题满分12分)已知函数,,( )(1)当≤ ≤ 时,求的最大值;(2)若对任意的,总存在,使成立,求实数的取值范围;(3)问取何值时,方程在上有两解?21.(附加题)(本题满分10分)已知函数(1)求函数的零点;(2)若实数t满足,求的取值范围.高一数学参考答案一.选择题:DBCBA CCCCB AC二.填空题:13. 0 14. 15. 16. ①②④ .17.解:,,∴ ,∴ = = = ......8分18.【解答】解:(Ⅰ)∵ ,,由,∴ ,又∵a,b∈N*,∴b=1,a=1;………………3分(Ⅱ)由(1)得,函数在(﹣1,+∞)单调递增.证明:任取x1,x2且﹣1<x1<x2,< p="">= ,∵﹣1<x1<x2,< p="">∴ ,∴ ,即f(x1)<f(x2),< p="">故函数在(﹣1,+∞)上单调递增.………………10分19.解:(1)由 =2 (∵ …………又是最小正周期为的偶函数,∴ ,即,…………3分且,即……6分,∴ 为所求;…………………………………………………5分(2)因为在上是增函数,∴ ,…………………………………………7分∵ ,∴ ,∴ ,于是,∴ ,即的最大值为,………此时……10分20.试题分析:(1) 设,则∴ ∴当时,……4分(2)当∴ 值域为当时,则有①当时,值域为②当时,值域为而依据题意有的值域是值域的子集则或∴ 或 8分(3) 化为在上有两解,令则t∈ 在上解的情况如下:①当在上只有一个解或相等解,有两解或∴ 或②当时,有惟一解③当时,有惟一解故或……12分21.(1) 的零点分别为和 2分(2)由题意,当时,,同理,当时,,,所以函数是在R上的偶函数,…5分所以,由,.………………时,为增函数,,即 .………10分。
XXX2017-2018学年第一学期期末考试高一数学试卷XXX2017-2018学年第一学期期末考试高一年级数学试卷第I卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知向量a=(2,1),b=(λ−1,2),若a+b与a−b共线,则λ=()A.−2B.−1C.1D.2改写:向量a=(2,1),向量b=(λ-1,2),若a+b和a-b共线,则λ=() A。
-2 B。
-1 C。
1 D。
22.已知3sinα+4cosα=2,则1-sinαcosα-cos2α的值是() A。
- B。
C。
-2 D。
2改写:已知3sinα+4cosα=2,求1-sinαcosα-cos2α的值,答案为() A。
- B。
C。
-2 D。
23.已知在△ABC中,AB=AC=1,BC=3,则AB·AC=() A。
1/33 B。
- C。
-2 D。
-改写:在△ABC中,AB=AC=1,BC=3,求XXX的值,答案为() A。
1/33 B。
- C。
-2 D。
-4.在△ABC中,若AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定改写:在△ABC中,如果AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定5.已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanA-tanB=3,则△ABC的面积为() A。
3/33 B。
- C。
3 D。
33/2改写:已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanB=3,求△ABC的面积,答案为() A。
3/33 B。
- C。
高一数学必修1复习检测试题一、选择题。
(共10小题,每题4分) 1、设集合A={x ∈Q|x>-1},则( )A 、A ∅∉B 、2A ∉C 、2A ∈D 、{}2 ⊆A2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5} 3、函数21)(--=x x x f 的定义域为( ) A 、[1,2)∪(2,+∞) B 、(1,+∞) C 、[1,2) D 、[1,+∞)4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )5、三个数70。
3,0。
37,,㏑0.3,的大小顺序是( )A 、 70。
3,0.37,,㏑0.3,B 、70。
3,,㏑0.3, 0.37C 、 0.37, , 70。
3,,㏑0.3,D 、㏑0.3, 70。
3,0.37,6、若函数f(x)=x 3+x 2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984 f(1.375)=-0.260 f(1.438)=0.165f(1.4065)=-0.052那么方程x 3+x 2-2x-2=0的一个近似根(精确到0.1)为( ) A 、1.2 B 、1.3 C 、1.4 D 、1.57、函数2,02,0x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( )8、设()log a f x x =(a>0,a ≠1),对于任意的正实数x ,y ,都有( )A 、f(xy)=f(x)f(y)B 、f(xy)=f(x)+f(y)C 、f(x+y)=f(x)f(y)D 、f(x+y)=f(x)+f(y)9、函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A 、b>0且a<0 B 、b=2a<0 C 、b=2a>0 D 、a ,b 的符号不定 10、某企业近几年的年产值如图,则年增长率最高的是 ( )(年增长率=年增长值/年产值)A 、97年B 、98年C 、99年D 、00年二、填空题(共4题,每题4分)11、f(x)的图像如下图,则f(x)的值域为 ;12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为 ;13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;14、老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数;②定义域为{|0}x R x ∈≠; ③在(0,)+∞上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确。
完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
