数学建模与数学实验:3.4层次分析法
- 格式:ppt
- 大小:1.17 MB
- 文档页数:26
层次分析法一、分析模型和一般步骤二、建立层次结构模型三、构造成对比较矩阵四、作一致性检验五、层次总排序及决策一.层次分析模型和一般步骤层次分析法是一种定性与定量分析相结合的多因素决策分析方法。
这种方法将决策者的经验判断给于数量化,在目标因素结构复杂且缺乏必要数据的情况下使用更为方便,因而在实践中得到广泛应用。
层次分析的四个基本步骤:(1)在确定决策的目标后,对影响目标决策的因素进行分类, 建立一个多层次结构;(2)比较同一层次中各因素关于上一层次的同一个因素的相对重要性,构造成对比较矩阵;(3)通过计算,检验成对比较矩阵的一致性,必要时对成对比较矩阵进行修改,以达到可以接受的一致性;(4)在符合一致性检验的前提下,计算与成对比较矩阵最大特征值相对应的特征向量,确定每个因素对上一层次该因素的权重;计算各因素对于系统目标的总排序权重并决策。
建立层次结构模型将问题包含的因素分层:最高层(解决问题的目的);中间层(实现总目标而采取的各种措施、必须考虑的准则等。
也可称策略层、约束层、准则层等);最低层(用于解决问题的各种措施、方案等)。
把各种所要考虑的因素放在适当的层次内。
用层次结构图清晰地表达这些因素的关系。
〔例1〕购物模型某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:例2〕选拔干部模型对三个干部候选人二、厶、宀,按选拔干部的五个标准:品德、才能、资历、年龄和群众关系,构成如下层次分析模型:假设有三个干部候选人二、厶、宀,按选拔干部的五个标准:品德,才能,资历,年龄和群众关系,构成如下层次分析模型例3〕评选优秀学校某地区有三个学校,现在要全面考察评出一个优秀学校。
主要考虑以下几个因素:(1)教师队伍(包括平均学历和年龄结构)(2) 教学设施(3) 教学工作(包括课堂教学,课外活动,统考成绩和教学 管理) (4) 文体活动三、构造成对比较矩阵比较第i 个元素与第j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重、来描述。
数学建模——层次分析法层次分析法(Analytic Hierarchy Process,AHP)是一种用于复杂决策和评估问题的定量方法,旨在帮助决策者在多个准则和选项之间进行权衡和选择。
该方法由美国学者Thomas L. Saaty于1970年代初提出,已经广泛应用于管理、工程、经济学、环境科学等领域。
方法步骤:1.建立层次结构:将复杂的决策问题分解为不同层次的因素和准则,形成层次结构。
层次结构包括目标层、准则层和选择层。
2.创建比较矩阵:对每个层次内的准则和选择进行两两比较,确定它们之间的相对重要性。
使用尺度来表示两者之间的相对优先级,通常是1到9之间的数值。
3.计算权重:通过计算比较矩阵的特征向量,得出每个准则和选择的权重。
特征向量反映了每个准则和选择对目标的贡献程度。
4.一致性检验:检查比较矩阵的一致性,确保所做的两两比较是合理的。
如果比较矩阵不够一致,需要进行调整。
5.计算综合得分:将每个选择的权重与其所属准则的权重相乘,得出每个选择的综合得分。
综合得分反映了每个选择在整体目标中的重要性。
6.做出决策:根据综合得分,确定最佳选择。
较高的综合得分通常意味着更优选。
示例:选择旅游目的地假设你想选择一个旅游目的地,考虑了三个因素:景色美丽度、文化体验和交通便利性。
你将这三个因素作为准则,然后列出了三个潜在的旅游目的地:A、B 和C。
步骤:1.建立层次结构:2.目标层:选择最佳旅游目的地3.准则层:景色美丽度、文化体验、交通便利性4.选择层:A、B、C5.创建比较矩阵:比较准则之间的相对重要性,如景色美丽度相对于文化体验的比较,以及文化体验相对于交通便利性的比较。
使用1到9的尺度,表明一个因素比另一个因素重要多少。
6.计算权重:计算每个准则和每个选择的权重,使用特征向量法。
7.一致性检验:检查比较矩阵的一致性。
如果一致性不够,可能需要重新考虑比较。
8.计算综合得分:将每个选择的权重与其所属准则的权重相乘,得出每个选择的综合得分。
浅谈层次分析法摘要本文主要阐述层次分析法的定义、特点、基本步骤以及它的优缺点。
层次分析法是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围内得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
