概率论第四讲
- 格式:pdf
- 大小:155.14 KB
- 文档页数:11
第一讲 随机事件与概率考试要求1. 了解样本空间的概念, 理解随机事件的概念, 掌握事件的关系与运算.2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率, 掌握概率的加法公式、减法公式、乘法公式、全概率公式, 以及贝叶斯公式.3. 理解事件独立性的概念, 掌握用事件独立性进行概率计算;理解独立重复试验的概率, 掌握计算有关事件概率的方法. 一、古典概型与几何概型1.试验,样本空间与事件.2.古典概型:设样本空间Ω为一个有限集,且每个样本点的出现具有等可能性,则 基本事件总数中有利事件数A A P =)(3.几何概型:设Ω为欧氏空间中的一个有界区域, 样本点的出现具有等可能性,则、体积)Ω的度量(长度、面积、体积)A的度量(长度、面积=)(A P【例1】 一个盒中有4个黄球, 5个白球, 现按下列三种方式从中任取3个球, 试求取出的球中有2个黄球, 1 个白球的概率. (1) 一次取3个;(2) 一次取1 个, 取后不放回; (3) 一次取1个, 取后放回.【例2 】从 (0,1) 中随机地取两个数,试求下列概率: (1) 两数之和小于;(2) 两数之和小于1且其积小于163. 一、 事件的关系与概率的性质1. 事件之间的关系与运算律(与集合对应), 其中特别重要的关系有: (1) A 与B 互斥(互不相容) ⇔ Φ=AB (2) A 与B 互逆(对立事件) ⇔ Φ=AB ,Ω=B A Y(3) A 与B 相互独立⇔ P (AB )=P (A )P (B ).⇔ P (B|A )=P (B ) (P (A )>0). ⇔(|)(|)1P B A P B A += (0<P (A )<1).⇔P (B|A ) =P (B|A ) ( 0 < P (A ) < 1 )注: 若(0<P (B )<1),则,A B 独立⇔ P (A|B )=P (A ) (P (B )>0)⇔ 1)|()|(=+B A P B A P (0<P (B )<1). ⇔ P (A |B )=P (A |B ) (0<P (B )<1) ⇔ P (A |B )=P (A |B ) (0<P (B )<1)(4) A, B, C 两两独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C ).(5) A, B, C 相互独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C ); P (ABC )=P (A )P (B )P (C ).2. 重要公式 (1) )(1)(A P A P -=(2))()()(AB P A P B A P -=-(3) )()()()(AB P B P A P B A P -+=Y)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=Y Y(4) 若A 1, A 2,…,A n 两两互斥, 则∑===ni i ni iA P AP 11)()(Y .(5) 若A 21,A , …, A n 相互独立, 则 )(1)(11in i n i iA P A P ∏==-=Y )](1[11ini A P ∏=--=.∏===ni i n i i A P A P 11)()(I .(6) 条件概率公式: )()()|(A P AB P A B P =(P (A )>0)【例3】 已知(A +B )(B A +)+B A B A +++=C, 且P ( C )=31, 试求P (B ). 【例4】 设两两相互独立的三事件A, B, C 满足条件: ABC =Φ, P (A )=P (B )=P (C )<21,且已知9()16P A B C =U U , 则P (A )= .【例5】 设三个事件A 、B 、C 满足P (AB )=P (ABC ), 且0<P (C )<1, 则 【 】(A )P (A U B|C )=P (A|C )+ P (B|C ). (B )P (A U B|C )=P (A U B ). (C )P (A U B|C )=P (A|C )+ P (B|C ). (D )P (A U B|C )=P (A U B ). 【例6】 设事件A, B, C 满足条件: P (AB )=P (AC )=P (BC )18=, P (ABC )=116, 则事件A, B, C 中至多一个发生的概率为 .【例7】 设事件A, B 满足 P (B| A )=1则【 】(A ) A 为必然事件. (B ) P (B|A )=0.(C ) A B ⊃. (D ) A B ⊂.【例8】 设A, B, C 为三个相互独立的事件, 且0<P (C )<1, 则不独立的事件为 【 】 (A )B A +与C . (B ) AC 与C(C )B A -与C (D ) AB 与C【例9】 设A ,B 为任意两个事件,试证P (A )P (B )-P (AB ) ≤ P (A -B ) P (B -A ) ≤41. 