甘肃省庆阳第一中学2024-2025学年高一上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}N 4U x x *=∈≤,{}1,2A =,{}2,4B =,则()U A B ⋃=ð()A .{}1,2B .{}1,2,3,4C .{}3,4D .{}2,3,42.命题“R x ∃∈,21x <”的否定是()A .R x ∀∈,21x ≥B .R x ∀∈,21x <C .x R ∃∈,21x ≥D .R x ∃∈,21x >3.如图,已知矩形U 表示全集,A 、B 是U 的两个子集,则阴影部分可表示为()A .()U AB ⋃ðB .()U A B ⋂ðC .()U B A⋂ðD .()U A B⋂ð4.已知集合{}|11A x x =-<<,{}2|20B x x x =--<,则()A .AB ⊆B .B A ⊆C .A B=D .A B =∅5.已知命题2:,230p x ax x ∀∈++>R 为真命题,则实数a 的取值范围是()A .1|02a a ⎧⎫<≤⎨⎬⎩⎭B .1|03a a ⎧⎫<<⎨⎬⎩⎭C .1|3a a ⎧⎫≥⎨⎬⎩⎭D .1|3a a ⎧⎫>⎨⎬⎩⎭6.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了集合论的函数定义,已知集合{}{}1,1,2,41,2,4,16M N =-=,,给出下列四个对应法则:①1y x=,②1y x =+,③y x =,④2y x =,请由函数定义判断,其中能构成从M 到N 的函数的是()A .①③B .①②C .③④D .②④7.关于x 的方程220++=x x a 有两个根,其中一个大于1,另一个小于1时,则a 的取值范围为()A .1a <-B .18a <C .1a <-或18a <D .1a <-或18a ≤8.已知0x >,0y >,且30x y xy +-=,若23x y m m +>+恒成立,则实数m 的取值范围为()A .][(),34,-∞-⋃+∞B .()4,3-C .()3,4-D .][(),43,-∞-+∞ 二、多选题9.下列命题是真命题的为()A .若0a b c d >>>>,则ab cd >B .若22ac bc >,则a b >C .若0a b >>且0c <,则22c c a b >D .若a b >且11a b>,则0ab <10.下列说法正确的是()A .至少有一个实数x ,使210x +=B .“0a b >>”是“11a b<”的充分不必要条件C .命题“21,04x x x ∃∈-+<R ”的否定是假命题D .“集合{}210A x ax x =++=”中只有一个元素是“14a =”的必要不充分条件11.设正实数,x y 满足21x y +=,则()A .xy 的最大值是18B .112x y+的最小值为4C .224x y +最小值为12D .212x y x+最小值为2三、填空题12.若集合{}1,1A =-,{}2B x mx ==,且B A ⊆,则实数m 的值是.13.若关于x 的不等式220ax bx ++>的解集为{}13x x -<<,则a b -=.14.当,m n ∈Z 时,定义运算⊗:当,0m n >时,m n m n Ä=+;当,0m n <时,m n m n Ä=×;当0,0m n ><或0,0m n <>时,||m n m n ⊗=⋅;当0m =时,m n n ⊗=;当0n =时,m n m ⊗=.在此定义下,若集合{(,)4}A m n m n =⊗=∣,则A 中元素的个数为.四、解答题15.已知集合{}220,{2,0}A xx ax a B =-+==-∣.(1)若1a =,求A B ;(2)若A B ⋂中只有一个元素,求a 的取值集合.16.(1)已知0ab ≠,求证:1a b +=是33220a b ab a b ++-=-的充要条件.(2)已知0a b >>,0c d <<,0e <,求证:e e a c b d>--17.求下列关于x 的不等式的解集:(1)4101x +≤-;(2)()222R ax x ax a ≥-∈-18.如图,要设计一张矩形广告牌,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为218000cm ,四周空白的宽度为10cm ,两栏之间的中缝空白的宽度为5cm ,设广告牌的高为cm x ,宽为cm y .(1)试用x 表示y ,并求x 的取值范围;(2)用x 表示广告牌的面积S ;(3)广告牌的高取多少时,可使广告牌的面积S 最小?19.设命题p :对任意[]0,1x ∈,不等式2234x m m -≥-恒成立,命题q :存在[]1,1x ∈-,使得不等式2210x x m -+-≤成立.(1)若p为真命题,求实数m的取值范围;(2)若p,q一真一假,求实数m的取值范围.参考答案:题号12345678910答案D ADADCABBCDBD题号11答案ABC1.D【分析】由集合的补集,并集运算求解即可.【详解】由题意可知{}1,2,3,4U =,所以{}3,4U A =ð,所以(){}2,3,4U A B ⋃=ð,故选:D 2.A【分析】运用特称命题的否定知识,否定结论,特称变全称即可.【详解】运用特称命题的否定知识,命题“R x ∃∈,21x <”的否定是“R x ∀∈,21x ≥”.故选:A.3.D【分析】在阴影部分区域内任取一个元素x ,分析元素x 与各集合的关系,即可得出合适的选项.【详解】解:在阴影部分区域内任取一个元素x ,则x A ∉且x B ∈,即U x A ∈ð且x B ∈,所以,阴影部分可表示为()U A ðB ⋂.故选:D.4.A【分析】求出集合B ,可确定两个集合之间的关系.【详解】因为220x x --<⇒()()210x x -+<⇒12x -<<,所以{}|12B x x =-<<.所以A B ⊆.故选:A 5.D【分析】问题转化为不等式2230ax x ++>的解集为R ,根据一元二次不等式解集的形式求参数的值.【详解】因为命题2:,230p x ax x ∀∈++>R 为真命题,所以不等式2230ax x ++>的解集为R .所以:若0a =,则不等式2230ax x ++>可化为230x +>⇒32x >-,不等式解集不是R ;若0a ≠,则根据一元二次不等式解集的形式可知:20Δ2120a a >⎧⎨=-<⎩⇒13a >.综上可知:13a >故选:D 6.C【分析】利用函数的定义逐一分析判断即可.【详解】对应关系若能构成从M 到N 的函数,须满足:对M 中的任意一个数,通过对应关系在N 中都有唯一的数与之对应,对于①,1y x=,当2x =时,12y N =∉,故①不满足题意;对于②,1y x =+,当1x =-时,110y N =-+=∉,故②不满足题意;对于③,y x =,当1x =时,1y N =∈,当1x =-时,1y N =∈,当2x =时,2y N =∈,当4x =时,4y N =∈,故③满足题意;对于④,2y x =,当1x =±时,1y N =∈,当2x =时,4y N =∈,当4x =时,16y N =∈,故④满足题意.故选:C.7.A【分析】根据方程根的个数以及根的分布情况解不等式即可求得结果.【详解】根据方程220++=x x a 有两个根,其中一个大于1,另一个小于1,可知2Δ1801120a a =->⎧⎨++<⎩,解得1a <-.故选:A 8.B【分析】将问题转化为2min (3)x y m m +>+,利用“1”的代换以及基本不等式求解min (3)x y +,从而得到212m m +<,求解不等式,即可得到答案.