应急灯电路图及工作原理介绍
- 格式:doc
- 大小:73.50 KB
- 文档页数:2
LED 光源消防应急标志灯电路工作原理LED 光源消防应急标志灯电路
1.工作原理
图1 是实测的该灯内部结构电路。
市电正常时由图中的C1、D1~D4、C2 电容降压整流滤波电路供电。
在C2 上形成直流电压。
经D6 为一字形布排的LED 灯组提供电源。
与此同时,该电压又经过R11、D9 为两节镍镉电池组充电。
若充电中的电池尚未充满。
因其端电压较低而使二极管D9 正极与电池
组的负极之间电压亦偏低,由此使R14、R16 回路上分压低于Q5 管的偏压,于是Q5 截止,C2 上电压经R15 直接加于LED1 管,作为充电状态指示。
另外,C2 上电源在经过R7、R6 为Q3、Q4 应急转换功能电路供电,R7 虽使Q3 得到偏压导通,但由于此时Q4b 极上电位值要高于其e 极,因而Q4 亦处于截止状态。
一旦遇到市电停电时.由于电源电路滤波电解C2 上原储
电压放电的短时过程内,Q3 管仍导通:因此充电电池的电量将立即因Q4 e-b 极以及R10、Q3 c-e 极回路产生的偏流使Q4 的e-c 极导通。
这样,电池电源立即通过Q4 的e-c 极为Q1-Q2 供电。
Ql-Q2 是一简单的自反馈式自激振荡电路,振荡电流通过Ll 并在其两端产生较高的自感应电动势,并再由D7、。
一、ﻩ概述自主设计的 ASIC芯片,主要应用于消防应急与疏散指示照明产品上,符合国标GB 17945-2010.具有应急转换,12 小时定时充电,模拟断电,30 天、360天定时放电,信号加注模拟测试,故障指示、故障报警、电池开路、短路检测,负载光源开路、短路检测,瞬间跳闸延时计时充电等功能.单芯片结构,外围电路简单,无须编程,内置晶振,外部无复位电路,泄放电流低,一个功能按键K1 等特点。
芯片可应用于应急灯、标志灯、吸顶灯、地埋灯、应急日光灯等应急类 LED 光源照明产品上,以及使用镍隔电池的充电产品中。
二、功能描述:1、应急转换功能:在交流电瞬间断电或交流电压低于 187V 时,系统自动转入电池供电状态;2、12小时定时充电功能:在交流电上电后,系统正常状态下,进入对电池充电,主充时间为12小时,12小时过后自动转入辅充(涓流)状态,充电指示红色LED指示灯由亮变灭;3、故障指示功能:当系统出现故障时,黄色LED 指示灯发光,蜂鸣器发出报警声,表示有故障,在不同工作状态下的故障指示如下:灯具正常充电工作状态时故障指示:A、灯源短路(任一负载光源短路):黄色LED指示灯以2Hz频率频率闪烁,蜂鸣器响两声(后续每分钟内向两声),故障排除后回到正常主电工作状态;B、灯源开路(任一负载光源开路):黄色LED指示灯以2Hz频率频率闪烁,蜂鸣器响两声(后续每分钟内鸣响两声),故障排除后回到正常主电工作状态;C、电池短路:黄色LED指示灯以1Hz频率频率闪烁,蜂鸣器响两声(后续每分钟内鸣响两声),故障排除后回到正常主电工作状态;D、电池开路:黄色LED指示灯以1Hz频率频率闪烁,蜂鸣器响两声(后续每分钟内鸣响两声),故障排除后回到正常主电工作状态.灯具在月检/年检时(包括手动、自动和快测的月检/年检)的故障指示:A、灯源短路(任一负载光源短路):退出月检/年检,黄色LED指示灯以2Hz频率闪烁,蜂鸣器响两声(后续每分钟内响两声),故障排除后回到正常主电工作状态。
新国标消防应急灯参考电路原理图-HN1203一、概述自主设计的 ASIC 芯片,主要应用于消防应急与疏散指示照明产品上,符合国标GB17945-2019。
具有应急转换,12 小时定时充电,模拟断电,30 天、360 天定时放电,信号加注模拟测试,故障指示、故障报警、电池开路、短路检测,负载光源开路、短路检测,瞬间跳闸延时计时充电等功能。
单芯片结构,外围电路简单,无须编程,内置晶振,外部无复位电路,泄放电流低,一个功能按键 K1 等特点。
