贴片机伺服电机电气控制讲解
- 格式:ppt
- 大小:3.37 MB
- 文档页数:46
伺服电机控制原理
伺服电机控制原理是指通过传感器采集反馈信号,将其与设定值进行比较,通过控制算法计算出误差,并根据误差调整电机的控制信号,使电机的运动状态能够精准地达到设定值。
在伺服电机控制系统中,通常会有一个位置或速度传感器,用于实时监测电机的位置或速度信息。
传感器将这些信息转化为电信号并反馈给控制器。
控制器会将传感器反馈的信号与设定值进行比较,计算出误差。
接下来,控制器会根据误差的大小和方向,通过控制算法计算出控制信号。
这个控制信号通常是一个电压、电流或脉宽调制(PWM)信号,用于驱动电机。
控制信号会经过功率放大器进行放大,并通过驱动电路转化为电机所需要的电流或电压。
这样,电机就会根据控制信号的变化而调整自己的转速或位置,使其尽可能接近设定值。
为了提高控制的精度和动态响应速度,通常会采用比例-积分-微分(PID)控制算法。
PID控制算法会根据误差的当前值、累积值和变化率进行计算,更加有效地调整控制信号,使电机的运动状态更加稳定和准确。
除了PID控制算法,还有其他许多控制算法可以应用于伺服电机控制系统,如模糊控制、自适应控制等。
这些控制算法根据不同的应用需求和性能要求选择合适的控制策略。
总之,伺服电机控制原理通过传感器采集反馈信号,与设定值进行比较,通过控制算法计算出误差,并根据误差调整电机的控制信号,以实现精准的位置或速度控制。
伺服电机及其控制原理什么是伺服电机?伺服电机是一种带有反馈控制系统的电机。
很多人可能会想到直流电机或步进电机,但这些电机只能进行开关式的控制,不能有效地调节转速和位置。
相比较而言,伺服电机可以准确地控制转速和位置,因此在机器人技术、自动控制和工业制造等领域得到了广泛应用。
伺服电机的工作原理伺服电机常用于自动控制系统中,其工作原理基于反馈控制的概念。
简单来说,伺服电机将目标位置与当前位置进行比较,然后通过控制电路来调整电机转速和位置,以使其尽可能与目标位置匹配。
具体来说,伺服电机常用的控制系统包括位置反馈、速度反馈和加速度反馈等。
伺服电机的控制原理伺服电机的控制原理包括位置控制、速度控制和扭矩控制等。
位置控制在位置控制中,伺服电机将目标位置与实际位置进行比较,然后通过控制电路来调整电机转速和位置,以使其尽可能与目标位置匹配。
位置控制系统包括位置传感器、位置反馈回路和控制电路等。
常用的位置传感器包括编码器、光电传感器和霍尔传感器等。
位置反馈回路可以及时地反馈电机的位置信息,并对信号进行处理和滤波,以便控制电路能够准确地控制电机的位置。
控制电路包括位置控制器、功率放大器和驱动器等。
速度控制在速度控制中,伺服电机将目标速度与实际速度进行比较,然后通过控制电路来调整电机转速和位置,以使其尽可能与目标速度匹配。
速度控制系统包括速度传感器、速度反馈回路和控制电路等。
常用的速度传感器包括电动机转速传感器和转矩传感器等。
速度反馈回路可以及时地反馈电机的速度信息,并对信号进行处理和滤波,以便控制电路能够准确地控制电机的速度。
控制电路包括速度控制器、功率放大器和驱动器等。
扭矩控制在扭矩控制中,伺服电机将目标扭矩与实际扭矩进行比较,然后通过控制电路来调整电机转速和位置,以使其尽可能与目标扭矩匹配。
扭矩控制系统包括扭矩传感器、扭矩反馈回路和控制电路等。
常用的扭矩传感器包括压力传感器和力传感器等。
扭矩反馈回路可以及时地反馈电机的扭矩信息,并对信号进行处理和滤波,以便控制电路能够准确地控制电机的扭矩。
伺服电机的编码器、电源、控制线的接线介绍
随着智能化的发展要求,现在在机器人控制系统中,伺服电机扮演者重要角色,可以说机器人所需要的力、力矩等都有伺服电机提供,以保证其准确、快速的完成动作。
在我们工控中对于要求精度较高的场合需要使用伺服电机,与其说是伺服电机不如说它是一套伺服系统。
伺服电机的工作原理在网上基本都可以查到,脉冲控制、精度定位、性能超越等优点。