【详解】因为不等式23x y m m +>+恒成立,则2min (3)x y m m +>+,因为0x >,0y >,由30x y xy +-=可得311x y+=,所以3193(3)()62612y x x y x y x y x y +=++=++≥=,当且仅当9y xx y=,即6x =,2y =时取等号,故min (3)12x y +=,所以212m m +<,即2120m m +-<,解得43m -<<,则实数m 的取值范围是(4,3)-.故选:B .9.BCD【分析】由已知条件结合不等式的性质,判断结论是否正确.【详解】对于A 项,取2a =,1b =,3c =-,4d =-,则2ab =,12cd =,所以ab cd <,故A 选项错误;对于B 选项,若22ac bc >,有20c >,则a b >,B 选项正确;对于C 选项,若0a b >>,则220a b >>,则2211a b <,又因为0c <,由不等式的性质可得22c c a b >,所以C 选项正确;对于D 选项,若a b >且11a b >,则110a b b a ab--=<,所以,0ab <,D 选项正确.故选:BCD .10.BD【分析】由在实数范围内,20x >可得A 错误;举反例可得必要性不成立,可得B 正确;由全称与特称命题的性质和二次函数的性质可得C 错误;由集合A 中只有一个元素可得0a =或14,再由必要性可得D 正确;【详解】对于A ,在实数范围内,20x >,210x +>,故A 错误;对于B ,若0a b >>,则11a b<,充分性成立,若11a b<,如1,2a b =-=-,此时0a b >>,必要性不成立,所以“0a b >>”是“11a b<”的充分不必要条件,故B 正确;对于C ,命题“21,04x x x ∃∈-+<R ”的否定是21,04x x x ∀∈-+≥R ,由二次函数的性质可得()214f x x x =-+开口向上,0∆=,所以()0f x ≥恒成立,故C 错误;对于D ,若集合{}210A x ax x =++=中只有一个元素,当0a =时,1x =-;当0a ≠时,可得11404a a D =-=Þ=,所以必要性成立,故D 正确;故选:BD.11.ABC【分析】直接利用基本不等式即可求解A ,利用乘“1”法即可求解B ,利用完全平方式的性质即可求解C ,将“1”代换,即可由基本不等式求解D.【详解】对于A,21x y +=≥18xy ≤,当且仅当212x y x y+=⎧⎨=⎩,即14x =,12y =时等号成立,故A 正确;对于B,41112()(2)212222y xx y x y x y x y+=++=++≥+,当且仅当2221y xxy x y ⎧=⎪⎨⎪+=⎩即11,42x y ==时等号成立,故B 正确;对于C ,22214(2)4142x y x y xy xy +=+-=-≥,当且仅当14x =,12y =时等号成立,C 正确;对于D,21221132222x x x x y x y x y x y y +=+=+≥+++,当且仅当2221y xxy x y ⎧=⎪⎨⎪+=⎩即11,42x y ==时等号成立,故D 错误.故选:ABC .12.2±或0【分析】分B =∅、{}1B =-和{}1B =分别计算即可.【详解】当B =∅时,0m =,符合题意;当{}1B =-时,2m =-;当{}1B =时,2m =,综上,m 的值为2±或0.故答案为:2±或0.13.-2【分析】将不等式解集问题转化为一元二次方程的两根问题,结合韦达定理求出24,33a b =-=,得到答案.【详解】由题意得:-1,3为方程220ax bx ++=的两根,故213,13b a a -+=--⨯=,解得:24,33a b =-=,故24233a b --=-=-.故答案为:-214.14【分析】根据定义运算⊗,分成五类情况分别列举符合条件的元素,合并即得集合A .【详解】①当,0m n >时,4m n m n ⊗=+=,所以1,3m n =⎧⎨=⎩或3,1m n =⎧⎨=⎩或2,2,m n =⎧⎨=⎩;②当,0m n <时,4m n m n ⊗=⋅=,所以1,4m n =-⎧⎨=-⎩或4,1m n =-⎧⎨=-⎩或2,2,m n =-⎧⎨=-⎩;③当0,0m n ><或0,0m n <>时,4m n m n ⊗=⋅=,所以1,4m n =-⎧⎨=⎩或4,1m n =⎧⎨=-⎩或1,4m n =⎧⎨=-⎩或4,1m n =-⎧⎨=⎩或2,2m n =⎧⎨=-⎩或2,2,m n =-⎧⎨=⎩;④当0m =时,4m n n ⊗==;⑤当0n =时,4m n m ⊗==.所以()()()()()()()()(){1,3,3,1,2,2,1,4,4,1,1,4,4,1,1,4,4,1A =--------,()()()()()2,2,2,2,2,2,0,4,4,0}----,共14个元素.故答案为:14.15.(1){}2,0A B =- (2){}1,0-【分析】(1)求出A =∅,根据并集概念求出答案;(2)分0A B ∈∩和2A B -∈ 两种情况,得到答案.【详解】(1)1a =时,{}220A x x x =-+=,因为Δ1870=-=-<,所以方程220x x -+=无实数根,所以A =∅.故{}2,0A B =- .(2)当0A B ∈∩时,20a =,得0a =,此时{}{}0,0A A B == ;当2A B -∈ 时,4220a a ++=,得1a =-,此时{}{}2,1,2A A B =-=- .故a 的取值集合为{}1,0-.16.(1)见解析(2)见解析【分析】(1)证明充要条件,可先证明充分性再证必要性;(2)利用作差法证明即可.【详解】(1)证明:∵3322()()a b a b a ab b +=+-+∴332222(1)()a a b ab a b b a ab b ++--=+--+.充分性证明即1a b +=⇒33220a b ab a b ++-=-.∵1a b +=,即10a b +-=,∴222233(1)()0a a b ab a b a b ab b +-++-+-=-=,充分性得证;必要性证明即33220a b ab a b ++-=-⇒1a b +=.又∵0ab ≠∴222213024a ab b a b b ⎛⎫-+=-+> ⎪⎝⎭,∵33220a b ab a b ++-=-,∴22(1)()0a b a ab b +--+=,∴10a b +-=,即1a b +=,必要性得证.故1a b +=是33220a b ab a b ++-=-的充要条件.(2)证明:()()()()()()()()e b d a c e b a c d e e a c b d a c b d a c b d ----+-⎡⎤⎡⎤⎣⎦⎣⎦-=------,∵0a b >>,0c d <<,0e <,∴0,0,0,0a c b d b a c d ->->-<-<,∴()()0b a c d -+-<,∴()()()()0e b a c d a c b d -+-⎡⎤⎣⎦>--,即0e e a c b d ->--故e e a c b d>--.17.