芯片可应用于应急灯、标志灯、吸顶灯、地埋灯、应急日光灯等应急类 LED 光源照明产品上,以及使用镍隔电池的充电产品中。
二、功能描述:1、应急转换功能:在交流电瞬间断电或交流电压低于 187V 时,系统自动转入电池供电状态;2、12 小时定时充电功能:在交流电上电后,系统正常状态下,进入对电池充电,主充时间为 12 小时,12 小时过后自动转入辅充(涓流)状态,充电指示红色 LED 指示灯3、故障指示功能:当系统出现故障时,黄色 LED 指示灯发光,蜂鸣器发出报警声,表示有故障,在不同工作状态下的故障指示如下:灯具正常充电工作状态时故障指示:由亮变灭;A、灯源短路(任一负载光源短路):黄色 LED 指示灯以 2Hz 频率频率闪烁,蜂鸣器响两声(后续每分钟内向两声),故障排除后回到正常主电工作状态;B、灯源开路(任一负载光源开路):黄色 LED 指示灯以 2Hz 频率频率闪烁,蜂鸣器响两声(后续每分钟内鸣响两声),故障排除后回到正常主电工作状态;C、电池短路:黄色 LED 指示灯以 1Hz 频率频率闪烁,蜂鸣器响两声(后续每分钟内鸣响两声),故障排除后回到正常主电工作状态;D、电池开路:黄色 LED 指示灯以1Hz 频率频率闪烁,蜂鸣器响两声(后续每分钟内鸣响两声),故障排除后回到正常主电工作状态。
灯具在月检/年检时(包括手动、自动和快测的月检/年检)的故障指示:A、灯源短路(任一负载光源短路):退出月检/年检,黄色 LED 指示灯以 2Hz 频率闪烁,蜂鸣器响两声(后续每分钟内响两声),故障排除后回到正常主电工作状态。
消防应急标志灯电路原理及维修方法EPS应急电源网 2009-10-23 10:21:28 作者:网络来源:中电网文字大小:[大][中][小]消防应急疏散标志灯上标有“安全出口”和“EXIT”字样,还有人形跑动和箭头指示图案。
一旦发生火灾,导致突然断电将使照明系统瘫痪,然而此刻标志灯却是亮的,建筑物内人员可按标志灯的指引找到安全出口.迅速逃离现场,以免造成重大人员伤亡事故。
本文以LAT-380型标志灯为例,介绍其电路工作原理及测试与维修方法,供参考。
一、电路工作原理1 .标志灯正常状态显示及后备电池充电电路正常状态显示及充电电路如图 1 所示。
220V 交流电源 L 线经 C1 降压、D1-D4 整流,再经 R3 、 C2、ZD1 平滑、限压形成比较稳定的 14 . 5V 直流电压。
一路经 R5 、 D5 给标志灯背光管 ( 高亮度绿色 LED1、LED2 、 IJED3 、LED4 四管串联 ) 供电发光显示。
同时该电压又经 R7 加到IC1⑥脚和⑦脚。
另一路直接加到V1 发射极,又经 R5 、 R6 加到 V1 基极。
第三路经 R4 限流并降压为 7 . 04V。
该电压在电路板上代号为“ A”, A 电压从主板上经导线加到副板上,在副板上 A 电压经 R10 、 LED5( 红色 ) 、LED6( 绿色 ) 变为“ B”电压,充电时 LED5 及 LED6 亮。
在 A 、 B 电压之间并联试验开关 SW1 和电阻R11 。
B电压又经导线从副板回到主板,给后备电池 BAT1 进行充电。
B 电压将随着 BAT1 电压的变化而变化。
2 .由正常状态到应急状态自动转换电路自动转换及应急状态工作电路如图 2 所示。
由 V1 和 R7 组成了自动转换电路。
正常状态 V1 饱和导通.集电极输出 14.20V ,使IC1 ⑤脚为高电平。
禁止 IC1 输出,也就是在正常状态只允许对 BAT1 充电,而不允许BAT1放电。
四款消防应急灯电路原理及维修
消防应急灯广泛用于公共场所的走廊、消防通道内。
现在各厂矿企业、大型超市、医院学校等都安装了这种应急灯。
市场上众多的消防应急灯具是由消防公安及安监部门监制的产品.品种繁多,但功能基本一致。
当市电停电时,消防应急灯自动点亮,来电时自动熄灭。
