平行四边形面积计算公式
- 格式:doc
- 大小:14.50 KB
- 文档页数:2
平行四边形面积公式平行四边形是一种具有特殊性质的四边形,它的两对对边是平行的。
在几何学中,我们常常需要计算平行四边形的面积。
本文将介绍平行四边形面积的计算公式,并提供一些相关的例题来帮助读者更好地理解。
一、平行四边形面积公式要计算平行四边形的面积,我们需要知道它的底边和对应底边的高。
假设平行四边形的底边长为b,对应底边的高为h,则平行四边形的面积可以用以下公式表示:面积 = 底边长 ×对应底边的高即:面积 = b × h这个公式适用于所有的平行四边形,不论其形状和大小。
二、例题解析为了更好地理解平行四边形面积的计算公式,我们来看几个例题。
例题1:一个平行四边形的底边长为8cm,对应底边的高为5cm,求其面积。
解析:根据平行四边形的面积公式,我们有:面积 = 底边长 ×对应底边的高= 8cm × 5cm= 40cm²所以,该平行四边形的面积为40平方厘米。
例题2:一个平行四边形的底边长为12m,对应底边的高为3m,求其面积。
解析:同样利用平行四边形的面积公式,我们可以计算出:面积 = 底边长 ×对应底边的高= 12m × 3m= 36m²所以,该平行四边形的面积为36平方米。
三、总结通过上述例题的计算,我们可以看出,平行四边形的面积计算相对简单。
只需要知道底边的长度以及对应底边的高,就能轻松求解面积。
需要注意的是,在实际应用中,要确保底边和对应底边的高在同一个单位下,以保证计算的准确性。
总之,通过本文的介绍,我们掌握了计算平行四边形面积的公式,并通过例题进行了实际计算。
希望这对您有所帮助,同时也希望读者能够进一步巩固和应用所学的知识。
平行四边形的面积和周长公式平行四边形的周长公式为:C=2(a+b)(公式中a、b分别为平行四边形的边长,C为平行四边形的周长)。
平行四边形的周长=(底1+底2)×2,如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=2(a+b)。
平行四边形面积公式为:S=ah(公式中h为高,a为底,S为平行四边形面积)。
平行四边形的面积=底×高,如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=a*h。
平行四边形的面积=两组邻边的积乘以夹角的正弦值,如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sinα。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。
平行四边形一般用图形名称加四个顶点依次命名。
平行四边形面积相关性质:1、平行四边形对角线把平行四边形面积分成四等份。
2、平行四边形的面积是由其对角线之一创建的三角形的面积的两倍。
3、平行四边形的面积也等于两个相邻边的矢量交叉乘积的大小。
4、与任何其他凸多边形不同,平行四边形不能刻在任何小于其面积的两倍的三角形。
5、如果与平行四边形平行的两条线与对角线并行构成,则在该对角线的相对侧上形成的平行四边形面积相等。
6、平行四边形的对角线将其分成四个相等面积的三角形。
特殊的平行四边形:(矩形、菱形、正方形都是特殊的平行四边形)1.矩形的定义:有一个角是直角的平行四边形是矩形。
2.菱形的定义:有一组邻边相等的平行四边形是菱形。
3.正方形的定义:一组邻边相等且有一个角是直角的平行四边形是正方形。
平行四边形的面积计算平行四边形是一种特殊的四边形,它的两对边分别平行,并且对边长度相等。
计算平行四边形的面积可以使用不同的方法,其中最常用的是基于底边和高的计算公式。
下面将详细介绍如何计算平行四边形的面积。
1. 使用底边和高的计算公式假设平行四边形的底边长度为b,高为h,那么它的面积可以通过以下公式计算:面积 = 底边长度 ×高这个公式是非常简单而且直观的,只需要将底边长度和高相乘即可。
例如,如果底边长度为5cm,高为8cm,那么平行四边形的面积就是40平方厘米。
2. 使用边长和夹角的计算公式除了使用底边和高的公式,我们也可以利用平行四边形的边长和夹角来计算面积。