(1){|31}x x -≤<(2)答案见解析【分析】(1)根据分式不等式的解法,即可求解;(2)根据题意,利用一元二次不等式的解法,分类讨论,即可求解.【详解】(1)解:由不等式4101x +≤-,可得301x x +≤-,解得31x -≤<,即不等式4101x +≤-的解集为{|31}x x -≤<.(2)解:由不等式222ax x ax -≥-,可得化为2(2)20ax a x +--≥,若0a =,不等式可化为220x --≥,解得1x ≤-,即解集为{|1}x x -≤;若0a ≠,不等式可化为2(1)(0a x x a+-≥当0a >时,不等式即为2(1)(0x x a +-≥,解得1x ≤-或2x a≥,即不等式的解集为{|1x x ≤-或2}x a≥;当0a <时,不等式即为2(1)(0x x a+-≤,①当21a->时,即20a -<<时,解得21x a ≤≤-,解集为2{|1}x x a ≤≤-;②当21a-=时,即2a =-时,解得1x =-,解集为{|1}x x =-;③当当21a -<时,即2a <-时,解得21x a -≤≤,解集为2{|1}x x a -≤≤综上,当0a >时,不等式的解集为{|1x x ≤-或2}x a≥;当0a =,不等式的解集为{|1}x x -≤;当20a -<<时,不等式的解集为2{|1}x x a≤≤-;当2a =-时,不等式的解集为{|1}x x =-;当2a <-时,不等式的解集为2{|1}x x a-≤≤.18.(1)1800025,2020y x x =+>-(2)1800025,2020x S x x x =+>-(3)140cm【分析】(1)运用面积之和得到等式,再写成函数表达式即可;(2)矩形面积公式写函数表达式;(3)运用换元,结合基本不等式解题即可.【详解】(1)每栏的高和宽分别为()()120cm,25cm 2x y --,其中20,25x y >>两栏面积之和为:()25220180002y x --⋅=,整理得,1800025(20)20y x x =+>-.(2)18000180002525,202020x S xy x x x x x ⎛⎫==+=+> ⎪--⎝⎭;(3)令()20,0,t x t ∞=-∈+,则36000014400251850025185000S t t t t ⎛⎫=++=++ ⎪⎝⎭;1850024500≥+=∴当120t =时,S 取最小值为24500,此时140x =;答:当广告牌的高取140cm 时,可使广告的面积S 最小.19.(1)[1,3](2)(1)(23],,∞-⋃【分析】(1)p 为真命题时,任意[0,1]x ∈,不等式2234x m m -≥-恒成立可转化为()2min 234x m m -≥-,求解即可(2)化简命题q ,由(1)结合条件列不等式即可求出m 的取值范围.【详解】(1)因为p 为真命题,所以对任意[0,1]x ∈,不等式2234x m m -≥-恒成立,所以()2min 234x m m -≥-,其中[0,1]x ∈,所以234m m -≥-,解得13m ≤≤,所以m 的取值范围[1,3];(2)若q 为真命题,即存在[1,1]x ∈-,使得不等式2210x x m -+-≤成立,则()2min 210x x m -+-≤,其中[1,1]x ∈-,而()2min212x x m m -+-=-+,所以20m -+≤,故2m ≤;因为,p q 一真一假,所以p 为真命题,q 为假命题或p 为假命题q 为真命题,若p 为真命题,q 为假命题,则132m m ≤≤⎧⎨>⎩,所以23m <≤;若p 为假命题,q 为真命题,则12m m <⎧⎨≤⎩或32m m >⎧⎨≤⎩,所以1m <.综上,1m <或23m <≤,所以m 的取值范围为(1)(23],,∞-⋃.。
甘肃省靖远县2017-2018学年高一上学期期末考试数学试题(解析版)1 / 142017-2018学年甘肃省白银市靖远县高一(上)期末数学试卷一、选择题(本大题共12小题,共60.0分)1. 已知集合A ={1,3},B ={3,5},则A ∩B =( )A. B. C. D. 3,2. 下列四组直线中,互相平行的是( )A. 与B. 与C. 与D. 与3. 圆x 2+4x +y 2=0的圆心和半径分别为( )A. ,4B. ,4C. ,2D. ,24. 在空间中,下列命题错误的是( )A. 如果两条直线垂直于同一条直线,那么这两条直线平行B. 如果两个平面垂直于同一个平面,那么这两个平面可能互相垂直C. 过直线外一点有且只有一条直线与已知直线平行D. 不共线的三个点确定一个平面5. 下列各函数在其定义域内为增函数的是( )A. B. C. D.6. 一个几何体的三视图如图所示,则该几何体的体积为( )A. 3B. 4C. 5D. 6 7. 若x =8,y =log 217,z =( )-1,则( )A. B. C. D.8. 如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,F 、G 分别为C 1D 1、BC 1上一点,C 1F =1,且FG ∥平面ACE ,则BG =( )A. B. 4 C. D.9. 已知直线l :y =kx +2(k ∈R ),圆M :(x -1)2+y 2=6,圆N :x 2+(y +1)2=9,则( )A. l必与圆M相切,l不可能与圆N相交B. l必与圆M相交,l不可能与圆N相切C. l必与圆M相切,l不可能与圆N相切D. l必与圆M相交,l不可能与圆N相离10.函数f(x)=+1的大致图象为()A. B.C. D.11.若函数f(x)=log2(x2-2x+a)的最小值为4,则a=()A. 16B. 17C. 32D. 3312.光线沿直线l:3x-4y+5=0射入,遇直线l:y=m后反射,且反射光线所在的直线经过抛物线y=x2-2x+5的顶点,则m=()A. 3B.C. 4D.二、填空题(本大题共4小题,共20.0分)13.直线的倾斜角是直线的倾斜角的______倍.14.直线3x-4y+5=0被圆x2+y2=7截得的弦长为______.15.若函数f(x)=是在R上的减函数,则a的取值范围是______.16.在三棱锥P-ABC中,PA⊥AB,AC⊥AB,PA=3,AC=4,PC=5,且三棱锥P-ABC的外接球的表面积为28π,则AB=______.三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=+ln(2-x)的定义域为A,集合B={x|2x>1}.(1)求A∪B;(2)若集合{x|a<x<a+1}是A∩B的子集,求a的取值范围.18.(1)设直线l过点(2,3)且与直线2x+y+1=0垂直,l与x轴,y轴分别交于A、B两点,求|AB|;(2)求过点A(4,-1)且在x轴和y轴上的截距相等的直线l的方程.甘肃省靖远县2017-2018学年高一上学期期末考试数学试题(解析版)3 / 1419. 如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD为矩形,E 为PC 的中点,且 .