消防应急灯作为一种备用照明设备,在灯具内装有停电时提供电源的蓄电池G(或称电瓶)。
由于应急灯长时间与市电并联在一起工作,所以容易出现故障。
因属于专用产品.大多数都不提供电路图,为便于维修,笔者剖析了四款应急灯,画出了电路图见图1~图4所示,供参考。
图1所示的应急灯,是一款最简单的应急灯。
当有市电时.通过变压器B降压、整流、滤波.此时6V的直流继电吸合,常开触点闭合,使整流后的直流电通过R1降压向电瓶充电,LED作电源指示灯。
当市电停电时,6V 的继电器失电.常开点断开,接通常闭点,应急灯泡ZD接到电瓶端.得电发光起到应急照明作用。
市电恢复时.回复到上述过程。
常见故障:(1)电瓶长期充电,电液干枯,过早损坏。
(2)变压器长期通电过热烧坏。
(3)最常见的是继电器线圈长期通电烧坏或其接点烧蚀。
这种灯较简易价格低.然而故障也出现得多。
图2、图3是较图1有所改进的电路,用晶体管作为无触点开关。
有市电。
应急灯电路图及应急灯原理汇总(图⽂) 在公共设施中都会有应急灯,那么你知道应急灯电路图是怎么样的呢?还有应急灯原理有哪些?想必是电⼯的朋友的会多多少少的了解些,但或许不是很全⾯;下⾯世界⼯⼚⼩编就和⼤家⼀起聊聊应急灯电路图,以及应急灯原理是什么。
如下图为应急灯电路图。
电路由两节5号可充电电池和电⼦开关等元件组成。
当开关SB闭合时,市电220V经电容C1降压和⼆极管VD1~VD4整流后,经⼆极管VD15和开关SB给电池E 充电,充电电流约为30mA。
稳压⼆极管ZD1稳定电压值为3.5V。
由于ZD1为3.5V,VD5的导通压降为0.7V,所以电池E最多充到2.8~3.3V,故长期充电也不会因过充造成电池损坏。
应急灯电路图应急灯电路图.jpg 应急灯原理详解: 1、电池充电电路 外电源经Q2,Q6,R8,D10对电池进⾏恒流充电。
当有外电源供电时,充电电流经R8,D10向电池充电,且使充电指⽰灯D12点亮。
2、灯控制电路 由Q3,仍、Q5、Q7和键K,G构成,在⽆市电时,按⼀下K(开)键,Q5饱和导通,Q5的集电极电流通过R12使Q7维持导通;D11反向击穿⼯作在稳压状态,Q5的集电极电压给Q3,Q4提供偏置使其导通,点亮L1、L2。
当按⼀下G(关)键时,Q7截⽌,撤除了Q5导通条件,灯关闭。
当有市电供电时,外电源经D9使D7反向截⽌,Q5⽆法导通,键K和G都不能控制灯Ll,L2的开和关。
停电后⼆极管D7负极电位变为零,使其瞬间正向导通,Q5饱和导通,构成点灯电路条件,L1、L2点亮。
来⼀电后D7负极电位变⾼⼜反向截⽌,Q5截⽌,灯灭(起到⾃动控制的作⽤)。
点灯控制电路中D7、Q7通过R6⼯作在临界状态,开关键K,G只起到触发作⽤。
3、试验电路 当按住试验按键S不放时,Ql截⽌,D7负极电位变低⽽正偏导通,使Q5导通满⾜点灯条件,使L1、L2点亮。
松开S键灯随即熄灭。
试验电路的作⽤是测试点灯电路是否芷常。
自动应急灯本例介绍的自动应急灯,在白天或夜晚有灯光时不工作,当夜晚关灯后或停电时能自动点亮,延时一段时间后能自动熄灭。
一、电路工作原理电路原理如下图所示。
图自动应急灯电路图该自动应急灯电路由光控灯电路、电子开关电路和延时照明电路组成。
在白天或晚上有灯光时,光敏二极管VLS 受光照射而呈低阻状态,VT 截止,IC 内部的电子开关因⑤脚电压为0V而处于断开状态,EL 不亮。
此时整机的耗电极低。
当夜晚光线由强逐渐变弱时,VLS的内阻也开始缓慢的增大,VT 由截止转入导通状态,R2 上的电压也逐渐增大,但由于C1的隔直流作用,此缓慢变化的电压仍不能使IC 的⑤脚电压高于1.6V,故EL 仍不会点亮。
若晚上关灯或停电时,光线突然变得很弱,则VLS 呈高阻状态,VT 迅速饱和导通,在R2 上产生较大的电压降。
由于C1 上电压不能突变,故在IC 的⑤脚上产生一个大于1.6V的触发电压,使IC 内部的电子开关接通,EL 通电点亮。