今天我们就简单介绍下工控中伺服驱动系统的接线。
伺服驱动系统主要由伺服电机、伺服驱动器、控制器组成,伺服电机自带编码器。
伺服驱动系统来说明,下图是系统接线图:驱动器主要有控制回路电源、主控制回路电源、伺服输出电源、控制器输入CN1、编码器接口CN2、连接起CN3。
控制回路电源是单相AC电源,输入电源可单相、三相,但是必须是220v,就是说三相输入时,咱们的三相电源必须经过变压器变压才能接,对于功率较小的驱动器,可单相直接驱动,单相接法必须接R、S端子。
伺服电机输出U、V、W切记千万不能与主电路电源连接,有可能烧毁驱动器。
CN1端口主要用于上位机控制器的连接,提供输入、输出、编码器ABZ三相输出、各种监控信号的模拟量输出。
02 编码器接线从上图看出九个端子我们只使用了5个,一个屏蔽线、电源线两根、串行通讯信号(+-)两根,与我们普通的编码器接线差不多。
03 通讯端口
驱动器通过CN3端口与电脑PLC、HMI等上位机相连接,采用MODBUS通讯来控制驱动器,可使用RS232、RS485进行通讯。
End。
伺服电机是怎么控制的原理伺服电机是一种能够根据控制信号精确控制角度、速度或位置的设备。
它通常由电机、编码器、控制器和电源组成。
伺服电机的控制原理简单来说就是根据输入的控制信号来调节电机转子位置,并通过反馈信号进行闭环控制,使得电机能够精确地达到预定的位置和速度。
下面将详细介绍伺服电机的工作原理。
伺服电机的工作原理可以分为四个主要步骤:输入信号的解码、目标位置的计算、PID控制算法和电机驱动。
首先,输入信号通常是指通过控制器发送给伺服电机的指令信号。
这些信号可以是模拟信号、数字信号或脉冲信号。
模拟信号通常是电压信号或电流信号,而数字信号通常是通过通信接口发送的二进制数据。
脉冲信号则是通过脉冲编码器发送的信号,用来表示电机转子位置。
第二步是目标位置的计算。
在这一步骤中,控制器会根据输入信号和其他参数来计算出电机需要达到的目标位置。
这个目标位置通常是由用户设置或由外部程序动态计算得出的。
接下来是PID控制算法的应用。
PID控制算法是一种经典的反馈控制算法,由比例、积分和微分三个部分组成。
比例部分根据误差信号的大小进行调节,积分部分根据误差信号的积分值进行调节,微分部分根据误差信号的微分值进行调节。
PID控制算法能够根据误差信号的变化情况实时调整电机的输出信号,以快速而准确地将电机转子位置调整到目标位置。
最后一步是电机驱动。
电机驱动器负责将控制器输出的信号转换成对电机的驱动信号,以使电机产生相应的运动。
电机驱动器通常根据输入信号的类型和电机的驱动方式进行配置。
例如,对于直流伺服电机,可以使用H桥驱动器来实现正反转和速度控制;对于步进伺服电机,可以使用微步驱动器来实现精确控制。
在伺服电机运行过程中,反馈信号起着至关重要的作用。
常见的反馈设备包括编码器、霍尔传感器和位置传感器等。
这些设备能够实时监测电机转子位置,并将实际位置信息反馈给控制器。
通过比较实际位置和目标位置的差异,控制器可以自动调整输出信号,使电机能够精确地达到目标位置。
伺服电机工作原理与接线图讲解
1. 伺服电机工作原理
伺服电机是一种能够实现精确定位和高速控制的电动机。
其工作原理主要基于
反馈控制系统。
在伺服电机中,通常包括一个电机、一个传感器、一个控制器以及一台驱动器。
电机通过控制器接收一定的输入信号,然后传感器不断监测电机的运动状态,并将信息反馈至控制器。
控制器根据反馈信息调整输出信号,从而使电机按照预定轨迹运动,实现精确的位置控制。
伺服电机的工作原理可以简单概括为:输入信号 -> 控制器 -> 驱动器 -> 电机 -> 运动 -> 反馈信号 -> 控制器调节。
2. 伺服电机接线图讲解
伺服电机的接线图通常包括电机本体和驱动器的连接方式。
下面给出一个常见
的伺服电机接线图:
伺服电机接线图示例:
- 电机信号线1 -> 驱动器信号输入1
- 电机信号线2 -> 驱动器信号输入2
- 电机信号线3 -> 驱动器信号输入3
