计算机图形学二维变换.
- 格式:pdf
- 大小:1.82 MB
- 文档页数:74
二维形的旋转与翻转二维形的旋转与翻转是在数学和几何学中经常出现的操作,通过旋转和翻转可以改变图形的方向和位置,从而使得图形在空间中呈现不同的样貌和特性。
本文将深入探讨二维形的旋转和翻转,介绍其定义、方法和应用。
一、旋转操作旋转是指将一个图形围绕某一点旋转一定角度而不改变其形状和大小。
在二维平面坐标系中,旋转可以分为顺时针旋转和逆时针旋转两种方式。
1. 顺时针旋转顺时针旋转是指将一个图形按顺时针方向旋转一定角度。
假设有一个图形A,其坐标点为(x,y),要将A图形顺时针旋转θ角度后得到新的图形A',可以使用以下转换公式:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,x'和y'为旋转后图形A'的新坐标点,x和y为旋转前图形A的坐标点,θ为旋转角度。
2. 逆时针旋转逆时针旋转与顺时针旋转相反,是指将一个图形按逆时针方向旋转一定角度。
同样假设有一个图形A,要将A图形逆时针旋转θ角度后得到新的图形A',可以使用以下转换公式:x' = x * cosθ + y * sinθy' = -x * sinθ + y * cosθ二、翻转操作翻转是指将一个图形按照某一轴进行镜像反转,可以分为水平翻转和垂直翻转两种方式。
1. 水平翻转水平翻转是指将一个图形以水平轴为对称轴进行镜像反转。
假设有一个图形A,其坐标点为(x,y),要将A图形水平翻转后得到新的图形A',可以使用以下转换公式:x' = xy' = -y2. 垂直翻转垂直翻转是指将一个图形以垂直轴为对称轴进行镜像反转。
同样假设有一个图形A,要将A图形垂直翻转后得到新的图形A',可以使用以下转换公式:x' = -xy' = y三、应用场景二维形的旋转和翻转在现实生活和工程应用中有广泛的应用,下面将介绍其中几个常见的应用场景。
计算机图形学习题参考答案第1章绪论1、第一届ACM SIGGRAPH会议是哪一年在哪里召开的?解:1974年,在Colorado大学召开了第一届SIGGRAPH年会。
2、计算机图形学之父是谁?解:Sutherland3、列举一些计算机图形学的应用领域(至少5个)。
解:计算机辅助设计、图示图形学、计算机艺术、娱乐、教学与培训、可视化、图像处理、图形用户界面等。
4、简要介绍计算机图形学的研究内容。
解:(1)图形的输入。
如何开发和利用图形输入设备及相关软件把图形输入到计算机中,以便进行各种处理。
(2)图形的处理。
包括对图形进行变换(如几何变换、投影变换)和运算(如图形的并、交、差运算)等处理。
(3)图形的生成和输出。
如何将图形的特定表示形式转换成图形输出系统便于接受的表示形式,并将图形在显示器或打印机等输出设备上输出。
5、简要说明计算机图形学与相关学科的关系。
解:与计算机图形学密切相关的学科主要有图像处理、计算几何、计算机视觉和模式识别等。
计算机图形学着重讨论怎样将数据模型变成数字图像。
图像处理着重研究图像的压缩存储和去除噪音等问题。
模式识别重点讨论如何从图像中提取数据和模型。
计算几何着重研究数据模型的建立、存储和管理。
随着技术的发展和应用的深入,这些学科的界限变得模糊起来,各学科相互渗透、融合。
一个较完善的应用系统通常综合利用了各个学科的技术。
6、简要介绍几种计算机图形学的相关开发技术。
解:(1)OpenGL。
OpenGL是一套三维图形处理库,也是该领域事实上的工业标准。
OpenGL独立于硬件、操作系统和窗口系统,能运行于不同操作系统的各种计算机,并能在网络环境下以客户/服务器模式工作,是专业图形处理、科学计算等高端应用领域的标准图形库。
以OpenGL为基础开发的应用程序可以十分方便地在各种平台间移植;OpenGL与C/C++紧密接合,便于实现图形的相关算法,并可保证算法的正确性和可靠性;OpenGL使用简便,效率高。