三、乘法公式,全概率公式,Bayes 公式与二项概率公式 1. 乘法公式:).|()|()|()()().|()()|()()(1212131212121212121-===n n n A A A A P A A A P A A P A P A A A P A A P A P A A P A P A A P ΛΛΛ2. 全概率公式:11()(|)(),,,.i i i j i i i P B P B A P A A A i j A ∞∞====Φ≠=Ω∑U 3.Bayes 公式:11(|)()(|),,,.(|)()j j j i j i i iii P B A P A P A B A i j A P B A P A ∞∞====Φ≠=Ω∑U A 4.二项概率公式:()(1),0,1,2,,.k kn k n n P k C P P k n -=-=L ,【例10】 10件产品中有4件次品, 6件正品, 现从中任取2件, 若已知其中有一件为次品,试求另一件也为次品的概率.【例11】设10件产品中有3件次品, 7件正品, 现每次从中任取一件, 取后不放回.试求下列事件的概率. (1) 第三次取得次品; (2) 第三次才取得次品;(3) 已知前两次没有取得次品, 第三次取得次品; (4) 不超过三次取到次品;【例12】 甲, 乙两人对同一目标进行射击,命中率分别为和, 试在下列两种情形下, 分别求事件“已知目标被命中,它是甲射中”的概率.(1)在甲, 乙两人中随机地挑选一人, 由他射击一次; ( 2)甲, 乙两人独立地各射击一次.【例13】设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份,7份和5份. 随机地取一个地区的报名表,从中先后任意抽出两份. (1) 求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q .第二讲 随机变量及其分布考试要求1. 理解随机变量及其概率分布的概念.理解分布函数(()()F x P X x =≤) 的概念及性质.会计算与随机变量有关的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson )分布及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布的概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩5. 会求随机变量函数的分布. 一、分布函数1.随机变量:定义在样本空间上,取值于实数的函数称为随机变量. 2.分布函数:∞+-∞=<<),≤ ()(x x X P x FF (x )为分布函数 ⇔(1) 0≤F (x ) ≤1(2) F (x )单调不减(3) 右连续F (x+0)=F (x ) (4)1)(,0)(=+∞=-∞F F3.离散型随机变量与连续型随机变量(1) 离散型随机变量∑∞=====1i 10,≥,,,2,1,)(i i i i p p n i p x X P ΛΛ分布函数为阶梯跳跃函数.(2) 连续型随机变量⎰∞-=xtt f x F d )( )(f (x )为概率密度 ⇔ (1) f (x )≥0, (2) ⎰+∞∞- f (x )1d =x⎰=≤≤=<<bax f b X a P b X a P )()()(4.几点注意【 例1 】 设随机变量X 的分布函数为0,1,57(),11,16161, 1.x F x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩则2(1)P X== .【 例2 】 设随机变量X 的密度函数为 f (x ), 且 f (-x ) = f (x ), 记()X F x 和()X F x -分别是X 和X -的分布函数, 则对任意实数x 有 【 】 (A )()()X X F x F x -=. (B )()()X X F x F x -=-.(C )()1()X X F x F x -=-.(D )()2()1X X F x F x -=-.【 例3 】 设 随机变量X 服从参数为0λ>的指数分布, 试求随机变量 Y= min { X, 2 } 的分布函数【 例4 】设某个系统由 6 个相同的元件经两两串联再并联而成, 且各元件工作状态相互独立 每个元件正常工作时间服从参数为 0λ>的指数分布, 试求系统正常工作的时间 T 的概率分布.【 例5】设随机变量X的概率密度为⎩⎨⎧<-=.,0,1|||,|1)(其他x x x f 试求(1)X 的分布函数)(x F ; (2)概率)412(<<-X P .二、 常见的一维分布(1) 0-1分布:1,0,)1()(1 =-==-k p p k XP k k .