假设平行四边形的两个相邻边长度分别为a和b,夹角为θ,那么它的面积可以通过以下公式计算:面积= a × b × sin(θ)这个公式是基于平行四边形一对相邻边的长度和它们之间的夹角以及正弦函数的关系。
例如,如果边长a为4cm,边长b为6cm,夹角θ为45度,那么平行四边形的面积就是12平方厘米。
3. 使用顶点坐标的计算方法除了上述方法,我们也可以利用平行四边形的顶点坐标来计算其面积。
假设四个顶点坐标分别为A(x1, y1)、B(x2, y2)、C(x3, y3)和D(x4, y4),那么平行四边形的面积可以通过以下公式计算:面积 = |(x1y2 + x2y3 + x3y4 + x4y1) - (y1x2 + y2x3 + y3x4 + y4x1)| / 2这个公式利用向量的叉乘来计算平行四边形的面积,其中绝对值符号表示取绝对值。
虽然这个公式比较复杂,但它适用于任意形状的平行四边形。
总结:在计算平行四边形的面积时,我们可以根据实际情况选择不同的计算方法。
使用底边和高的计算公式是最简单和直观的方法,适用于已知底边和高的情况。
使用边长和夹角的计算公式适用于已知边长和夹角的情况。
而使用顶点坐标的计算方法则适用于已知顶点坐标的情况。
平行四边形的周长面积公式
平行四边形的周长的计算公式=2(长边+短边)平行四边形的面积的计算公式=底边x底边相对应的高
平行四边形面积公式为:S=ah(公式中h为高,a为底,S为平行四边形面积)。
周长公式为:C=2(a+b)(公式中a、b分别为平行四边形的边长,C为平行四边形的周长)。
在同一个二维平面内,由两组平行线段组成的闭合图形,称为平行四边形。
平行四边形一般用图形名称加四个顶点依次命名。
(在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点)。
平行四边形面积计算公式设平行四边形的底边长度为a,高为h,那么它的面积S可以表示为S=a*h。
要理解这个公式,我们首先来看看平行四边形的特点。
1.平行四边形的两对边平行:2.平行四边形的高:3.通过底边和高计算面积:现在我们来具体分析一下如何通过底边和高计算平行四边形的面积。
首先,我们可以将平行四边形划分为两个三角形,这两个三角形的高分别是平行四边形的高h。
接下来,我们可以计算出这两个三角形的面积。
对于一个三角形,其面积可以通过底边长度和高的乘积再除以2来计算得出。
因此,一个三角形的面积可以表示为S_tri = (1/2) * a * h。
根据平行四边形的特点,我们可以得出,两个三角形的底边长度相等,即a。
所以,两个三角形的面积之和可以表示为2 * S_tri = 2 * (1/2) * a * h = a * h。
而平行四边形的面积就是两个三角形的面积之和,即S=a*h。
这么说来,我们就成功地推导出了平行四边形面积的计算公式。
举个例子来验证一下这个公式的正确性。
假设我们有一个平行四边形,底边长度为10,高为5、根据公式S=a*h,我们可以计算出面积为S=10*5=50。
接下来,我们可以通过另一种方法来验证这个计算结果。
我们将平行四边形划分为两个三角形,并计算出每个三角形的面积。
三角形1的面积为S_tri1 = (1/2) * 10 * 5 = 25三角形2的面积为S_tri2 = (1/2) * 10 * 5 = 25两个三角形的面积之和为25+25=50,与我们之前的计算结果相同。
通过这个例子,我们可以看到,无论是直接应用公式,还是将平行四边形划分为两个三角形进行计算,得出的结果都是相同的。
这就说明我们的平行四边形面积计算公式是正确的。
总结一下,平行四边形的面积计算公式为S=a*h,其中a为底边长度,h为高。
这个公式基于平行四边形的特点得出,并且通过将平行四边形划分为两个三角形进行计算可以得到相同的结果。
平行四边形的面积平行四边形的面积公式与推导:平行四边形的面积=底×高S = ah逆运算公式:平行四边形的底=面积÷高(a = S÷h)平行四边形的高=面积÷底(h = S÷a)注意:在求平行四边形的面积时,底和高必须对应。
说明:长方形框架拉成平行四边形,周长不变,面积变小;平行四边形框架拉成长方形,周长仍不变,但面积变大。
