粒子群优化算法详细易懂很多例子
- 格式:pptx
- 大小:2.23 MB
- 文档页数:49
粒⼦群优化算法粒⼦群优化算法属于群智能(swarm intelligence)优化算法。
群智能分两种,⼀种是粒群优化,另⼀种是蚁群优化。
群智能概念假设你和你的朋友正在寻宝,每个⼈有个探测器,这个探测器可以知道宝藏到探测器的距离。
你们⼀群⼈在找,每个⼈都可以把信息共享出去,就跟打dota时你可以有你队友的视野,你可以知道其他所有⼈距离宝藏的距离,这样,你看谁离宝藏最近,就向谁靠近,这样会使你发现宝藏的机会变⼤,⽽且,这种⽅法⽐你单⼈找要快的多。
这是⼀个群⾏为(swarm behavior)的简单实例,群中各个体交互作⽤,使⽤⼀个⽐单⼀个体更有效的⽅法求解全局⽬标。
可以把群(swarm)定义为某种交互作⽤的组织或Agent之结构集合,在群智能计算研究中,群的个体组织包括蚂蚁,⽩蚁,蜜蜂,黄蜂,鱼群,鸟群等。
在这些群体中,个体在结构上是很简单的,⽽它们的集体⾏为却可能变得相当复杂。
研究⼈员发现,蚂蚁在鸟巢和⾷物之间的运输路线,不管⼀开始多随机,最后蚂蚁总能找到⼀条最短路径。
粒群优化概念粒群优化(particle swarm optimization,PSO)算法是⼀种基于群体搜索的算法,它建⽴在模拟鸟群社会的基础上。
粒群概念的最初含义是通过图形来模拟鸟群优美和不可预测的舞蹈动作,发现鸟群⽀配同步飞⾏和以最佳队形突然改变飞⾏⽅向并重新编队的能⼒。
这个概念已经被包含在⼀个简单有效的优化算法中。
在粒群优化中,被称为“粒⼦”(particle)的个体通过超维搜索空间“流动”。
粒⼦在搜索空间中的位置变化是以个体成功地超过其他个体的社会⼼理意向为基础的,因此,群中粒⼦的变化是受其邻近粒⼦(个体)的经验或知识影响的。
⼀个粒⼦的搜索⾏为受到群中其他粒⼦的搜索⾏为的影响。
由此可见,粒群优化是⼀种共⽣合作算法。
算法描述先通过⼀个形象的场景来描述⼀下:5只鸟觅⾷,每个鸟都知道⾃⼰与⾷物的距离,并将此信息与其他鸟共享。
⼀开始,5只鸟分散在不同的地⽅,假设没只鸟每秒钟更新⾃⼰的速度和⽅向,问题是怎么更新呢?每只鸟记下⾃⼰离⾷物最近的位置,称为pbest,pbest0,pbest1,..分别表⽰5只鸟的pbest,从这⾥⾯选⼀个gbest,组⾥最好的。
⾃话粒⼦群算法(超简单实例)简介上次在⾃话遗传算法中提到后期会写两篇关于粒⼦群算法和蚁群算法的博⽂,所以这次给⼤家带来的是我对粒⼦群的⼀些理解,并附带⼀个相当简单的实例去描述这个算法,我会尽⼒通俗易懂的把整个算法描述⼀遍,其实粒⼦群算法的思想也挺简单的,希望我不要反⽽写复杂了,下⾯同样引⽤百度百科的摘要结束简介部分。
粒⼦群优化算法(PSO)是⼀种进化计算技术(evolutionary computation),1995 年由Eberhart 博⼠和kennedy 博⼠提出,源于对鸟群捕⾷的⾏为研究。
该算法最初是受到飞鸟集群活动的规律性启发,进⽽利⽤群体智能建⽴的⼀个简化模型。
粒⼦群算法在对动物集群活动⾏为观察基础上,利⽤群体中的个体对信息的共享使整个群体的运动在问题求解空间中产⽣从⽆序到有序的演化过程,从⽽获得最优解。
基本思想正如简介所描述的那样,粒⼦群算法是模拟群体智能所建⽴起来的⼀种优化算法,像后⾯我向⼤家介绍的蚁群算法也属于这类算法,粒⼦群算法可以⽤鸟类在⼀个空间内随机觅⾷为例,所有的鸟都不知道⾷物具体在哪⾥,但是他们知道⼤概距离多远,最简单有效的⽅法就是搜寻⽬前离⾷物最近的鸟的周围区域。
所以,粒⼦群算法就是把鸟看成⼀个个粒⼦,并且他们拥有位置和速度这两个属性,然后根据⾃⾝已经找到的离⾷物最近的解和参考整个共享于整个集群中找到的最近的解去改变⾃⼰的飞⾏⽅向,最后我们会发现,整个集群⼤致向同⼀个地⽅聚集。
⽽这个地⽅是离⾷物最近的区域,条件好的话就会找到⾷物。
这就是粒⼦群算法,很好理解。
算法描述所以,我们需要⼀个pbest来记录个体搜索到的最优解,⽤gbest来记录整个群体在⼀次迭代中搜索到的最优解。
速度和粒⼦位置的更新公式如下:v[i] = w * v[i] + c1 * rand() * (pbest[i] - present[i]) + c2 * rand() * (gbest - present[i])present[i] = present[i] + v[i]其中v[i]代表第i个粒⼦的速度,w代表惯性权值,c1和c2表⽰学习参数,rand()表⽰在0-1之间的随机数,pbest[i]代表第i个粒⼦搜索到的最优值,gbest代表整个集群搜索到的最优值,present[i]代表第i个粒⼦的当前位置。