(2) 二项分布n k p p C k X P p n B k n k k n ,,1,0,)1()(:),(Λ=-==- .(3) Poisson 分布)(λP :Λ,2,1,0,0>,e !)(===-k k k XP k λλλ.(4) 均匀分布⎪⎩⎪⎨⎧-=.,<<1)(:),(其他0,, b x a a b x f b a U(5) 正态分布N (μ,σ2):0,,eπ21)(222)(+∞<<∞->=--μσσσμ x x f(6) 指数分布⎩⎨⎧=-. ,0>0,,e )(:)(其他x x f E x λλλ >0λ.(7) 几何分布.2110,)1()(:)(1Λ,,k ,<p<p p k XP p G k =-==- (8) 超几何分布H (N,M,n ): },min{,,1,0,)(M n k C C C k X P nNkn M N k M Λ===-- . 【例6】某人向同一目标独立重复射击,每次射击命中目标的概率为p (0<p<1), 则此人第4次射击恰好第2次命中目标的概率为【 】 (A ) 2)1(3p p -.(B ) 2)1(6p p -.(C ) 22)1(3p p-. (D ) 22)1(6p p-.【例7】 设X ~N (μ, σ2), 则 P ( X ≤1+μ) 【 】 (A ) 随μ的增大而增大 . (B ) 随μ的增大而减小. (C ) 随σ的增大而不变 . (D ) 随σ的增大而减小. 【例8】 设X ~N (μ, σ2), ()F x 为其分布函数,0μ<,则对于任意实数a ,有 【 】(A ) ()() 1.F a F a -+> (B ) ()() 1.F a F a -+= (C ) ()() 1.F a F a -+< (D ) 1()().2F a F a μμ-++=【例9】 甲袋中有1个黑球,2个白球,乙袋中有3个白球,每次从两袋中各任取一球交换放入另一袋中,试求交换n 次后,黑球仍在甲袋中的概率.三、 随机变量函数的分布: 1. 离散的情形2. 连续的情形3. 一般的情形 【例10】 设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=.,0,20,41,01,21)(其他x x x f X令),(,2y x F X Y=为二维随机变量(X, Y )的分布函数.(Ⅰ) 求Y 的概率密度)(y f Y ;(Ⅱ))4,21(-F . 第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 .4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 一、 各种分布与随机变量的独立性 1. 各种分布(1)一般二维随机变量 F (x, y )=P{ X x, Y y }, x(−, +), y (−, +)的性质 F (x, y )为联合分布函数 ⇔ 1) 0 ≤F (x, y )≤1 , x(−, +),, y(−, +);2) F (−, y )= F (x, −)=0, F (+,+)=1;3) F (x, y )关于x, y 均为单调不减函数; 4) F (x, y )关于x, y 均分别右连续.(2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 P{X = x i , Y = y j } = p i j , i, j =1, 2 ,, p i j0,1=∑∑ijji p.边缘分布律 p i = P{X = x i }=∑jji p, i =1, 2 , ,pj= P{ Y = y j }=∑iji p, j =1, 2 , ,条件分布律 P{X = x i |Y = y j } =jj i p p •, P{ Y = y j | X = x i } =•i j i p p .二维连续型随机变量的联合概率密度、边缘密度和条件密度f (x, y )为联合概率密度 ⇔ 1f (x, y )≥0,21=⎰⎰∞+∞-∞+∞- ),(dxdy y x f .设( X, Y )~ f (x, y )则分布函数: ⎰⎰∞-∞-=xydxdy y x f y x F ),(),(;边缘概率密度:⎰∞+∞-= ),()(dy y x f x f X , ⎰∞+∞-= ),()(dx y x f x f Y .条件概率密度:)(),()|(|y f y x f y x f Y Y X =, )(),()|(|x f y x f x y f X X Y =.⎰⎰=∈Ddxdy y x f D Y X P ),(}),{(.),(),(yx y x F y x f ∂∂∂=22. 