任何平行四边形都有无数条高。
例1、计算如图平行四边形的面积,正确算式是()A.4.8×10B.6×10C.8×10例2、下面图形中能算出面积的是()A.B.C.D.例3、已知平行四边形的面积是300平方分米,如果它的底缩小6倍,高扩大5倍,那么它的面积为()A.50平方分米B.60平方分米C.360平方分米D.250平方分米例4、如图,平行四边形的面积是80平方厘米,甲的面积是25平方厘米,则丙的面积是平方厘米.例4图例5图例5、如图,图A和图B的面积相比较,()A.图A的面积大B.图B的面积大C.两者一样大D.无法确定例6、用两根长4厘米和两根长5厘米的小棒围成一个平行四边形,面积最大不会超过()平方厘米.A.25B.18C.20D.81例7、北京奥运会期间北京市某单位做了一个如图所示的宣传标语牌,已知标语牌的周长是16米,两边上的高如图所示,求这个标语牌的面积是多少平方米?课堂练习1、平行四边形的高是6cm,底是5cm,面积是,如果把高和底各扩大2倍,那么面积就扩大为原来的倍.2、已知一个平行四边形的面积是60平方分米,底是12分米,高是分米.3、底为4分米,高为0.2米的平行四边形的面积是平方分米.4、一个平行四边形的面积是188平方分米,一个长方形的长和宽分别与平行四边形的底和高相等,这个长方形的面积是平方分米.5、两个平行四边形的面积相等,一个平行四边形的底是9厘米,高是8厘米,另一个平行四边形的高是6厘米,底是厘米.6、一个平行四边形的面积是12.5平方米.它的底是2.5米,对应高是米.7、如图,平行四边形的底为8厘米,高为4.5厘米,面积为36平方厘米,阴影部分面积为平方厘米.第7题图第13题图第14题图8、一个平行四边形的底是8分米,面积是48平方分米,它的高是厘米.9、一个平行四边形的面积是5.4平方米,高是3.6米,底是米.10、一个平行四边形的高4分米,比它的底短1分米,它的面积是.11、平行四边形的底是12米,它的两条高分别是9米、15米,这个平行四边形的面积是平方米.12、一个平行四边形的面积是24平方分米,它的底是6分米,高是分米.13、如图平行四边形的面积是48平方厘米.线段CD长5厘米,线段AF长4.8厘米,那么平行四边形的周长是厘米.14、如图,平行四边形的面积是20平方厘米,图中阴影部分的面积是平方厘米.如果阴影部分的面积是15平方厘米,平行四边形的底是6厘米,则它的高是厘米.15、如果把一个平行四边形的底和高都扩大原来的2倍,那么它的面积将()A.扩大原来2倍B.缩小原来4倍C.扩大原来4倍16、平行四边形相邻的两条边长度分别为12厘米和8厘米,已知其中的一条高是10厘米,那么这个平行四边形的面积是()平方厘米.A.120B.96C.80D.6017、计算如图平行四边形面积的正确算式是()A.8×12B.10×12C.8×10第17题图第18题图18、如图,平行四边形的面积是()平方厘米A.32B.24 C.48D.以上答案都不可能课后习题1、一个平行四边形的底是9分米,高是底的2倍,它的面积是.2、一个平行四边形的面积是80平方米,高是5米,底是.3、有一块平行四边形土地,底边长28m,高是底的,这块地的面积是平方米.4、如图是一个平行四边形,阴影部分的面积是8平方厘米,那么这个平行四边形的面积是平方厘米.第4题图第7题图第9题图5、王师傅从一个上底是5.5厘米、下底是7.5厘米、高是4厘米的梯形铁片上截取一个最大的平行四边形.这个平行四边形的面积是()平方厘米.A.22B.30C.无法选择6、平行四边形的两邻边长分别是6厘米和8厘米,夹角是30°,这个平行四边形的面积是()A.12厘米2B.24厘米2C.40厘米2D.都不对7、求下面平行四边形的面积,正确的列式是()A.6×4.8B.10×4.8C.8×10D.8×4.88、一个平行四边形的高减少了5cm,底增加了5cm,它的面积比原来()A.增加B.减小C.不变D.无法确定9、如图计算平行四边形的面积列式为()A.7.5×8 B.8×6 C.10×8 D.10×7.510、计算下面平行四边形面积的正确算式是()A.12×10B.7.5×12C.9×12D.7.5×1011、平行四边形的底扩大2倍,高也扩大2倍,面积()A.