(1)过点A 作一条射线AG ,使得AG ∥BD ,求证:平面PAG ∥平面BDE ;(2)若点F 为线段PC 上一点,且DF ⊥平面PBC ,求四棱锥F -ABCD 的体积.20. 已知函数f (x )=x 3+e x -e -x .(1)判断此函数的奇偶性,并说明理由;(2)判断此函数的单调性(不需要证明);(3)求不等式f (2x -1)+f (-3)<0的解集.21. 已知圆心在x 轴上的圆C 与直线l :4x +3y -6=0切于点M ( , ).(1)求圆C 的标准方程;(2)已知N (2,1),经过原点,且斜率为正数的直线L 与圆C 交于P (x 1,y 1),Q (x 2,y 2)两点.(ⅰ)求证: +为定值; (ii )求|PN |2+|QN |2的最大值.22.设函数f(x)=()x+m的图象经过点(2,-),h(x)=ax2-2x(<1).(1)若f(x)与h(x)有相同的零点,求a的值;(2)若函数f(x)在[-2,0]上的最大值等于h(x)在[1,2]上的最小值,求a的值.甘肃省靖远县2017-2018学年高一上学期期末考试数学试题(解析版)5 / 14答案和解析1.【答案】A【解析】解:A∩B={3}.故选:A .直接利用交集运算得答案.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【答案】D【解析】解:因为x+2y=0与2x+4y-3=0的斜率均为-,故平行,故选:D .两直线平行则斜率相等,计算斜率判断即可.本题考查了两直线平行与斜率的关系,属于基础题.3.【答案】C【解析】解:圆x 2+4x+y 2=0,即圆(x+2)2+y 2=4,它的圆心为(-2,0),半径为2,故选:C .把圆的一般方程化为标准方程,可得它的圆心和半径.本题主要考查圆的一般方程和标准方程,属于基础题.4.【答案】A【解析】解:空间中,如果两条直线垂直于同一条直线,那么这两条直线平行或相交货异面,故A 错误;如果两个平面垂直于同一个平面,那么这两个平面可能互相垂直,也可能相交货平行,故B 正确;过直线外一点有且只有一条直线与已知直线平行,由平行公理可C 正确; 由公理3可得不共线的三个点确定一个平面,故D 正确.故选:A .空间垂直于同一直线的两直线可以平行、相交或异面,可判断A;垂直于同一平面的两个平面肯相交或平行,可判断B;运用平行公理和公理3,即可判断C和D.本题考查空间线线、面面的位置关系的判断,考查平行和垂直的性质和公理的运用,属于基础题.5.【答案】B【解析】解:根据题意,依次分析选项:对于A,y=-,其定义域为(-∞,0)∪(0,+∞),在其定义域上不是增函数,不符合题意;对于B,y=log(4-x),其定义域为(-∞,4),令t=4-x,则y=log tx,则t=4-x为减函数,y=log tx也为减函数,则y=log(4-x)在其定义域内为增函数,符合题意;对于C,y=1-2x2,为二次函数,在其定义域上不是增函数,不符合题意;对于D,y=-x3,在其定义域上是减函数,不符合题意;故选:B.根据题意,依次分析选项中函数的单调性,综合即可得答案.本题考查函数单调性的判断,关键是掌握函数单调性的性质以及判断方法,属于基础题.6.【答案】C【解析】解:由已知三视图得到几何体如图:由团长时间得到体积为=5;故选:C.由已知几何体的三视图得到几何体为棱柱,由两个三棱锥组合成的,根据棱柱的体积公式计算即甘肃省靖远县2017-2018学年高一上学期期末考试数学试题(解析版)7 / 14可.本题考查了由几何体的三视图求几何体的体积;关键是正确还原几何体. 7.【答案】D【解析】解:∵x =8,∴x=4,∵z=()-1=,y=log 217>y=log 216=4,∴y >x >z ,故选:D .分别根据对数指数幂的运算性质求出x ,y ,z 即可比较本题考查了对数指数幂的运算性质,属于基础题8.【答案】C【解析】解:根据题意,连接BD ,与AC 交于点O ,连接EO ,在△BDD 1中,O 为BD 的中点,则EO 为△BDD 1的中位线,则BD 1∥EO ,而BD 1⊄平面ACE ,而EO ⊂平面ACE ,则BD 1∥平面ACE ,又由FG ∥平面ACE ,则BD 1∥FG ,又由C 1F=1,且C 1D 1=4, 则=,则C 1G=,则BG=BC 1-C 1G=3, 故选:C .根据题意,连接BD ,与AC 交于点O ,连接EO ,分析可得EO 为△BDD 1的中位线,进而可得BD 1∥平面ACE ,由线面平行的性质可得BD 1∥FG ,由平行线定理分析可得答案.本题考查线面平行的性质以及应用,涉及正方体的几何结构,属于基础题. 9.【答案】D【解析】解:∵直线l:y=kx+2(k∈R)过点(0,2),(0,2)在圆M:(x-1)2+y2=6内,∴直线l必与圆M相交,∵(0,2)在圆N:x2+(y+1)2=9上,∴l不可能与圆N相离.故选:D.直线l:y=kx+2(k∈R)过点(0,2),(0,2)在圆M:(x-1)2+y2=6内,(0,2)在圆N:x2+(y+1)2=9上,由此得到l必与圆M相交,l不可能与圆N相离.本题考查直线与圆的位置关系的判断,考查直线、圆等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.10.【答案】D【解析】解:∵f(-x)=f(x),∴函数为偶函数,其图象关于y轴对称,故排除B,C,当0<x<1时,log2x8<0,x2-4<0,∴f(x)>1,故排除A,故选:D.先判断函数为偶函数,再求出当0<x<1时,f(x)>1,故排除A,B,C本题考查了函数的图象的识别,关键掌握函数的奇偶性,和函数值得变化趋势,属于基础题11.【答案】B【解析】解:函数f(x)=log2(x2-2x+a)的最小值为4,可得y=x2-2x+a的最小值为16,由y=(x-1)2+a-1,可得a-1=16,即a=17,故选:B.甘肃省靖远县2017-2018学年高一上学期期末考试数学试题(解析版)9 / 14由对数函数的单调性可得y=x 2-2x+a 的最小值为16,配方即可得到所求最小值,解方程可得a .本题考查函数的最值的求法,注意转化为二次函数的最值,考查运算能力,属于基础题.12.【答案】C【解析】解:抛物线y=x 2-2x+5的顶点(1,6),点(1,6)关于直线y=m 的对称点(1,2m-6),(1,2m-6)在直线3x-4y+5=0上,3-4(2m-6)+5=0,解得m=4.故选:C .求出抛物线的顶点坐标,求得点M 关于直线y=m 的对称点M'的坐标,代入直线方程求解m 即可.本题主要考查求一个点关于直线的对称点的坐标,考查直线的方程的求法,属于中档题.13.【答案】5【解析】解:直线的倾斜角是150°, 直线的倾斜角是30°, 则直线的倾斜角是直线的倾斜角的5倍,故答案为:5. 根据直线的斜率k=tanα,分别求出直线的倾斜角,问题得以解决.本题考查直线的倾斜角,考查了直线的斜率,是基础题14.【答案】2【解析】解:∵O 到直线3x-4y+5=0的距离为1,∴所求距离为2=2.