粒子群优化算法(1)—粒子群优化算法简介PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。
大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。
这个过程我们转化为一个数学问题。
寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。
该函数的图形如下:当x=0.9350-0.9450,达到最大值y=1.3706。
为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。
下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。
直到最后在y=1.3706这个点停止自己的更新。
这个过程与粒子群算法作为对照如下:这两个点就是粒子群算法中的粒子。
该函数的最大值就是鸟群中的食物。
计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。
更新自己位置的公式就是粒子群算法中的位置速度更新公式。
下面演示一下这个算法运行一次的大概过程:第一次初始化第一次更新位置第二次更新位置第21次更新最后的结果(30次迭代)最后所有的点都集中在最大值的地方。
粒子群优化算法(2)—标准粒子群优化算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。
这个公式就是粒子群算法中的位置速度更新公式。
下面就介绍这个公式是什么。
在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0, 4]最大值。
并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况—x 为一个矢量的情况,比如二维z=2*x1+3*x22的情况。
什么是粒子群优化算法粒子群优化算法(ParticleSwarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。
是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。
通常认为它是群集智能(Swarm intelligence, SI)的一种。
它可以被纳入多主体优化系统(Multiagent OptimizationSystem,MAOS). 是由Eberhart博士和kennedy博士发明.PSO模拟鸟群的捕食行为。
一群鸟在随机搜索食物,在这个区域里只有一块食物。
所有的鸟都不知道食物在那里.但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢.最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO从这种模型中得到启示并用于解决优化问题.PSO中,每个优化问题的解都是搜索空间中的一只鸟。
我们称之为“粒子”。
所有的粒子都有一个由被优化的函数决定的适应值(fitnessva lue),每个粒子还有一个速度决定他们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。
第一个就是粒子本身所找到的最优解,这个解叫做个体极值p Best,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值.[编辑]PSO算法介绍[1]如前所述,PSO模拟鸟群的捕食行为。
设想这样一个场景:一群鸟在随机搜索食物.在这个区域里只有一块食物。
所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域.PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟.我们称之为“粒子”。