扩大2倍B.扩大4倍C.不变D.无法判断12、把一个平行四边形沿着高切开,拼成一个长方形.()A.面积变小,周长变小B.面积不变,周长不变C.面积变小,周长不变D.面积不变,周长变小13、平行四边形两边长分别是8厘米和6厘米,其中一条边上的高是4厘米,这个平行四边形的面积是()平方厘米.A.32B.24C.80或5614、把一个长6厘米,宽4厘米的长方形拉成一个平行四边形后面积减少6平方厘米,平行四边形的高是()A.3B.4C.515、将﹣个边长为4分米的正方形框架拉成一个高是3分米的平行四边形,则平行四边形的面积是()平方分米.A.12B.16C.无法确定。
平行四边形的三种面积公式对角线平行四边形是一种基本的几何图形,它由两对平行的边所组成。
在平行四边形的研究中,面积是其中一个重要的概念。
在下面的文章中,我们将介绍平行四边形的三种面积公式和用对角线计算面积的方法。
第一种面积公式:底边乘以高度这是平行四边形最常用的面积公式。
它的计算方法是将底边的长度乘以平行于底边的高度,即S=base×height。
其中,底边和高度的单位必须一致。
这个公式的本质是求出平行四边形所包含的平行四边形和一个直角三角形的总面积。
第二种面积公式:两边向量的叉积的模长在向量的数学中,两个向量的叉积是一个向量,它的方向垂直于这两个向量所在的平面,其大小等于这两个向量所围成的平行四边形的面积。
因此,平行四边形的面积也可以用两条相邻边的向量的叉积来计算。
设向量a和向量b为平行四边形相邻的两个边,则S=|a×b|,其中|a×b|表示向量a×b的模长。
第三种面积公式:对角线乘积乘以正弦这个公式只适用于已知平行四边形的两条对角线的长度和它们的夹角的情况下。
设对角线AC和BD所围成的角为α,则S=AC×BD×sinα。
这个公式的本质是求出两个三角形的面积和。
用对角线计算平行四边形的面积对于任意一个平行四边形,我们可以通过求出它的对角线的长度和夹角来计算它的面积。
对于一个平行四边形,将对角线分别平分成两等份,连接它们的共同点,可以得到一个以对角线为长边,平行四边形两对边的中点为端点的两个等腰三角形。
因此,我们可以求出这两个等腰三角形的面积和,也就是平行四边形的面积。
综上所述,平行四边形的三种面积公式可以灵活运用,使我们在不同的情况下都能方便地计算出平行四边形的面积。
通过对对角线的研究,我们也可以用其来计算出平行四边形的面积,为我们的几何学习提供更多的思路和方法。
平行四边形的面积计算公式平行四边形是一种具有两对平行边的四边形。
它的面积可以通过基础乘以高度来计算,也可以通过两个对边的长度和夹角的正弦值来计算。
在本文中,我们将讨论这两种方法,并提供一些应用这些公式的实例。
一、基础乘以高度学习平行四边形面积的第一种方法是使用基础乘以高度公式。
基础是平行四边形的底部边缘,高度是基本或上部边缘垂直于基谷的距离。
因此,平行四边形的面积公式如下:面积 = 基础×高度在这个公式中,基础和高度的单位必须是相同的,例如米或厘米,以便可以正确地计算面积。
下面是一些计算平行四边形面积的例子。
例1:计算一个底边长为7米,高度为4米的平行四边形的面积。
解答:根据公式,面积=基础×高度。
因此,面积=7米×4米=28平方米。
例2:如果一个底边长为5米的平行四边形的面积是25平方米,则其高度是多少?解答:根据公式,面积=基础×高度。
在这个问题中,基础等于5米,面积等于25平方米。
所以,高度=面积÷基础=25平方米÷5米=5米。
因此,这个平行四边形的高度是5米。
二、两个对边的长度和夹角的正弦值第二种计算平行四边形面积的方法涉及两个对边的长度和夹角的正弦值。
具体来说,平行四边形的面积等于其两个对边的长度之积乘以这两个对边的夹角的正弦值。
下面是这个公式的形式:面积 = 对角线1 ×对角线2 × sin(夹角)在这个公式中,对角线1和对角线2是平行四边形的两个对边的长度,夹角是这两个对边的夹角,sin是三角函数中的正弦函数。
例3:如果一个平行四边形的两个对边分别为6米和8米,它们的夹角为60度,那么它的面积是多少?解答:根据公式,面积=对角线1×对角线2×sin(夹角)。