故答案为:2先求圆心O到直线的距离,再用勾股定理可得弦长.本题考查了直线与圆相交的性质.属中档题.15.【答案】[-6,1)【解析】解:由题意得:,解得:-6≤a<1,故答案为:[-6,1).根据一次函数以及对数函数的性质得到关于a的不等式组,解出即可.本题考查了一次函数以及对数函数的性质,考查转化思想,是一道基础题.16.【答案】【解析】解:∵PA=3,AC=4,PC=5,∴PA2+AC2=PC2,则PA⊥AC,又PA⊥AB,AC⊥AB,∴三棱锥P-ABC可以补成一个长方体,则其外接球的半径r=,∴,即AB=.故答案为:.由已知可得三棱锥P-ABC满足过顶点A的三条侧棱两两垂直,然后补形为长方体求解.本题考查球的表面积的求法,考查空间想象能力与思维能力,是基础题.17.【答案】解:(1)由得,-6≤x<2;由2x>1得,x>0;∴A=[-6,2),B=(0,+∞);∴A∪B=[-6,+∞);(2)A∩B=(0,2);∵集合{x|a<x<a+1}是A∩B的子集;∴ ;解得0≤a≤1;甘肃省靖远县2017-2018学年高一上学期期末考试数学试题(解析版)11 / 14∴a 的取值范围是[0,1].【解析】(1)可解出A=[-6,2),B=(0,+∞),然后进行并集的运算即可;(2)可解出A∩B=(0,2),根据集合{x|a <x <a+1}是A∩B的子集,即可得出,解出a 的范围即可.考查描述法、区间表示集合的定义,指数函数的单调性,函数定义域的定义及求法,子集的定义,以及交集、并集的运算.18.【答案】解:(1)设l 的方程为x -2y +c =0,代入(2,3)可得c =4,则x -2y +4=0,令x =0,得y =2,令y =0,得x =-4,∴A (-4,0),B (0,2),则|AB |= =2 ;(2)当直线不过原点时,设直线l 的方程为x +y =c ,代入(4,-1)可得c =3,此时方程为x +y -3=0,当直线过原点时,此时方程为x +4y =0.【解析】(1)设l 的方程为x-2y+c=0,代入(2,3)可得c=4,即可求出A ,B 的坐标即可求出|AB|;(2)分类讨论:当直线过原点时,当直线不过原点时,代点分别可得方程. 本题考查直线的截距式方程,是基础题.解题时要认真审题,仔细解答 19.【答案】证明:(1)在矩形ABCD 中,连结AC 和BD 交于点O ,连接OE ,则O 是AC 的中点,∵E 是PC 的中点,∴OE 是△PAC 的中位线,∴OE ∥PA ,又OE ⊂平面BDE ,PA ⊄平面BDE ,∴PA ∥平面BDE ,又AG ∥BD ,同理得AG ∥平面BDE ,∵PA ∩AG =A ,∴平面PAG ∥平面BDE .解:(2)∵DF ⊥平面PBC ,∴DF ⊥PC .在Rt △PDC 中,∵PD =4,CD =8,∴ ,∴DF = = ,∴FC = = ,∴ =, 过F 作FK ∥PD ,交CD 于K ,则FK =, ∵PD ⊥底面ABCD ,∴FK ⊥底面ABCD ,∴.【解析】(1)在矩形ABCD中,连结AC和BD交于点O,连接OE,则O是AC的中点,从而OE∥PA,进而PA∥平面BDE,由AG∥BD,得AG∥平面BDE,由此能证明平面PAG∥平面BDE.(2)由DF⊥PC,过F作FK∥PD,交CD于K,则FK⊥底面ABCD,由此能求出四棱锥F-ABCD的体积.本题考查面面平行的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.【答案】解:(1)根据题意,函数f(x)=x3+e x-e-x,则f(-x)=(-x)3+e-x-e x=-(x3+e x-e-x)=-f(x),则函数f(x)为奇函数;(2)f(x)=x3+e x-e-x在R上为增函数;(3)由(1)(2)的结论,f(x)=x3+e x-e-x是奇函数且在R上为增函数;f(2x-1)+f(-3)<0⇒f(2x-1)<-f(-3)⇒f(2x-1)<f(3)⇒2x-1<3,解可得x<2,即不等式的解集为(-∞,-2).【解析】(1)根据题意,由函数的解析式分析可得f(-x)=-f(x),结合函数奇偶性的定义分析可得答案;(2)由函数的解析式结合常见函数的单调性,分析易得结论;(3)根据题意,由(1)(2)的结论,可以将原不等式转化为2x-1<3,解可得x的取值范围,即可得答案.本题考查函数的奇偶性与单调性的证明与应用,(3)注意分析得到关于x的不等式,属于基础题.21.【答案】解:(1)由圆心在x轴上的圆C与直线l:4x+3y-6=0切于点M(,).设C(a,0),则k CM=,∴•(-)=-1,∴a=-1,∴C(-1,0),|CM|=2,即r=2,∴圆C的标准方程为(x+1)2+y2=4.(2)设直线l的方程为y=kx(k>0),与圆的方程联立,可得(1+k2)x2+2x-3=0,△=4+12(1+k2)>0,甘肃省靖远县2017-2018学年高一上学期期末考试数学试题(解析版)x1+x2=-,x1x2=-.(i)证明:+==为定值;(ii)|PN|2+|QN|2=(x1-2)2+(y1-1)2+(x2-2)2+(y2-1)2=(x1-2)2+(kx1-1)2+(x2-2)2+(kx2-1)2=(1+k2)(x1+x2)2-2(1+k2)x1x2-(4+2k)(x1+x2)+10=+16,令3+k=t(t>3),则k=t-3,上式即为+16=+16≤+16=2+22.当且仅当t=,即k=-3时,取得最大值2+22.【解析】(1)由题意设C(a,0),运用两直线垂直的条件:斜率之积为-1,解得a,再由两点的距离公式可得半径,进而得到所求圆的标准方程;(2)设直线l的方程为y=kx(k>0),联立圆的方程,可得x的二次方程,运用韦达定理,即可证得(ⅰ)+为定值;(ii)由两点的距离公式,以及韦达定理和基本不等式,化简整理,即可得到所求最大值.本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.22.【答案】解:(1)由题意可得f(2)=m+=-,即有m=-,即f(x)=()x-,由f(x)=0,可得x=1,由题意可得h(1)=a-2=0,即a=2;(2)函数f(x)在[-2,0]上递减,可得f(x)的最大值为f(-2)=4+m=,若函数f(x)在[-2,0]上的最大值等于h(x)在[1,2]上的最小值,由h(x)的对称轴为x=,当a>0时,由<1可得a>1,即有h(x)在[1,2]递增,可得h(x)的最小值为h(1)=a-2,由a-2=,解得a=;当a<0时,h(x)在[1,2]递减,即有h(x)的最小值为h(2)=4a-8,13 / 14由4a-8=,解得a=,又a<0,不符题意.综上可得a=.【解析】(1)由题意可得f(2)=-,解得m,由零点定义,即可得到所求值;(2)运用指数函数的单调性可得f(x)的最大值,讨论二次函数的对称轴和区间的关系,解方程即可得到所求值.本题考查函数的零点求法,考查指数函数的单调性和二次函数的最值求法,注意运用分类讨论思想方法,属于中档题.。