粒子群优化算法精讲粒子群优化算法(Particle Swarm Optimization,PSO)是一种启发式优化算法,源自对鸟群觅食行为的观察与模拟。
它通过模拟鸟群中个体通过合作与信息交流来找到最优解的行为,从而在空间中找到最优解。
本文将详细介绍PSO算法的原理、步骤和应用,并提供多个例子以加深理解。
1.粒子群优化算法原理:PSO算法通过模拟鸟群中个体的行为来进行。
每个个体被称为粒子,其在空间中的位置被表示为一个向量,向量的每个维度表示一个参数。
每个粒子都有一个速度向量,表示其在空间中的移动速度。
粒子的位置和速度会根据个体最优和全局最优进行更新。
2.粒子群优化算法步骤:a.初始化粒子群:随机生成一定数量的粒子,初始化其位置和速度。
b. 更新粒子位置和速度:根据当前位置和速度,计算下一时刻的位置和速度。
速度更新公式为 v(t+1) = w * v(t) + c1 * rand( * (pbest - x(t)) + c2 * rand( * (gbest - x(t)),其中w为惯性权重,c1和c2为加速因子,pbest为个体最优,gbest为全局最优,x(t)为当前位置。
c.更新个体最优和全局最优:对于每个粒子,比较其当前位置的适应度和个体最优,更新个体最优。
比较全体粒子的个体最优,更新全局最优。
d.终止条件判断:判断是否满足终止条件,如达到最大迭代次数或适应度达到阈值。
e.返回结果:返回全局最优位置作为最优解。
3.粒子群优化算法应用:PSO算法广泛应用于函数优化、机器学习、图像处理等领域。
下面列举几个具体的例子:a. 函数优化:PSO算法可以用来求解连续函数的最优解,如Rastrigin函数、Ackley函数等。
通过定义适应度函数,将函数优化问题转化为求解适应度最大化或最小化的问题。
b.神经网络训练:PSO算法可以用来训练神经网络的权重和偏置,从而提高神经网络的性能。
通过定义适应度函数,将神经网络训练问题转化为求解适应度最大化或最小化的问题。
粒子群优化算法介绍及matlab程序粒子群优化算法(1)―粒子群优化算法简介PSO算法是模拟一群鸟类觅食的过程。
每只鸟都是粒子群算法中的一个粒子,也就是说,我们需要解决问题的可能解。
在寻找食物的过程中,这些鸟不断改变它们在空中的位置和速度。
你还可以观察到,在寻找食物的过程中,鸟类最初是分散的,然后逐渐聚集成一个群体,从高到低,从左到右,直到它们最终找到食物。
这个过程被转化为一个数学问题。
求[0,4]中函数y=1-cos(3*x)*exp(-x)的最大值。
该函数的图表如下所示:当x=0.9350-0.9450,达到最大值y=1.3706。
为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。
下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。
直到最后在y=1.3706这个点停止自己的更新。
这个过程与粒子群算法作为对照如下:这两点是粒子群优化算法中的粒子。
这个函数的最大值是羊群中的食物。
计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。
位置更新公式是粒子群优化算法中位置和速度的更新公式。
这里演示了一次运行该算法的一般过程:第一次初始化第一次更新位置一第二次更新位置更新21最后的结果(30次迭代)最后,所有点都集中在最大值处。
2粒子群优化算法(2)-标准粒子群优化算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。
这个公式就是粒子群算法中的位置速度更新公式。
下面就介绍这个公式是什么。
在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。
并在[0,4]之间放置了两个随机的点,这些点的坐标假设为x1=1.5,x2=2.5;这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况―x为一个矢量的情况,比如二维z=2*x1+3*x22的情况。
多目标粒子群算法实例多目标粒子群算法(Multi-objective Particle Swarm Optimization,简称MOPSO)是一种用于解决多目标优化问题的智能优化算法。