在这个问题中,对角线1等于6米,对角线2等于8米,夹角等于60度,因此,面积=6米×8米×sin(60度)=24平方米。
平行四边形面积算法
一、引言
平行四边形是初中数学中的一个重要概念,其面积计算是初中数学中的基础内容。
本文将介绍平行四边形面积算法。
二、平行四边形定义
平行四边形是指有两组对边分别平行的四边形。
其中,对边指两个相对的边。
三、平行四边形面积公式
平行四边形的面积公式为:S = 底 x 高,其中底为任意一组相邻的底边长度,高为垂直于该底的高度。
四、证明
1. 以ABCD为底的高为EF,以E为起点向BC延长线上作垂线EG,则EG即为以ABCD为底时的高。
2. 因为AEFC和BEGD是全等三角形,所以EF = GD。
3. 又因为BC // AD和GD // EF,所以∠BGC = ∠DGF。
4. 同理可得∠AGC = ∠BEF。
5. 因此,△BGC和△DGF全等,△AGC和△BEF全等。
6. 所以BG = DF,AG = CE。
7. 因此,在平行四边形ABCD中任意取一组相邻底边作为底,则另一组相邻底边长度也相等,从而可以使用S = 底 x 高的公式计算面积。
五、例题
已知平行四边形ABCD中,AB = 6cm,BC = 8cm,以AB为底的高为4cm,求其面积。
解:由于AB为底,所以S = AB x 高= 6cm x 4cm = 24cm²。
六、总结
平行四边形是初中数学中的基础内容之一,其面积计算是基于底和高的公式。
通过以上证明可以得出,在平行四边形中任意取一组相邻底边作为底,则另一组相邻底边长度也相等。
在实际应用中,平行四边形的面积计算是非常常见的。
平行四边形的表面积公式答案:平行四边形的表面积公式:底×高(可运用割补法);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=a*h。
平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,α表示两边的夹角,“S”表示平行四边形的面积,则S平行四边形=ab*sinα。
平行四边形,是在同一个二维平面,由两组平行线段组成的闭合图形。
平行四边形一般用图形名称加四个顶点依次命名。
注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
扩展:平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。
平行四边形一般用图形名称加四个顶点依次命名。
一、平行四边形的相关计算。
1.平行四边形的面积公式:底×高(可运用割补法);用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=a×h。
例题:一个平行四边形的底是12米,高是4米,求其面积。
解:S平行四边形=a×h=12×4=48(平方米)。
平行四边形的面积等于两组邻边的积乘以夹角的正弦值;如用“a”“b”表示两组邻边长,a表示两边的夹角,“s”表示平行四边形的面积,则S平行四边形=ab*sina。
2.平行四边形周长:四边之和。
可以二乘(底1+底2);如用“a”表示底1,“b”表示底2,“c平”表示平行四边形周长,则平行四边的周长c=(a+b)×2。
二、平行四边形的定义。
两组对边分别平行的四边形叫作平行四边形。
平行四边形属于平面图形。
平行四边形属于四边形。
平行四边形属于中心对称图形。
三、平行四边形的性质。
1.平行四边形的两组对边分别相等。
2.平行四边形的两组对角分别相等。
3.平行四边形的邻角互补。
4.平行线间的高距离处处相等。
5.平行四边形的对角线互相平分。
四、特殊的平行四边形。
(矩形、菱形、正方形都是特殊的平行四边形)1.矩形的定义:有一个角是直角的平行四边形是矩形。
平行四边形面积计算公式
教学内容:九年义务教育人教版六年制小学课本第九册64页及例1
教学要求:1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。
2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识