- 电机供电正极 -> 驱动器电源正极
- 电机供电负极 -> 驱动器电源负极
- 地线连接
注:不同型号的伺服电机和驱动器接线方式可能有所差异,请根据具体设备手册进行连接。
通过正确接线,伺服电机和驱动器之间可以正确传递信号和功率,实现精确的
运动控制。
3. 总结
本文介绍了伺服电机的工作原理及接线图讲解。
通过了解伺服电机的工作原理,我们可以更好地理解其在自动化控制系统中的应用,实现精确控制和高效运动。
正确连接伺服电机和驱动器,也是确保系统正常运行和精确控制的关键步骤。
希望本文对读者有所帮助。
伺服电机控制程序讲解(原创版)目录1.伺服电机控制程序概述2.伺服电机控制程序的构成3.伺服电机控制程序的工作原理4.伺服电机控制程序的应用实例5.伺服电机控制程序的未来发展趋势正文【伺服电机控制程序概述】伺服电机是一种将电脉冲转换为角位移的电机,它可以通过控制脉冲的数量和频率来精确地控制旋转速度和位置。
伺服电机控制程序则是指用于控制伺服电机的计算机程序,通常由上位机或嵌入式系统执行。
本文将详细讲解伺服电机控制程序的原理和应用,并探讨其未来发展趋势。
【伺服电机控制程序的构成】一个典型的伺服电机控制程序主要包括以下几个部分:1.控制算法:根据给定的指令和实际反馈信号,计算出需要发送给伺服电机的脉冲数量和频率。
2.脉冲发生器:将控制算法计算出的脉冲数量和频率转换为实际的脉冲信号,以便驱动伺服电机。
3.通信接口:将脉冲信号发送给伺服电机的驱动器,并从驱动器接收反馈信号,如转速和位置等。
4.错误处理:对通信异常、电机故障等情况进行检测和处理,确保控制系统的稳定性和可靠性。
【伺服电机控制程序的工作原理】伺服电机控制程序的工作原理可以概括为以下几个步骤:1.接收指令:程序接收来自上位机或其他设备的指令,包括目标位置、速度等信息。
2.计算脉冲:根据指令和实时反馈信号,控制算法计算出需要发送给伺服电机的脉冲数量和频率。
3.发送脉冲:将计算出的脉冲数量和频率转换为实际的脉冲信号,并通过通信接口发送给伺服电机的驱动器。
4.反馈控制:根据伺服电机的实时反馈信号(如转速、位置等),对脉冲信号进行调整,以实现精确的控制。
5.错误处理:对通信异常、电机故障等情况进行检测和处理,确保控制系统的稳定性和可靠性。
【伺服电机控制程序的应用实例】伺服电机控制程序广泛应用于各种工业自动化设备和机器人系统中,如数控机床、自动化生产线、机器人手臂等。
例如,在数控机床中,伺服电机控制程序可以精确地控制刀具的移动速度和位置,实现高精度的加工。
伺服电机的制动方式与原理伺服电机的控制方法伺服电机是一种能够实现精确控制位置、速度和力矩的电机。
它的控制方式和原理可以分为制动方式和控制方法两个方面。
一、伺服电机的制动方式与原理:1.机械制动法:通过机械装置,在电机输入轴或者输出轴上加装制动装置,如制动盘、制动片等。
当需要制动时,通过电磁力或者机械力使制动器与电机输入轴或者输出轴接触,从而实现制动效果。
这种制动方式的原理是利用摩擦力或者电磁力来减小或者阻止电机的运动,从而实现制动目的。
2.电磁制动法:通过电磁装置,在电机输入轴或者输出轴上加装电磁制动器。
当需要制动时,施加电压使制动器产生磁场,通过磁场对电机输入轴或者输出轴施加制动力矩,从而实现制动效果。
这种制动方式的原理是利用电磁场对电机的运动进行阻止,从而实现制动目的。
3.回馈制动法:回馈制动法是在伺服电机的控制回路中加入一个回馈装置,通过控制回路的反馈信号控制电机的转动和制动。
当需要制动时,通过调整控制回路中的参数,使反馈信号与设定值产生偏差,从而控制电机停止运动或者产生相反的力矩,实现制动效果。
这种制动方式的原理是通过改变控制回路中的参数,使电机的输出与期望值产生偏差,从而实现制动目的。
二、伺服电机的控制方法:1.位置控制:位置控制是通过控制伺服电机使其达到设定位置的控制方式。
它的原理是通过测量电机的位置信号与设定值进行比较,通过调整控制回路的参数或者改变输入信号,控制电机的角度或者位置,使其达到期望的位置。