它基于粒子群算法(Particle Swarm Optimization,简称PSO)并进行了改进,能够在解空间中搜索并找到满足多个目标的最优解。
在本文中,我们将通过一个实例来介绍多目标粒子群算法的应用。
实例背景假设我们要解决一个多目标优化问题,即同时优化两个目标函数:最小化函数f1(x)和最小化函数f2(x),其中x为决策变量。
我们的目标是找到一组解,使得f1和f2都能取得最小值。
多目标粒子群算法步骤1. 初始化参数:- 粒子群中每个粒子的位置和速度;- 搜索空间的上下界限;- 群体的最大迭代次数。
2. 根据当前位置和速度,更新每个粒子的位置和速度。
这一步可参考标准粒子群算法的更新过程。
3. 计算每个粒子的适应度值。
在多目标问题中,适应度值是一个向量,包含每个目标函数的值。
4. 根据适应度值和非支配排序,对粒子群进行排序。
非支配排序可以用来评估粒子是否处于非劣解集合中,即是否有其他解不能同时优化目标函数。
5. 选择非支配解,将其作为当前群体的解集合。
6. 判断是否达到停止条件,如果满足则跳至步骤9;否则,进行下一步。
7. 根据当前解集合,更新每个粒子的个体和全局最优值。
8. 跳至步骤2。
9. 输出最终解集合,作为问题的近似最优解。
实例应用现在我们来应用多目标粒子群算法解决一个具体的问题。
问题描述:我们希望找到一个最优的投资组合,使得同时最小化风险和最大化收益。
我们有若干个金融产品可供投资,每个产品的预期收益率和风险都不同,我们需要选择适当的投资比例。
解决方案:1. 定义决策变量:投资比例向量x = [x1, x2, ..., xn],其中xi表示第i个金融产品的投资比例,0 ≤ xi ≤ 1,∑xi = 1。
2. 定义目标函数:我们的目标是最小化风险和最大化收益,因此可以定义两个目标函数:- f1(x)表示风险,可以通过计算投资组合的方差或标准差来度量;- f2(x)表示收益,可以通过计算投资组合的期望收益率来度量。
举例说明粒子群算法的搜索原理粒子群算法(Particle Swarm Optimization, PSO)是一种进化计算方法,它通过模拟鸟群或鱼群的群体行为实现优化问题的搜索。
粒子群算法由于其简单性和高效性,在解决各种优化问题中得到了广泛应用。
本文将通过举例说明粒子群算法的搜索原理。
粒子群算法的搜索原理基于两个基本概念:粒子和适应度。
每个粒子代表解决方案的一个候选解,并拥有一个速度和位置。
适应度则表示该粒子解决方案的优劣程度。
假设我们要用粒子群算法来优化一个简单的函数,例如$f(x)=x^2$,其中$x$的取值范围在$[-5,5]$之间。
我们可以将每个粒子的位置表示为$x$的值,每个粒子的速度表示为$x$的变化率。
为了简化问题,我们假设粒子的速度范围在$[-1,1]$之间,即每个粒子在每个迭代中最大可以改变一个单位。
首先,我们需要初始化一批粒子。
假设我们初始化10个粒子,它们的位置和速度可以随机选择或者均匀分布在取值范围内。
在每次迭代中,粒子根据其位置和速度更新自己的解决方案。
具体来说,每个粒子根据当前的位置和速度计算下一个位置。
例如,假设粒子i的当前位置为$x_i$,速度为$v_i$,则下一个位置可以计算为$x_i^{'}=x_i+v_i$。
然后,根据新的位置计算粒子的适应度,并与个体最佳适应度比较。
如果粒子的适应度优于其个体最佳适应度(即$f(x_i^{'})<f(x_i)$),则更新个体最佳适应度和个体最佳位置。
否则,粒子保持当前的个体最佳适应度和位置。
接下来,粒子需要根据群体的最佳适应度和位置进行更新。
群体的最佳适应度是所有粒子的个体最佳适应度中的最优解,而群体的最佳位置是对应于最佳适应度的粒子的位置。
粒子根据群体最佳位置与当前位置的差异来调整自己的速度。
这个调整过程可以由以下公式表示:$v_i^{'} = w \cdot v_i + c_1 \cdot r_1 \cdot (p_i - x_i) + c_2\cdot r_2 \cdot (g - x_i)$其中,$v_i^{'}$是粒子的新速度,$w$是惯性权重,$p_i$是粒子的个体最佳位置,$g$是群体最佳位置,$c_1$和$c_2$是加速度常数,$r_1$和$r_2$是在$[0,1]$范围内的随机数。