与此同时,+4.8V 电压通过R3、VD1和IC 对C2 充电,以保证即使VT 截止,IC 的⑤脚仍会有1.6V 以上的电压,IC 内部的电子开关仍维持接通状态,EL 仍维持点亮。
随着C2 的充电,IC 的⑤脚电压逐渐降低,当该电压低于1.6V 时,IC 内部的电子开关关断,EL 熄灭,C2 通过R5、EL、R4 和VD2 放电,为下次工作做准备。
若将S 接通,该应急灯可用于停电时的连续照明。
二、元器件选择及调试IC 选用TWH8778 型电子开关集成电路,VT 选用9015 或8550 型硅PNP 晶体管;VLS选用2DU 系列的光敏二极管;VD1 和VD2 均选用IN4007 或IN4148 型整流二极管。
C1 和C2 选用耐压10V 以上铝电解电容,R1~R4 选用普通1/8 或1/4W 金属膜电阻器,R5 选用1W的金属膜电阻器,EL 选用3.8V、0.3A 的手电筒用小电珠,S 选用小型拨动式开关,GB 用电池供电。
6V供电应急灯电路及工作原理
市面上出现的6V电瓶供电的应急灯,随机配的充电器过于简单,长时间工作发热严重、易烧毁。
充电时还容易造成电瓶过充,引起电解液过早干涸而缩短电瓶寿命。
针对这—缺点,笔者将其改成自动充电器,经半年多使用,效果良好。
应急灯电路及工作原理:电路如上图所示,原理简述比为T1基极提供基准电压,继电器J实现开关K自锁和自动断电,当接上电瓶后,按动K,电源指示灯L点亮,同时J得电吸合,K被其触点J—0自锁,充电开始,此时由于电瓶欠电,T1发射极电压低于(7.5V 0.65V),T1截止,T2也截止,它们对T3无影响。
当电瓶电压充至7.5V时,Tl 发射极电压为7.5V 0.65V,T1饱和导通,T2也导通,T3基极电压下降而截止,J失电释放,J—0断开,充电停止。
指示灯L熄灭。
通过调节W还可对不同电压的电池充电。
电路中的二极管D是隔离二极管,可防止电瓶反向放电。
元件选择与制作:
R为充电限流电阻,可在5~10欧间选取,其它元件无特殊要求。
所有元件可搭接在一塑料盒上,Ic可不用散热器。
调试短接K,调W 使IC输出电压为电瓶充满电压7.5V即可。
LAT型消防应急照明灯的电路原理与故障维修分析本文介绍的LAT型消防应急照明灯安装在一般工业与民用建筑中,以便停电时,为人员的疏散或消防作业提供应急性的照明,同时该灯具还具有"自检"和"自保"功能,是一款全自动型消防应急照明灯具。
灯具的外形如图1所示。
内部电路如图2所示。
图1 灯具的外形图图2 内部电路图一、电路工作原理分析1.正常状态的自动充电电路市电AC220V经C4、R16降压,由D1~D4整流、C2滤波,形成5.5-5.9V直流充电电压(与电池电压高低有关系),经R13限流、D8隔离,加到镍镉电池组正极,进行自动充电。
在充电时,由于R6和R3分压为Q2的b极提供偏压偏低,Q2截止,此时红色充电指示灯LED3经Rl0可获得1.79V电压而发光,表示电池处于充电状态。
当电池充满时(实测约为4,37V),Q2的b极偏压增高并使Q2导通,c极电压降低,LED3熄灭,表示充满电后自动转入涓流浮充状态。
2.应急状态的自动放电电路在充电过程中,充电电压经R15加到D6正极,在D6和D7的负极形成4.53V电压,该电压将D7封锁住,使D7无法导通,导致Q4的b极无偏置,使Q4截止。
正在充电时,即充电灯亮时,Q4的c极电压为一0.1V;当电池充满时,即充电灯灭时,电压变为0.03V,Q5都因b极偏压太低而截止,此时c极为高电位,电压在4.27~5.91V之间变化,所以在充电的全过程中,Lal、La2聚光灯不会亮。
当突然停电时,充电电压立刻消失,但在充电过程中,充电电压经R15、R1、D5向Cl充电,并在Q3的b极形成的0.73V电压不会立刻消失。