2.速度控制:速度控制是通过控制伺服电机使其达到设定速度的控制方式。
它的原理是通过测量电机的速度信号与设定值进行比较,通过调整控制回路的参数或者改变输入信号,控制电机的转速,使其达到期望的速度。
3.力矩控制:力矩控制是通过控制伺服电机使其产生特定力矩的控制方式。
它的原理是通过测量电机输出的力矩信号与设定值进行比较,通过调整控制回路的参数或者改变输入信号,控制电机的输出力矩,使其达到期望的力矩。
伺服电机控制分析伺服电机是一种用于精密控制和定位目的的电机。
它通过与传感器和控制器配合工作,使得它能够准确地跟踪和控制要求的位置、速度和加速度。
在工业领域中,伺服电机广泛应用于自动化设备、机器人、医疗设备、航空航天等领域。
伺服电机控制系统通常由电机、驱动器和控制器组成。
电机将输入的电能转化为机械功,驱动器通过给电机提供适当的电压和电流来控制电机的运动。
控制器通过对传感器的反馈信号进行分析和处理,生成合适的控制信号,驱动器再将这些信号传递给电机,从而实现对电机的精密控制。
伺服电机的控制系统可以分为位置控制、速度控制和扭矩控制三种类型。
位置控制是通过控制电机的转动角度或位置来实现的,它通常采用编码器或传感器来测量电机的转动角度并反馈给控制器,控制器根据设定的目标位置和当前位置之间的误差来生成合适的控制信号。
速度控制是通过控制电机的转速来实现的,它通常使用转速传感器来测量电机的转速并反馈给控制器,控制器根据设定的目标转速和当前转速之间的误差来生成合适的控制信号。
扭矩控制是通过控制电机的输出扭矩来实现的,它通常使用扭矩传感器来测量电机的输出扭矩并反馈给控制器,控制器根据设定的目标扭矩和当前扭矩之间的误差来生成合适的控制信号。
伺服电机的控制器通常采用PID控制算法。
PID控制算法可以根据系统的误差、误差变化率和误差积分来生成合适的控制信号。
其中P表示比例控制,它与误差成正比,用于快速响应系统的变化;I表示积分控制,它与误差的积分成正比,用于消除系统的稳态误差;D表示微分控制,它与误差变化率成正比,用于抑制系统的震荡。
控制器通过调节PID控制算法中的参数来获得最佳的控制效果。
伺服电机的控制系统还需要考虑非线性因素和动态响应。
非线性因素包括电机的饱和效应、摩擦力、惯性等,它们会影响控制系统的性能和稳定性。
动态响应是指系统对输入信号的响应速度和稳定性,它取决于传感器的采样率、控制器的计算能力和驱动器对电机的响应特性。
伺服电机的控制方法伺服电机是一种用于精确控制运动的电动机。
它具有高度可控性和精度,被广泛应用于机械、自动化和工业领域。
为了实现对伺服电机的精确控制,需要采用一种合适的控制方法。
本文将介绍几种常见的伺服电机控制方法。
1.位置控制:位置控制是最常见的伺服电机控制方法之一、通过测量电机转子的角度或位移,将其与期望位置进行比较,并根据差值调整电机运动,以达到精确的位置控制。
位置控制可以通过反馈设备(如编码器或传感器)来实现,以便在实时监测和调整电机位置。
2.速度控制:速度控制是一种将伺服电机运动速度保持在设定值的控制方法。
通过测量电机转子的速度,并将其与期望速度进行比较,控制电机的输出电压和频率,以达到所需的运动速度。
速度控制也可以通过反馈设备来实现,以实时调整电机的输出和速度。
3.扭矩控制:扭矩控制是一种以保持电机输出扭矩在设定值的控制方法。
通过测量电机输出的扭矩,并与期望扭矩进行比较,控制电机的输出电流和电压,以保持所需的扭矩输出。
扭矩控制可以通过反馈设备(如扭矩传感器)来实现,以实时调整电机的输出和扭矩。
4.力控制:力控制是一种将伺服电机输出力保持在设定值的控制方法。
通过测量电机输出的力,并将其与期望力进行比较,控制电机的输出电流和电压,以保持所需的力输出。
力控制可以通过反馈设备(如力传感器)来实现,以实时调整电机的输出和力。
5.轨迹控制:轨迹控制是一种将伺服电机按照预定的运动轨迹进行控制的方法。