随机变量的独立性和相关性X 和Y 相互独立 F (x, y )= F X (x )F Y (y );p i j = p ipj(离散型)f (x, y )= f X (x )f Y (y ) (连续型)【注】1 X 与Y 独立, f (x ), g (x )为连续函数 f (X )与g (Y )也独立.2若X 1, , X m , Y 1, , Y n 相互独立, f , g 分别为m 元与 n 元连续函数f (X 1, , X m )与g (Y 1,, Y n )也独立.3常数与任何随机变量独立.3. 常见的二维分布(1)二维均匀分布 (X, Y )~ U (D ), D 为一平面区域. 联合概率密度为⎪⎩⎪⎨⎧∈=.,.),(,)(),(其他01D y x D S y x f (2)二维正态分布 (X, Y )~ N (μ1 , μ2, 12 ,22, ), − <μ1, μ2 < +,1>0,2> 0, | | <1. 联合概率密度为221121ρσπσϕ-=),(y x ⎥⎥⎦⎤⎢⎢⎣⎡-+------22222121212122121σμσσμμρσμρ)())(()()(y y x x e性质:( a ) X ~ N (μ1,12 ), Y ~ N (μ2,22 )( b ) X 与Y 相互独立 X Y=0 , 即 X 与Y 不相关.( c ) C 1X+C 2Y ~ N (C 1 μ1+ C 2 μ2, C 1212 + C 2222+2C 1C 2 12).( d ) X 关于Y=y 的条件分布为正态分布: )](),([22122111ρσμσσρμ--+y N 【 例1 】 设A ,B 为事件,且P (A )=41, P (B|A )=21, P (A|B )=12令 X =⎩⎨⎧否则发生若,0,1A , Y =⎩⎨⎧否则发生若,0B ,1(1) 试求(X, Y )的联合分布律; (2)计算Cov ( X, Y ); (3) 计算 22(2,43)Cov XY +.【 例2 】设随机变量X 与Y 相互独立,下表列出了二维随机变量(X, Y )联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.YX1y2y 3y⋅==i i p x X P }{1x812x81【 例3 】设随机变量X 与Y 独立同分布, 且X 的概率分布为313221PX 记{}{}Y X V Y X U,m in ,,m ax ==.(I )求(U, V )的概率分布;(II )求(U, V )的协方差Cov (U, V ).【详解】(I )易知U, V 的可能取值均为: 1, 2. 且{}{}})1,m in ,1,(m ax )1,1(=====Y X Y X P V U P)1,1(===Y X P 94)1()1(====Y P X P , {}{}0})2,m in ,1,(m ax )2,1(======Y X Y X P V U P , {}{}})1,m in ,2,(m ax )1,2(=====Y X Y X P V U P)2,1()1,2(==+===Y X P Y X P )2()1()1()2(==+===Y P X P Y P X P 94=, {}{}})2,m in ,2,(m ax )2,2(=====Y X Y X P V U P)2()2()2,2(======Y P XP Y X P 91=, 故(U, V )的概率分布为:(II ) 9122941209411)(⨯⨯+⨯⨯++⨯⨯=UV E 916=, 而 914952941)(=⨯+⨯=U E , 910912981)(=⨯+⨯=V E . 故 814910914916)()()(),(=⨯-=-=V E U E UV E V U Cov . 【 例4】 设随机变量X 在区间(0, 1)上服从均匀分布, 在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布, 求(Ⅰ)随机变量X 和Y 的联合概率密度;(Ⅱ)Y 的概率密度; (Ⅲ)概率}1{>+Y XP .二、 二维(或两个)随机变量函数的分布 1.分布的可加性(1)若X~B (m, p ), Y~B (n, p ), 且X 与Y 相互独立,则 X+Y ~ B (m+n, p ). (2)若X~P (λ1), Y~P (λ2), 且X 与Y 相互独立,则 X+Y ~ P (λ1+λ2).(3)若X~N (211,μσ), Y~P (222,μσ), 且X 与Y 相互独立,则 X+Y ~ N (221212,μμσσ++).一般地,若X i ~N (2,i i μσ), i =1, 2, …, n, 且X 1,X 2,…,X n 相互独立,则Y=C 1X 1+C 2X 2+…+C n X n +C 仍服从正态分布,且此正态分布为2211(,),n ni i i i i i N C C Cμσ==+∑∑ 其中C 1,…,C n 为不全为零的常数.2. 两个随机变量函数的分布. 