和小组间的团结协作精神。
教学重、难点:理解面积公式的推导过程。
教学准备:几个相同的平行四边形、投影、课件、剪刀
教学过程:
一、故事引入、设计情趣
拍卖公告
拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁
镇政府办公室联系。
新袁镇人民政府
2002年11月1日
问:1、如果你想参加竞拍,那你应该知道哪些条件呢?
2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形
呢?
3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计
算公式)
二、动手操作、激发兴趣
(1)、用数方格的方法计算平行四边形面积
1、出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说
出有多少?(让学生讨论如果不满一格应该怎么办)
2、出示一个长方形,再引导学生计算一下,说出结果。
比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关
系?
小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但
数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算
长方形面积那样,找出计算平行四边形面积的计算公式?
从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢?
想一想,该怎么做?
(2)、用割补平移法推导平行四边形的面积公式
3、让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来
演示。
4、课件演示平行四边形转化成长方形的过程
刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左边
剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形,这样好吗?
在变换图形的位置时,怎样按照一定的规律呢?
(1)、先沿着平行四边形的高剪下左边的直角三角形。
(2)、左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
(3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿
着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下的直角三角形放回原处,再沿着平行四边形的底边向
右慢慢移动,直到两个斜边重合(教师巡视)
(3)、引导学生比较
5、这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积有什
么变化?为什么?
6、这个长方形的宽与原来的平行四边形的底有什么样的关系?
7、这个长方形的宽与原来的平行四边形的高有什么样的关系?
归纳总结:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别与原来的平行四边形的底、高相等。
(4)、引导学生总结平行四边形面积计算公式
8、这个长方形的面积怎么求?(板书:长方形的面积:长*宽)
9、那么平行四边形的面积怎么求?
(5)、教学用字母表示平行四边形的面积公式
S=a ×h (告知S和h的读音)
说明含有字母的式子里,字母和字母中间的乘号可以记作“.”,写成a·h,
也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h 或
S=ah
(6)、应用总结的面积公式计算平行四边形的面积
10、回到课件首页,说一下那块地皮的底和高,引导学生想想根据什么列式?
11、完成后让学生看书第65页例1
12、测测自己准备的平行四边形量一量它的底和高各是多少厘米?再求出面
积。
三、巩固、练习
略
四、作业
五、。