通过定义电机运动的轨迹,以及所需的速度、加速度和减速度等参数,控制电机按照轨迹进行运动。
轨迹控制可以通过编程的方式实现,以根据所需的轨迹生成控制指令。
6.模型预测控制:模型预测控制是一种基于数学模型对伺服电机进行控制的方法。
通过建立电机和机械系统的动态模型,并预测未来的运动和行为,通过调整控制指令实现对电机的精确控制。
模型预测控制通常需要高级的控制算法和计算能力,可以在复杂的应用场景中实现更高的控制精度。
伺服电机控制原理介绍
伺服电机控制是一种通过反馈调节来实现精确控制的电机控制方法。
该方法主要由四个部分组成:控制器、编码器、伺服电动机和负载。
控制器是伺服电机系统的核心,负责计算出控制信号以控制电机的输出。
它可以是传统的PID控制器,也可以是现代控制理论中的模糊控制器、模型预测控制器等。
编码器是用于测量电机输出角度或位置的设备。
通过反馈电机输出角度或位置,编码器提供给控制器一个参考信号,以便控制器调整控制信号。
伺服电动机是一种特殊的电动机,可以根据控制信号精确地控制输出角度或位置。
它通常由电动机本身、转矩传感器和速度传感器组成。
负载是电动机输出力的对象,通常是机械系统。
负载的特性可以通过反馈信号传达给控制器,以便控制器根据实际工作条件做出相应的调整。
整个伺服电机控制系统的工作原理如下:首先,编码器测量电机的输出角度或位置,并将该信息传递给控制器。
控制器将测量结果与期望值进行比较,计算出相应的控制信号。
控制信号经过放大器放大后送达电机,使电机按照期望的角度或位置进行运动。
同时,转矩传感器和速度传感器测量电机的输出转矩和速度,并将这些信息反馈给控制器。
控制器根据反馈信号对
控制信号进行调整,以使电机保持在期望的角度或位置,从而实现精确控制。
总之,伺服电机控制通过不断地测量反馈信号和调整控制信号来控制电机的输出,从而实现精确控制。
它在需要精密定位和运动控制的应用中广泛应用,如机床、机械手臂、自动化系统等。
伺服电机的三种控制方法伺服电机是一种可以对位置、速度和力矩进行准确控制的电机。
它具有以下几种控制方法,分别是位置控制、速度控制和力矩控制。
一、位置控制位置控制是指通过对伺服电机施加电压信号,使其能够准确地达到所需的位置。
常见的位置控制方法有以下三种:1.开环位置控制:开环位置控制是最简单的位置控制方法之一、它通过事先设定好的指令信号,控制伺服电机的运动到达预定的位置。
但由于无法准确感知位置误差,因此容易受到负载变动、摩擦力等因素的影响,导致控制精度较低。
2.简单闭环位置控制:简单闭环位置控制是在开环控制的基础上,增加了位置反馈信息来实现更精确的位置控制。
闭环控制使用编码器或位置传感器等设备来实时感知伺服电机的位置,并与设定的指令信号进行比较,控制电机的转动,减小位置误差。
但简单闭环位置控制无法考虑到负载变化对位置控制的影响。
3.PID闭环位置控制:PID闭环位置控制是在简单闭环控制的基础上,增加了比例、积分和微分控制来进一步提高位置控制精度。
PID控制器根据伺服电机的位置误差、变化速率和累计偏差,调整电机驱动器的输出信号,以实现位置的精确控制。
PID控制器通常调整PID参数,以逐步减小位置误差,使得伺服电机能够快速且准确地达到所需位置。
二、速度控制速度控制是指通过对伺服电机施加电压信号,使其能够达到预设的速度。
常见的速度控制方法有以下几种:1.矢量控制:矢量控制是一种通过使用矢量变量来控制电机的速度和方向的方法。
它可以实现电机的快速启动、减速和正反转,并具有良好的动态响应性能。
矢量控制通常需要精确的位置反馈或速度反馈信号,并使用PI控制器来调整速度误差和电机转矩。
2.开环速度控制:开环速度控制是在没有速度反馈信号的情况下,通过一个开环速度控制器来控制电机的转速。
开环速度控制通常使用一个指令信号,在不考虑负载变化的情况下提供固定转速。
由于没有速度反馈信号,开环速度控制容易受到负载变化和负载扰动的影响,控制精度较低。