【例5】 设X 与Y 相互独立, 且~(1),~(2),X P Y P 则{max(,)0}______;P X Y ≠={min(,)0}__________.P X Y ≠=【 例6】 设X 与Y 相互独立, 其密度函数分别为:1,01,()X x f x <<⎧=⎨⎩0,其他. ,0,()y Y e y f x -⎧>=⎨⎩0,其他.求Z =2X +Y 的概率密度.【 例7】设二维随机变量(X, Y )的概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它.(I )求{}Y X P 2>;(II )求Z =X+Y的概率密度)(z f Z .【详解】(I ){}Y X P2>⎰⎰>=yx dxdy y x f 2),(⎰⎰--=12210)2(ydx y x dy 247=. (II )方法一: 先求Z 的分布函数: ⎰⎰≤+=≤+=zy x Z dxdy y x f Z Y X P z F ),()()(当z<0时, 0)(=z F Z ; 当10<≤z 时, ⎰⎰=1),()(D Z dxdy y x f z F ⎰⎰---=yz zdx y x dy 00)2(3231z z -=;当21<≤z 时, ⎰⎰-=2),(1)(D Z dxdy y x f z F ⎰⎰-----=111)2(1yz z dx y x dy3)2(311z --=; 当2≥z时, 1)(=z F Z .故Z =X+Y的概率密度)(z f Z =)(z F Z '⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z方法二:⎰∞+∞--=dx x z x f z f Z ),()(,⎩⎨⎧<-<<<---=-.,0,10,10),(2),(其他x z x x z x x z x f ⎩⎨⎧+<<<<-=.,0,1,10,2其他x z x x z 当z ≤0 或z ≥ 2时, 0)(=z f Z ;当01z <<时, ⎰-=z Z dx z z f 0)2()()2(z z -=;当21<≤z 时, ⎰--=11)2()(z Z dx z z f 2)2(z -=;故Z =X+Y的概率密度)(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z【例8】 设随机变量X 与Y 相互独立, X 有密度函数f (x ), Y 的分布律为 ()i i P Y a p ==, i =1,2. 试求Z =X +Y 的概率分布.第四讲 数字特征与极限定理考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念, 会运用数字特征的基本性质, 并掌握常用分布的数字特征.2.会根据随机变量X 的概率分布求其函数)(X g 的数学期望)(X Eg ;会根据随机变量X 和Y 的联合概率分布求其函数),(Y X g 的数学期望),(Y X Eg .3.了解切比雪夫不等式.4.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)5.了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布的中心极限定理);(经济类还要求)会用相关定理近似计算有关随机事件的概率 一、 数学期望与方差(标准差) 1. 定义(计算公式)离散型{}i i p x X P ==, ∑=iii px X E )(连续型)(~x f X , xx xf X E d )()(⎰+∞∞-=方差:[]222)()())(()(X E X E X E X E X D -=-=标准差:)(X D ,2. 期望的性质:1° )())((,)(X E X E E C C E == 2° )()()(2121Y E C X E C Y C X C E +=+ 3° )()()(Y E X E XY E ,Y X =则独立与若4° [])()(≤)(222Y E X E XY E3. 方差的性质:1° 0))((,0))((,0)(===X D D X E D C D 2°)()()(Y D X D Y X D Y X +=±相互独立,则与3° )()(2121X D C C X C D =+ 4° 一般有 ),Cov(2)()()(Y X Y D X D Y XD ±+=±)()(2)()(Y D X D Y D X D ρ±+=5°2()()C D X E X <-, )(X E C ≠【例1】设试验成功的概率为43, 失败的概率为41, 独立重复试验直到成功两次为止. 试求试验次数的数学期望. 【例2】 n 片钥匙中只有一片能打开房门, 现从中任取一片去试开房门, 直到打开为止. 试在下列两种情况下分别求试开次数的数学期望与方差: (1)试开过的钥匙即被除去; (2)试开过的钥匙重新放回.【例3】 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,0,0,2cos 21)(其他πx x x f 对X 独立地重复观察4次, 用Y 表示观察值大于3π的次数, 求2Y 的数学期望.