另一方面,当充电电压消失后,封锁在D7负极上的4.53V电压也随之消失,即D6对D7的封锁被解除,电池电压立刻经。
应急照明灯电路图原理
应急照明灯的电路工作原理见图。
停电是经常性的事情,但有的场合则不允许停电(如正在进行手术等)。
用LSE设计的电路简单,实现全自动化。
当有220V交流电时,照明灯H1点亮,同时LSE的④脚为高电平输出,三极管VT 截止,继电器J处于释放状态,故直流灯H2不亮。
一旦电网停电,H1熄灭,LSE的④脚输出低电平,此时三极管VT导通,继电器J吸合,接通了照明灯H2的电源,H2自动点亮,两灯之间的转换几乎无间断。
应急照明灯还是是防火安全措施中要求的一种重要产品。
当出现紧急情况,如地震、失火或电路故障引起电源突然中断,所有光源都已停止工作,此时,它必须立即提供可靠的照明,并指示人流疏散的方向和紧急出口的位置,以确保滞留在黑暗中的人们顺利地撤离。
应急照明灯电路图。
应急灯电路板原理图
应急灯电路板原理图
制作时,X1选用次级为6V/200mA的电源变压器。
J1、J2选用线圈电压为6V的继电器。
其他器件选择可参考图示,无特殊要求。
电路调试很简单,接通主电源电时,J2应该动作,LED1为电源指示。
然后测量IC1的3脚电压是否为6.9V左右,之后可用一个外接电源接入IC2脚来调整充电保护电路。
当输入电压大于6.9V时,J1应该动作断开。
短开S1,用外接电源接入应急灯电路,测量IC2的输出是否50Hz,然后可测量X2输出部分电压是否为220V左右既可。
LED3为停电/应急灯工作指示。
这里介绍一个简单、实用的应急灯的制作。
它可以在停电时自动实现切换供电。
正常供电时,自动对后备蓄电池充电,并有充电保护功能。
其电路见图1。
下面介绍其工作原理。
在供电正常时,J2得电吸合,其动触点与“N/O(常开点)”接通,后备蓄电池正端与IC1的反相端相联。
IC1(LM308)和D5、D6组成电压比较器,参考电压由D5、D6决定。
这里用一个硅二极管(D5)和一个6.2V的稳压二极管(D6)组成6.9V的参考电压,对充电压电压进行监控。
当IC1 的2脚输入电压(既蓄电池电压)低于6.9V时,IC1的6脚输出高电平,T1导通,J1得电,其动触点与“N/O(常开点)”接通,电源电压通过R2对蓄电池充电,同时LED2点亮为充电指示。
改变R2阻值可调整充电电流。
随着充电时间增加,IC1的2脚电压逐渐增加,当电压大于参考电压6.9V时,IC1。
全自动多用途应急灯原理图F1、F2和GR、R1、R2等作为交流失电且亮光消失时的信号形成电路,F3、F4构成单稳态触发电路,C8050为控制灯亮的电子开关。
LM317等组成稳压电源,交流有电时提供整个电路的工作电压,并给电池浮充电,补充一点:K为测试开关,打到右为测试状态,由灯是否亮及是否足够亮可判断灯及电池是否正常,打到左为正常待命状态。
这是一个应急灯控制电路。
LM317是稳压电路,C8050是灯的电子开关,CD4011是振荡控制电路,MG45是光亮度控制器。
MG45的作用是白天停电灯也不亮,夜晚停电才亮灯,应该是家用型的停电宝。
工作原理:全自动应急灯电路由蓄电池恒压限流浮充回路和光控延时回路两部分组成。
交流电压通过变压器降压,整流滤波后得到18V的直流电压,由D2、R4、12V/1.2Ah的铅酸蓄电池和LM317组成恒压、限流浮充电不间断电源,可以确保蓄电池随时处于充足电状态,12V铅酸蓄电池的浮充电压为14.4V。
LM317接成恒压源,W为精密多圈可调电位器,通过调整W可以使输出端A点输出稳定的15.1V直流电压。
电阻R4可以限制充电电流大小,D2可以防止市电停电后蓄电池反向放电。
R1、R2、C1、D1、F1组成交流电压检测电路,当交流电压正常时B点经过分压后电压为8伏左右,经过F1反相后输出低电平。
当交流电压停电时,因为有D1隔离,所以B点电压迅速跌至0伏,经F1反相后输出高电平。