伺服电机控制方法伺服电机是一种广泛应用于自动控制领域的电动机,它具有定位精度高、响应速度快、控制精度高等优点。
在伺服电机的控制中,常用的方法主要有位置控制、速度控制和力控制。
首先,位置控制是伺服电机控制中最常见的一种方法。
位置控制是指通过控制伺服电机的输出位置来实现对被控物体的位置控制。
在实际应用中,一般会使用编码器等位置传感器来实时测量伺服电机的位置,然后通过控制器根据设定的目标位置来调整伺服电机的输出位置。
常见的位置控制算法有比例控制、积分控制和微分控制等。
比例控制是根据当前位置与目标位置之间的差距来调整电机的输出位置,其控制效果较简单,定位精度可能有所欠缺;积分控制则会考虑到位置误差的累计信息,通过积分项来修正输出位置,提高定位精度;微分控制则会根据位置误差变化的速率来调整输出位置,以减小位置震荡,提高稳定性。
其次,速度控制是伺服电机的另一种常用控制方法。
速度控制是指通过控制伺服电机的输出速度来实现对被控物体的速度控制。
与位置控制类似,速度控制也需要通过传感器实时测量电机的输出速度,然后通过控制器根据设定的目标速度来调整伺服电机的输出速度。
常见的速度控制算法有比例控制、积分控制和微分控制等。
与位置控制类似,比例控制是根据当前速度与目标速度之间的差距来调整电机的输出速度,积分控制则会考虑到速度误差的累计信息,通过积分项来修正输出速度,微分控制则会根据速度误差变化的速率来调整输出速度。
最后,力控制是伺服电机的另一种常见控制方法。
力控制是指通过控制伺服电机的输出力来实现对被控物体的力控制。
在一些特殊的应用中,需要对被控物体的力进行精确控制,此时可以采用力控制方法。
常见的力控制方法主要有阻抗控制、力矩控制和力传感器反馈控制等。
阻抗控制是将伺服电机设置为柔顺的力传递装置,根据被控物体的接触力来调整电机的输出力;力矩控制则是根据被控物体受力情况来调整电机的输出力矩;力传感器反馈控制则是通过在被控物体上安装力传感器,实时测量受力情况,并根据测量结果来调整电机的输出力。
伺服电机的制动方式与原理,伺服电机的控制方法伺服电动机又叫执行电动机,或叫控制电动机。
在自动控制系统中,伺服电动机是一个执行元件,它的作用是把信号(控制电压或相位)变换成机械位移,也就是把接收到的电信号变为电机的一定转速或角位移。
其容量一般在0.1-100W,常用的是30W 以下。
伺服电动机有直流和交流之分。
伺服电机的制动方式及其原理1、电气制动法:(1)动态制动器(又称能耗制动)由动态制动电阻组成,在故障、急停、电源断电时通过能耗制动缩短伺服电机的机械进给距离。
(2)再生制动(又称回馈制动)是指伺服电机在减速或停车时将制动产生的能量通过逆变回路反馈到直流母线,经阻容回路吸收。
2、机械制动法电磁制动是通过机械装置锁住电机的轴。
用户往往对电磁制动、再生制动、动态制动的作用混淆,选择了错误的配件。
动态制动器由动态制动电阻组成,在故障、急停、电源断电时通过能耗制动缩短伺服电机的机械进给距离。
动态制动器由动态制动电阻组成,在故障,急停,电源断电时通过能耗制动缩短伺服电机的机械进给一般都是在伺服电机的U V W相上引出三根线上面分别串上一个制动电阻,这三个电阻接到一个继电器上,在伺服电机正常工作时这个继电器是吸合的三个相线不短接当伺服电机要制动时继电器就断电释放三个相线接到一起了就开始制动了。
再生制动是指伺服电机在减速或停车时将制动产生的能量通过逆变回路反馈到直流母线。
经阻容回路吸收。
电磁制动是通过机械装置锁住电机的轴。
三者的区别:(1)再生制动必须在伺服器正常工作时才起作用,在故障、急停、电源断电时等情况下无法制动电机。
动态制动器和电磁制动工作时不需电源。
(2)再生制动的工作是系统自动进行,而动态制动器和电磁制动的工作需外部继电器控制。
(3)电磁制动一般在SV OFF后启动,否则可能造成放大器过载。
动态制动器一般在SV OFF或主回路断电后启动,否则可能造成动态制动电阻过热。
选择配件的注意事项:(1)有些系统如传送装置,升降装置等要求伺服电机能尽快停车。