【例4】 设有20人在某11层楼的底层乘电梯上楼, 电梯在中途只下不上, 每个乘客在哪一层(2-11层)下是等可能的, 且乘客之间相互独立, 试求电梯须停次数的数学期望. 二、随机变量函数的期望(或方差) 1、一维的情形 )(X g Y =离散型:{}i i P Xx p == , ∑=ii ipx g Y E )()(连续型:~()X f x x x f x g Y E d )()()(⎰+∞∞-=2、二维的情形 ),(Y X g Z =离散型{}iji i p y Y x X P Y X ===,~),(,∑∑=jij jiipy x g Z E ),()(连续型),(~),(y x f Y X , y x y x f y x g Z E d d ),(),()(⎰⎰+∞∞-+∞∞-=【例5】 设X 与Y 独立且均服从N (0,1),求Z =22Y X + 的数学期望与方差.【例6】设两个随机变量X 与Y 相互独立且均服从N (0,21), 试求Z =|X -Y |的数学期望与方差.三 、协方差,相关系数与随机变量的矩 1、重要公式与概念:协方差 []))()((()Cov(Y E Y X E X E X,Y --=相关系数 )()()Cov(Y D X D X,Y XY =ρ)(k X E k 阶原点矩[]kX E X E k ))((- 阶中心矩2、性质: 1°),(Cov ),(Cov X Y Y X =2° ),(Cov ),(Cov Y X ab bY aX = 3° ),(Cov ),(Cov ),(Cov 2121Y X Y X Y X X +=+4° |(,)|1X Y ρ≤5° 1)(1),(=+=⇔=b aX Y P Y X ρ )>0(a 1)(1),(=+=⇔-=b aX Y P Y X ρ )<0(a 3、下面5个条件互为充要条件:(1)0),(=Y X ρ(2)0)Cov(=X,Y (3))()()(Y E X E XY E = (4))()()(Y D X D Y X D +=+ (5))()()(Y D X D Y X D +=- 【例7】设)2(,,,21>n X X X n Λ为独立同分布的随机变量, 且均服从)1,0(N , 记∑==ni iX n X 11,.,,2,1,n i X X Y i i Λ=-= 求:(I ) i Y 的方差n iY D i ,,2,1),(Λ=;(II ) 1Y 与n Y 的协方差),(1n Y Y Cov ; (III ) }.0{1≤+n Y Y P四、极限定理1. 切比雪夫不等式{}{}()()|()|,|()|<1-22D X D X P XE X P X E X εεεε-≥≤-≥或2. 大数定律3. Poisson 定理4. 中心极限定理列维—林德伯格定理: 设随机变量X 1,X 2,…,X n ,…相互独立同分布, 且2(),(),i i E X D X μσ== 1,2,,,i n =L L, 则对任意正数x ,有2-2lim dntixnX nP x tμ-∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑⎰棣莫弗—拉普拉斯定理: 设~(,),nB n pη(即X1,X2,…,X n,…相互独立, 同服从0一1分布)则有22lim dtxnP x t--∞→∞⎧⎫⎪≤=⎬⎪⎭⎰.【例8】银行为支付某日即将到期的债券须准备一笔现金,已知这批债券共发放了500张,每张须付本息1000元,设持券人(1人1券)到期到银行领取本息的概率为.问银行于该日应准备多少现金才能以%的把握满足客户的兑换.【分析】若X为该日到银行领取本息的总人数,则所需现金为1000X,设银行该日应准备现金x元.为使银行能以%的把握满足客户的兑换,则 P(1000X≤x)≥.【详解】设X为该日到银行领取本息的总人数,则X~B(500,)所需支付现金为1000X,为使银行能以%的把握满足客户的兑换,设银行该日应准备现金x元,则 P(1000 X≤x)≥.由棣莫弗—拉普拉斯中心极限定理知:(1000)()1000xP X x P X≤=≤5000.4xP⎛⎫-⨯⎪=≤=≤0.999(3.1).ΦΦ≈≥=即3.1,≥得 x≥ .因此银行于该日应准备234000元现金才能以%的把握满足客户的兑换.第五讲数理统计考试要求1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为.)(11212XXnSini--=∑=2. 了解2χ分布、t分布和F分布的概念及性质,了解分位数的概念并会查表计算.3. 了解正态总体的常用抽样分布.4. 理解经验分布函数的概念和性质, 会根据样本值求经验分布函数.5. 理解参数的点估计、估计量与估计值的概念.6. 掌握矩估计法(一阶、二阶矩)和最大似然的估计法.7. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.8. 理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.9. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的 两类错误.10. 了解单个及两个正态总体的均值和方差的假设检验 一、样本与抽样分布1. 总体、个体与简单随机样本:2. 常用统计量:1° 样本均值 i ni X nX ∑==112° 样本方差 212)(11X X n S i ni --=∑=3° 样本标准差: S =4° 样本k 阶原点矩 11,1,2,n kk i i A X k n ===∑L5° 样本k 阶中心矩 11(),1,2,n kk i i B X X k n ==-=∑L3.分位数 4. 重要抽样分布(1)分布2χ (2) t 分布 (3) F 分布5. 正态总体的常用抽样分布:22,,,(,),n X X X N μσL 1设为来自正态总体的样本11nii X X n ==∑,2211()1ni i S X X n ==--∑, 则 (1)2~,~(0,1).X X N N n σμ⎛⎫ ⎪⎝⎭ (2)222221(1)1()~(1).ni i n S X X n χσσ=-=--∑(3)22211()~().ni i X n μχσ=-∑(4) ~(1).X t n - (5)X 与2S 相互独立, 且 μ=)(X E , 22)(σ=S E , nX D 2)(σ=.【例1】 设总体2~(,),X N μσ设12,,,n X X X L 是来自总体X 的一个样本, 且22111,()nni nii i X X S XX n====-∑∑,求21()n E X S .【例2】 设总体2~(,),X N μσ 设12,,,n X X X L 是取自总体X 的一个样本, 且221111,()1nni i i i X X S X X nn ====--∑∑,则 2()_________D S=.【例3】设随机变量~()(1),X t n n >, 则 21~________Y X=【例4】 设总体X 服从正态分布)2,0(2N , 而1521,,,X X X Λ是来自总体X 的简单随机样本, 求随机变量)(221521121021X X X X Y ++++=ΛΛ 的分布. 【例5】 设总体2~(,),X N μσ 设121,,,,n n X X X X +L 是来自总体X 的一个样本, 且*221111,()()nni i i i X X S X X nn====-∑∑,试求统计量的分布. 二、参数估计1. 矩估计2. 最大似然估计3. 区间估计4. 估计量的评选标准 【例6】设总体12~(,)X U θθ,n X X X ,,,21Λ为来自总体X 的样本,试求12,θθ的矩估计和最大似然估计.【例7】设总体X 的概率密度为⎪⎩⎪⎨⎧<≤-<<=.,0,21,1,10,),(其他x x x f θθθ其中θ是未知参数)10(<<θ, n X X X ,,2,1Λ为来自总体X 的简单随机样本, 记N 为样本值n x x x ,,2,1Λ中小于1的个数, 求:(1)θ的矩估计;(2) θ的最大似然估计.【例8】设总体X 的概率密度为36(),0,()0,xx x f x θθθ⎧-<<⎪=⎨⎪⎩其他. n X X X ,,,21Λ为来自X 的简单随机样本,(1) 求θ的矩估计量ˆθ; (2) 判断θ的无偏性; (3) 判断θ的一致性. 三、假设检验1. 假设检验的基本思想:对总体分布中的未知参数作出某种假设,根据样本在假设为真的前提下构造一个小概率事件,基于“小概率事件”在一次试验中几乎不可能发生而对假设作出拒绝或接受.2. 单个正态总体均值和方差的假设检验.3. 假设检验两类错误:第一类错误:原假设0H 为真,但拒绝了0H .第二类错误;原假设0H 为假,但接受到了0H .。
概率论与数理统计第1章随机事件与概率第4讲条件概率与乘法公式01 条件概率02 乘法公式本 讲 内容在解决许多概率问题时,往往需要在某些附加条件下世界万物都是互相联系、互相影响的,随机事件也不例?条件概率外.通事故发生的可能性明显比天气状况优良情况下要大得定程度的相互影响.多.在同一个试验中的不同事件之间,通常会存在着一例如,在天气状况恶劣的情况下交求事件的概率.概率,将此概率记作P(B|A).如在事件A 发生的条件下求事件B 发生的在100件产品中有72件为一等品,从中取两件产品,记A表示“第一件为一等品”,B表示“第二件为一等品”. 求P(B),P(B|A).Ὅ例1解由前例可知无论有放回抽样和无放回抽样都有(1)有放回抽样(2)无放回抽样独立性如何定义?.设A 、B 为两事件, P ( A ) > 0 , 则称为事件 A 发生的条件下事件 B 发生的条件概率.称为在事件B 发生的条件下事件A 的条件概率.