2017-2018学年甘肃省庆阳市镇原县平泉中学高一(上)期末数学试卷一、选择题.(本大题共11小题,每小题5分,共60分)1.(5.00分)如图所示,U表示全集,用A,B表示阴影部分正确的是()A.A∪B B.(∁U A)∪(∁U B)C.A∩B D.(∁U A)∩(∁U B)2.(5.00分)函数f(x)=2x+7的零点为()A.7 B.C.﹣7 D.3.(5.00分)函数f(x)=+lg(2x+1)的定义域为()A.(﹣5,+∞)B.[﹣5,+∞)C.(﹣5,0)D.(﹣2,0)4.(5.00分)函数y=x2+1的值域是()A.[1,+∞)B.(0,1]C.(﹣∞,1]D.(0,+∞)5.(5.00分)利用斜二测画法画平面内一个三角形的直观图得到的图形还是一个三角形,那么直观图三角形的面积与原来三角形面积的比是()A.B.C.D.6.(5.00分)圆x2+y2﹣2x﹣1=0关于直线2x﹣y+3=0对称的圆的方程是()A.(x+3)2+(y﹣2)2=B.(x﹣3)2+(y+2)2=C.(x+3)2+(y﹣2)2=2 D.(x﹣3)2+(y+2)2=27.(5.00分)正方体的外接球与其内切球的体积之比为()A.B.3:1 C. D.9:18.(5.00分)如果对数函数y=log(a+2)x在x∈(0,+∞)上是减函数,则a的取值范围是()A.a>﹣2 B.a<﹣1 C.﹣2<a<﹣1 D.a>﹣19.(5.00分)下列所给4个图象中,与所给3件事吻合最好的顺序为()(1)小明离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)小明骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)小明出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.A.(4)(1)(2)B.(4)(2)(3)C.(4)(1)(3)D.(1)(2)(4)10.(5.00分)直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),则n 的值为()A.﹣12 B.﹣2 C.0 D.1011.(5.00分)如图,S﹣ABC是正三棱锥且侧棱长为a,E,F分别是SA,SC上的动点,三角形BEF的周长的最小值为,则侧棱SA,SC的夹角为()A.30°B.60°C.20°D.90°二、填空题(本题共4小题,每小题5分,共20分).12.(5.00分)函数y=的定义域为.13.(5.00分)若f(x)是一次函数,且f[f(x)]=4x﹣1,则f(x)=.14.(5.00分)一个几何体的三视图如图所示,则该几何体的体积为.15.(5.00分)已知直线x﹣2y+2k=0与两坐标轴所围成的三角形的面积为1,则实数k值是.三、解答题(本大题共6小题,70分)16.(10.00分)求两条垂直的直线2x+y+2=0与ax+4y﹣2=0的交点坐标.17.(12.00分)求直线L:2x﹣y﹣2=0被圆C:(x﹣3)2+y2=9所截得的弦长.18.(12.00分)已函数f(x)是定义在R上的偶函数,且当x>0时,函数的解析式为.求:(1)求f(﹣1)的值;(2)求当x<0时函数的解析式;(3)用定义证明f(x)在(0,+∞)内是减函数.19.(12.00分)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.(1)求证:直线BD1∥平面PAC;(2)求证:平面PAC⊥平面BDD1;(3)求直线PB1与平面PAC的夹角.20.(12.00分)设函数f(x)=(log2x)2+3log2x+2,≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并给出函数取最值时对应x的值.21.(12.00分)已知直线x﹣y+1=0与圆C:x2+y2﹣4x﹣2y+m=0交于A,B两点;(1)求线段AB的垂直平分线的方程;(2)若|AB|=2,求m的值;(3)在(2)的条件下,求过点P(4,4)的圆C的切线方程.2017-2018学年甘肃省庆阳市镇原县平泉中学高一(上)期末数学试卷参考答案与试题解析一、选择题.(本大题共11小题,每小题5分,共60分)1.(5.00分)如图所示,U表示全集,用A,B表示阴影部分正确的是()A.A∪B B.(∁U A)∪(∁U B)C.A∩B D.(∁U A)∩(∁U B)【解答】解:由Venn图可知,阴影部分表示的是∁U(A∪B)=(∁U A)∩(∁U B);故选:D.2.(5.00分)函数f(x)=2x+7的零点为()A.7 B.C.﹣7 D.【解答】解:令f(x)=2x+7=0,可得x=﹣,故函数f(x)=2x+7的零点为﹣,故答案为﹣,故选:D.3.(5.00分)函数f(x)=+lg(2x+1)的定义域为()A.(﹣5,+∞)B.[﹣5,+∞)C.(﹣5,0)D.(﹣2,0)【解答】解:由题意得:,解得x>﹣5∴原函数的定义域为(﹣5,+∞)故选:A.4.(5.00分)函数y=x2+1的值域是()A.[1,+∞)B.(0,1]C.(﹣∞,1]D.(0,+∞)【解答】解:∵y=x2+1≥1故函数y=x2+1的值域是[1,+∞)故选:A.5.(5.00分)利用斜二测画法画平面内一个三角形的直观图得到的图形还是一个三角形,那么直观图三角形的面积与原来三角形面积的比是()A.B.C.D.【解答】解:∵画直观图时与x轴平行的线段长度保持不变,与y轴平行的线段程度变为原来的一半∴直观图三角形的底边与原来相等,高长为原来高长的,∴直观图三角形的面积与原来三角形面积的比是故选:A.6.(5.00分)圆x2+y2﹣2x﹣1=0关于直线2x﹣y+3=0对称的圆的方程是()A.(x+3)2+(y﹣2)2=B.(x﹣3)2+(y+2)2=C.(x+3)2+(y﹣2)2=2 D.(x﹣3)2+(y+2)2=2【解答】解:圆x2+y2﹣2x﹣1=0⇒(x﹣1)2+y2=2,圆心(1,0),半径,关于直线2x﹣y+3=0对称的圆半径不变,排除A、B,两圆圆心连线段的中点在直线2x﹣y+3=0上,C中圆(x+3)2+(y﹣2)2=2的圆心为(﹣3,2),验证适合,故选C7.(5.00分)正方体的外接球与其内切球的体积之比为()A.B.3:1 C. D.9:1【解答】解:设正方体的棱长为a,则它的内切球的半径为a,它的外接球的半径为,故所求的比为3:1,故选:C.8.(5.00分)如果对数函数y=log(a+2)x在x∈(0,+∞)上是减函数,则a的取值范围是()A.a>﹣2 B.a<﹣1 C.﹣2<a<﹣1 D.a>﹣1x在x∈(0,+∞)上是减函数,【解答】解:∵y=log(a+2)∴0<a+2<1,解得﹣2<a<﹣1.故选:C.9.(5.00分)下列所给4个图象中,与所给3件事吻合最好的顺序为()(1)小明离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)小明骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)小明出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.A.