关键词:层次分析多目标多准则成对比较一致性检验前言数学是一切科学和技术的基础,是研究现实世界数量关系、空间形式的科学。
随着社会的发展,电子计算机的出现和不断完善,数学不但运用于自然科学各学科、各领域,而且渗透到经济、管理以至于社会科学和社会活动的各领域。
众所周知,利用数学解决实际问题,首先要建立数学模型,然后才能在该模型的基础上对实际问题进行分析、计算和研究。
数学建模(Mathematical Modeling)活动是讨论建立数学模型和解决实际问题的全过程,是一种数学思维方式。
从学术的角度来讲,数学建模就是利用数学技术去解决实际问题;从价值的角度来讲,数学建模是一个思维过程,它是一个解决问题的过程(创新),更是一个升华理论方法的过程(总结);从哲学的角度来讲,数学建模是认识世界和改造世界的过程。
1 数学建模过程和技巧数学建模的过程是通过对现实问题的简化、假设、抽象,提炼出数学模型;然后运用数学方法和计算机工具等,得到数学上的解答;再把它反馈到现实问题,给出解释、分析,并进行检验。
若检验结果符合实际或基本符合,就可以用来指导实践;否则就再假设、再抽象、再修改、再求解、再应用。
构造数学模型不是一件容易的事,其建模过程和技巧具体主要包括以下步骤:⑴模型准备在建模前要了解实际问题的背景,明确建模的目的和要求;深入调研,去粗取精,去伪存真,找出主要矛盾;并按要求收集必要的数据。
数学建模第三讲层次分析法在数学建模的领域中,层次分析法(Analytic Hierarchy Process,简称 AHP)是一种相当实用且重要的决策方法。
它能够帮助我们在面对复杂的多准则决策问题时,做出更为合理、科学的决策。
那么,什么是层次分析法呢?简单来说,层次分析法就是把一个复杂的问题分解成若干个层次,通过两两比较的方式,确定各层次元素之间的相对重要性,最后综合这些比较结果,得出最终的决策方案。
比如说,我们要选择一个旅游目的地。
这时候,可能会考虑多个因素,比如景点吸引力、交通便利性、住宿条件、餐饮质量、费用等等。
这些因素就构成了不同的层次。
然后,我们会对每个因素进行两两比较,比如景点吸引力比交通便利性更重要吗?重要多少?通过这样的比较,我们就能给每个因素赋予一个相对的权重。
为了更清楚地理解层次分析法,我们来看看它的具体步骤。
第一步,建立层次结构模型。
这是层次分析法的基础。
我们需要把问题分解成目标层、准则层和方案层。
目标层就是我们最终要实现的目标,比如选择最佳的旅游目的地。
准则层就是影响目标实现的各种因素,像前面提到的景点吸引力、交通便利性等等。
方案层就是我们可以选择的具体方案,比如去三亚、去桂林、去丽江等等。
第二步,构造判断矩阵。
在这一步,我们要对同一层次的元素进行两两比较,比较它们对于上一层某个元素的重要性。
比较的结果通常用 1 9 标度法来表示。
比如说,如果因素 A 比因素 B 稍微重要,就给A 对B 的比较值赋 3;如果 A 比 B 明显重要,就赋 5;如果 A 比 B 极端重要,就赋 9。
反过来,如果 B 比 A 稍微重要,就给 B 对 A 的比较值赋 1/3,以此类推。
第三步,计算权重向量并进行一致性检验。
通过数学方法,比如特征根法,计算出每个判断矩阵的最大特征值和对应的特征向量。
这个特征向量就是我们所需要的权重向量。
但是,为了确保我们的判断是合理的,还需要进行一致性检验。
如果一致性比率小于 01,就认为判断矩阵的一致性是可以接受的;否则,就需要重新调整判断矩阵。
.实验报告课程名称:数学模型与实验课题名称:层次分析法专业:信息与计算科学姓名:班级:完成日期: 2016 年 6月 22 日实验报告一、实验名称层次分析法二、实验目的人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
在这样的系统中,人们感兴趣的问题之一是:就 n 个不同事物所共有的某一性质而言,应该怎样对任一事物的所给性质表现出来的程度(排序权重)赋值,使得这些数值能客观地反映不同事物之间在该性质上的差异?层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。
它把复杂问题分解成组成因素,并按支配关系形成层次结构,然后用两两比较的方法确定决策方案的相对重要性。