同理Ὅ 定义Ὅ性质条件概率也是概率, 故概率的重要性质都适用于条件概率.例如:在100件产品中有72件为一等品,从中取两件产品,记A 表示“第一件为一等品”,B 表示“第二件为一等品”. Ὅ例2 2) 可用缩减样本空间法1) 用定义计算:P (A )>0A 发生后的缩减样本空间所含样本点总数在缩减样本空间中B 所含样本点个数无放回抽样Ὅ 计算.在全部产品中有4%是废品,有72%为一等品. 现从其中任取一件,发现是合格品,求它是一等品的概率.Ὅ例3解设A=依题意,P(A)=所求概率为P(B|A) .{任取一件为合格品},B={任取一件为一等品}0.96,0.72.P(B)=利用事件的关系及概率性质公式求条件概率Ὅ例4设A,B,C 是随机事件,A与C互不相容,则.由条件概率的定义:若已知P(A), P(B|A)时, 可以反过来求P(AB).注乘法公式.某工厂有职工400名,其中男女职工各占一半,Ὅ例5男女职工中技术优秀的分别为20人和40人,从中任选一名职工,计算(1)该职工技术优秀的概率;(2)已知选出的是男职工,他技术优秀的概率.解设A表示“选出的职工技术优秀”,B表示“选出的职工为男性”,则:(1)利用古典概率有.(2)通过缩减样本空间,有.Ὅ例6某杂志包含三个栏目“艺术”(记为事件A)、“图书”(记为事件B)、“电影”(记为事件C),调查读者的阅读习惯有如下结果:试求解01 条件概率02 乘法公式本 讲 内容乘法公式推广ab -1ab O F (x )xb a 1xf (x )O盒中装有100个产品, 其中3个次品,从中不放回Ὅ例7地取产品, 每次1个, 求(1)取两次,两次都取得正品的概率;(2)取三次,第三次才取得正品的概率.解令A i为第 i 次取到正品(波利亚罐子--传染病模型)一个罐子中包含b 个白球和r 个红球. b 个白球, r 个红球Ὅ 乘法公式应用举例8随机地抽取一个球,观看颜色后放进行四次,试求第一、二次取到白 球且第三、四次取到红球的概率.回罐中,并且再加进c 个与所抽出 的球具有相同颜色的球.这种手续于是W 1W 2R 3R 4表示事件“连续取四个球,第一、二个是白球,第三、四个是红球. ”设W i =R j ==P (W 1)P (W 2|W 1)P (R 3|W 1W 2)P (R 4|W 1W 2R 3)P (W 1W 2R 3R 4)解1,2,3,4{第i 次取出是白球},i =j ={第j 次取出是红球},1,2,3,4记A=为了防止意外,在矿内同时装有两种报警系统(Ⅰ)和(Ⅱ),每种系统单独使用时,系统(Ⅰ)和系统(Ⅱ)的有效概率分别为0.92和0.93,在系统(Ⅰ)失灵的情况下,系统(Ⅱ)仍有效的概率为0.85,求两个报警系统至少有一个有效的概率.Ὅ例9解报警系统至少一个有效”可表示为A ∪B ,由于“两个“系统(Ⅰ) 有效”,B=“系统(Ⅱ)有效”,且A 和 互斥,因此:学海无涯,祝你成功!概率论与数理统计。
概率论第四讲第2章随机变量及其分布§1 随机变量定义1(随机变量)设是一个概率空间,称可测函数为该空间上的一个随机变量。
例1 在箱中编号为1到20的球中不放回随机取出3个球。
那么球的最大号码是一个随机变量,其值域空间为。
并且,给定值域空间中的一点,其原像对应于一个随机事件。
例如,,对应于事件,,以及其所有可能的轮换。
因此,可以认为本身是样本空间上的一个随机事件。
以后我们经常需要讨论的是类似事件的概率。
例2考虑等候公共汽车的时间,显然。
这里必须强调,对任意的,。
定义2(分布函数)设是概率空间上的一个随机变量。
对任意,称函数为分布函数。
分布函数满足如下性质(1)是非降右连续函数;(2),。
§2 离散型随机变量及其分布律1.离散型随机变量离散型随机变量是一个比较特殊的情形。
定义1(离散型随机变量)如果随机变量的值域空间是一个由有限或可列个值构成的集合,就称之为离散型随机变量。
例伯努利试验;泊松分布等。
2.离散随机变量的分布律对离散随机变量,由于其值域空间是离散的,因此其分布函数是一个阶梯函数,我们也可用另一种等价方式来刻画。
定义2 (分布律)设随机变量的值域本空间为,那么称为其分布律。
显然分布律和分布函数是相互唯一确定的。
分布律显然满足。
3. 常见的离散随机变量(1)分布如果,且其分布律为,,其中。
例1 抛掷硬币,出现反面时令,正面时,则其服从分布。
(2)几何分布连续不断抛掷硬币,令是首次出现正面时已抛掷的次数。
那么,其值域空间为,而分布律。
(3)二项分布连续抛掷硬币(可以解释为伯努利试验)次。
成功的次数记为,那么其值域空间为,而其分布律。
(4)泊松分布设分布律为的随机变量。
例2如果内,某事件的发生次数。
那么下面的假设是合理的:(1)在时间内,发生一次事件的概率为;(2)发生两次或两次以上事件的概率为;(3)事件发生具有独立性。
下面证明此时。
把等份,,。
那么,在假定发生事件的总数是时,其中是每个区间至多只发生一次事件的事件组成,是至少有一个区间事件发生的次数有两次或两次以上的事件组成。