(4)(1)(2)B.(4)(2)(3)C.(4)(1)(3)D.(1)(2)(4)【解答】解:(1)离家不久发现自己作业本忘记在家里,回到家里,这时离家的距离为0,故应先选图象(4);(2)骑着车一路以常速行驶,此时为递增的直线,在途中遇到一次交通堵塞,则这段时间与家的距离必为一定值,故应选图象(1);(3)最后加速向学校,其距离随时间的变化关系是越来越快,故应选图象(2).故答案为:(4)(1)(2),故选:A.10.(5.00分)直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),则n 的值为()A.﹣12 B.﹣2 C.0 D.10【解答】解:∵直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣12.故选:A.11.(5.00分)如图,S﹣ABC是正三棱锥且侧棱长为a,E,F分别是SA,SC上的动点,三角形BEF的周长的最小值为,则侧棱SA,SC的夹角为()A.30°B.60°C.20°D.90°【解答】解:把正三棱锥沿SB剪开,并展开,形成三个全等的等腰三角形,△SBC、△SCA、△SAB',连接BB',交SC于F,交SA于E,则线段BB′就是△BEF的最小周长,BB'=a,又SB=SB'=a,根据勾股定理,SB2+SB'2=BB'2=2a2,△SBB'是等腰直角三角形,∴∠BSB'=90°,∴∠ASC=90°×=30°,∴侧棱SA,SC的夹角为30°故选:A.二、填空题(本题共4小题,每小题5分,共20分).12.(5.00分)函数y=的定义域为[﹣4,﹣2)∪(﹣2,+∞).【解答】解:由x+4≥0且x+2≠0,得x≥﹣4且x≠﹣2.故答案为:[﹣4,﹣2)∪(﹣2,+∞)13.(5.00分)若f(x)是一次函数,且f[f(x)]=4x﹣1,则f(x)=f(x)=2x ﹣或﹣2x+1.【解答】解:设f(x)=kx+b(k≠0),则f[f(x)]=f(kx+b)=k(kx+b)+b=k2x+kb+b=4x﹣1,根据多项式相等得出,解得或.因此所求的函数解析式为:f(x)=2x﹣或﹣2x+1.故答案为:f(x)=2x﹣或﹣2x+1.14.(5.00分)一个几何体的三视图如图所示,则该几何体的体积为π.【解答】解:由几何体的三视图得:该几何体是一个底面半径r=1,高h=2的扣在平面上的半圆柱,如图,故该几何体的体积为:V===π.故答案为:π.15.(5.00分)已知直线x﹣2y+2k=0与两坐标轴所围成的三角形的面积为1,则实数k值是±1.【解答】解:直线x﹣2y+2k=0与两坐标轴的交点为(0,k),(﹣2k,0),由=1,可得k=±1.故答案为:1或﹣1三、解答题(本大题共6小题,70分)16.(10.00分)求两条垂直的直线2x+y+2=0与ax+4y﹣2=0的交点坐标.【解答】解:∵两条垂直的直线2x+y+2=0与ax+4y﹣2=0,∴2a+4=0,解得a=﹣2,联立,解得x=﹣1,y=0,∴两条垂直的直线2x+y+2=0与ax+4y﹣2=0的交点坐标为(﹣1,0).17.(12.00分)求直线L:2x﹣y﹣2=0被圆C:(x﹣3)2+y2=9所截得的弦长.【解答】解:圆(x﹣3)2+y2=9的圆心为C(3,0),半径r=3,∵点C到直线L:2x﹣y﹣2=0的距离d=,∴根据垂径定理,得直线L:2x﹣y﹣2=0被圆(x﹣3)2+y2=9截得的弦长为:2=2.18.(12.00分)已函数f(x)是定义在R上的偶函数,且当x>0时,函数的解析式为.求:(1)求f(﹣1)的值;(2)求当x<0时函数的解析式;(3)用定义证明f(x)在(0,+∞)内是减函数.【解答】解:(1)∵函数f(x)是定义在R上的偶函数,且当x>0时,函数的解析式为,∴f(﹣1)=f(1)==1.(2)∵函数f(x)是定义在R上的偶函数,且当x>0时,函数的解析式为.∴当x<0时,f(x)=﹣1,∴当x<0时,.证明:(3)当x>0时,函数的解析式为.在(0,+∞)内任取x1,x2,令x1<x2,f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,∵x1,x2∈(0,+∞),x1<x2,∴x2﹣x1>0,x1x2>0,∴f(x 1)﹣f(x2)>0,∴f(x)在(0,+∞)内是减函数.19.(12.00分)如图,在长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.(1)求证:直线BD1∥平面PAC;(2)求证:平面PAC⊥平面BDD1;(3)求直线PB1与平面PAC的夹角.【解答】(1)证明:连接BD,交AC于O,则O为BD中点,连接OP,∵P为DD1的中点,∴OP∥BD1,∵OP⊂平面PAC,BD1⊄平面PAC,∴BD1∥平面PAC;(2)证明:长方体ABCD﹣A1B1C1D1中,AB=AD=1,底面ABCD是正方形,则AC ⊥BD,又DD1⊥面ABCD,则DD1⊥AC.∵BD⊂平面BDD1B1,D1D⊂平面BDD1B1,BD∩D1D=D,∴AC⊥面BDD1B1.∵AC⊂平面PAC,∴平面PAC⊥平面BDD1;(3)解:连接PB1,由(2)知,平面PAC⊥平面BDD1,∴∠B1PO即为PB1与平面PAC的夹角,在长方体ABCD﹣A1B1C1D1中,∵AB=AD=1,AA1=2,∴OP=,,.在△OPB1中,cos∠B1PO=.∴直线PB1与平面PAC的夹角为.20.(12.00分)设函数f(x)=(log2x)2+3log2x+2,≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并给出函数取最值时对应x的值.【解答】解:(1)由t=log2x,可知函数t是递增函数,∵≤x≤4,∴﹣2≤t≤2即t的取值范围是[﹣2,2].(2)由(1)可得f(x)转化为y=t2+3t+2,(﹣2≤t≤2).其对称轴t=∴当t=时,函数y取得最小值为:.此时﹣=log2x,可得x=∴当t=2时,函数y取得最大值为:12.此时2=log2x,可得x=421.(12.00分)已知直线x﹣y+1=0与圆C:x2+y2﹣4x﹣2y+m=0交于A,B两点;(1)求线段AB的垂直平分线的方程;(2)若|AB|=2,求m的值;(3)在(2)的条件下,求过点P(4,4)的圆C的切线方程.【解答】解:(1)由题意,线段AB的垂直平分线经过圆的圆心(2,1),斜率为﹣1,∴方程为y﹣1=﹣(x﹣2),即x+y﹣3=0;(2)圆x2+y2﹣4x﹣2y+m=0可化为(x﹣2)2+(y﹣1)2=﹣m+5,∵|AB|=2,∴圆心到直线的距离为,∵圆心到直线的距离为d==,∴,∴m=1(3)由题意,知点P(4,4)不在圆上.①当所求切线的斜率存在时,设切线方程为y﹣4=k(x﹣4),即kx﹣y﹣4k+4=0.由圆心到切线的距离等于半径,得=2,解得k=,所以所求切线的方程为5x﹣12y+28=0②当所求切线的斜率不存在时,切线方程为x=4综上,所求切线的方程为x=4或5x﹣12y+28=0.。