三、实验原理运用层次分析法解决问题,大体可以分为四个步骤:1. 建立问题的递阶层次结构;(1)将决策问题分为三层,最上面为目标层,最下面为方案层,中间是准则层或指标层;(2)通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重;(3)将方案层对准则层的权重及准则层对目标层的权重进行综合,最终确定方案层对目标层的权重。
2. 构造成对比较矩阵;3. 层次单排序及一致性检验;判断矩阵一致性检验的步骤如下:(1) 计算一致性指标 C.I.:(2) 查找平均随机一致性指标 R.I.;(3) 计算一致性比例 C.R.:当 C.R.< 0.1 时,一般认为判断矩阵的一致性是可以接受的。
否则应对判断矩阵作适当的修正。
4. 层次总排序及其一致性检验。
当 CR<0.1时,认为层次总排序通过一致性检验。
到此,根据最下层(决策层)的层次总排序做出最后决策。
四、 实验题目 一、旅游问题(1)建模A 1,A 2, A 3,A 4 ,A 5分别分别表示景色、费用、居住、饮食、旅途。
B 1,B 2,B 3分别表示苏杭、北戴河、桂林。
(2)构造成对比较矩阵A=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1 1 3 1/5 1/31 1 2 1/5 1/31/3 1/2 1 1/7 1/45 5 7 1 23 3 4 1/21 B 1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11/21/5211/2521B 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1383/1138/13/11 B 3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡13/13/1311311B 4= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡114/1113/1431 B 5=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1444/1114/111 (3)计算层次单排序的权向量和一致性检验 成对比矩阵A的最大特征值 5.073=λ该特征值对应的归一化特征向量=ω {}0.1100.0990.0550.4750.263,,,,表明A通过了一致性检验。
数学建模实验报告1、层次分析法第一篇:数学建模实验报告1、层次分析法数学建模实验报告一、实验要求柴静的纪录片《穹顶之下》从独立媒体人的角度调查了席卷全国多个省份的雾霾的成因,提出解决的方法有:关停重污染的钢铁厂、提高汽柴油品质、淘汰排放不达标汽车、提高洗煤率等,请仔细观看该纪录片,根据雾霾的成因,选择你认为治理雾霾确实可行的几个方案,并用AHP方法给出这几个主要方案的重要性排序。
二、前期准备1、理解层次分析法(AHP)的原理、作用,掌握其使用方法。
2、观看两遍柴静所拍摄的纪录片《穹顶之下》,选出我认为可较为有效地治理雾霾的几个方法,初步确定各方法的有效性(即权重)。
3、初步拟定三个方案,每个方案中各个治理方法的权重不同。
三、思路&分析1、根据纪录片《穹顶之下》和个人的经验判断给出各个记录雾霾的方法对于治理雾霾的判断矩阵,以及三个不同方案对于五大措施的判断矩阵。
2、了解了AHP的原理后,不难发现MATLAB在其中的作用主要是将判断矩阵转化为因素的权重矩阵。
当然矩阵要通过一致性检验,得到的权重才足够可靠。
3、分别得到准则层对目标层、方案层对准则层的权重之后,进行层次总排序及一致性检验。
得到组合权向量(方案层对目标层)即可确定适用方案。
四、实验过程1、确定层次结构2、构造判断矩阵(1)五大措施对于治理雾霾(准则层对目标层)的判断矩阵(2)三个方案对于五大措施(方案层对准则层)的判断矩阵3、层次单排序及一致性检验该部分在MATLAB中实现,每次进行一致性检验和权向量计算时,步骤相同,输入、输出参数一致。
(虽然输入的矩阵阶数可能不同,但可以不把矩阵阶数作为参数输入,而通过 [n,n]=size(A)来算得阶数。
)因此考虑将这个部分定义为一个函数judge,输入一个矩阵A,打印一致性检验结果和权向量计算结果,并返回权向量、一致性指标CI、平均随机一致性指标RI。
将此脚本存为judge.m,在另一脚本ahp.m 中调用。