CD4011BP是COMS型四与非门集成电路,与非门工作的逻辑关系是:只有两个输入端都输入高电平时输出端才输出低电平;只要其中一个输入端输入低电平时就输出高电平。
如果将两个输入端并联成一个输入端那么这个与非门等效成一个非门。
门电路输入特性为:输入电压小于40%电源电压时为输入低电平;输入电压大于60%电源电压时为输入高电平。
输出高电平时输出电压接近正电源电压;输出低电平时输出电压接近0伏。
图中两个与非门F3、F4和C5、R6组成单稳态延时电路,延时时间由C5和R6的数值决定,按照图中的数值延时时间在10分钟左右,当延时电路进入延时单稳态时F4输出低电平,使三极管T 导通,灯泡点亮。
消防应急灯电路图工作原理奇辉GF066型全自动消防应急灯原理与维修消防应急灯被广泛安装于公共场所的走廊、消防通道内,属于消防专用设备。
市场上众多的消防应急灯具都是由消防公安部门监制的产品,品种繁多,但功能基本一致。
当市电停电时,消防应急灯自动点亮,来电时自动熄灭。
消防应急灯作为一种备用照明设备,在灯具内装有停电时提供电源的蓄电池,在有市电供电的情况下给电池充电。
由于长时间与220V交流电源并联在一起工作,所以易出故障。
由于属于专用产品,大多数不提供电路原理图。
附图是根据实物绘测的券枕GF-nC16型全白动消防应急灯电路原理图。
电路由电池充电电路、灯控制电路、电源电路和故障指示电路组成。
照明灯泡是L1、L2(2.5 W/3.6V螺旋式灯泡),电池是3.6V/1800mAh的镍镐可充电电池,在停电时可提供功率为Zx2.5W,照明时间不少于100min o在电路中设有三个轻触自恢复式按键:G(OFF关),K(ON开),S (TEST)试验。
三个不同颜色的状态指示灯,D12(H红色)表示充电,D13(W橙色)表示电路故障,D14(L绿色)表示外电供电。
在外电供电的情况下主供指示灯D14亮,给电池充电时D12亮。
一、工作原理1.灯控制电路由Q3,仍、Q5、Q7和键K, G构成,在无市电时,按一下K(开)键,Q5饱和导通,Q5的集电极电流通过R12使Q7维持导通;D11反向击穿工作在稳压状态,Q5的集电极电压给Q3, Q4提供偏置使其导通,点亮L1、L2。
当按一下G(关)键时,Q7截止,撤除了Q5导通条件,灯关闭。
当有市电供电时,外电源经D9使D7反向截止,Q5无法导通,键K和G都不能控制灯Ll, L2的开和关。
停电后二极管D7负极电位变为零,使其瞬间正向导通,Q5饱和导通,构成点灯电路条件,L1、L2点亮。
来一电后D7负极电位变高又反向截止,Q5截止,灯灭(起到自动控制的作用)。
点灯控制电路中D7、Q7通过R6工作在临界状态,开关键K,G只起到触发作用。
应急台灯的电路图本文介绍的是一种比较简单的带有蓄电池在停电后还能点亮的应急台灯的电路图。
电路图如下:简单介绍一下各部分的功能,只是简单介绍。
这个电路图可分为四个部分,第一个部分也就是右上角灰色区域的部分,这是一个标准的220伏交流电子镇流器,这部分工作原理不详细叙述。
第二部分就是左上角是一个6伏直流电子镇流器,这是个自激震荡电路,原理也不详细叙述。
第三部分是有5伏继电器组成的在低压和高压继电器之间切换的电路。
第四部分就是蓄电池的充电电路。
下面介绍镇流器切换的过程,当台灯插在交流电源上时,不按着照明开关时,220伏通过电容C5,桥D6~D9,D12,给蓄电池充电,并让继电器J1吸合,继电器吸合后就将荧光灯管接到220伏电子镇流器上,这时按下照明开关就会点亮荧光灯。
这时如果按下应急开关则6伏电子镇流器不会工作,因为Q6的基极由于接有D13(D13两端电压差太低,无法击穿)而无法导通,Q4和Q5的基极无法得到偏置电压,从而不会工作。
当没有220伏交流电压时,J1得不到供电,继电器脱开,将6伏电子镇流器接到荧光灯上,这时由于D13的右端没有直流电压,而且通过R9,R10接到蓄电池的负端,从而D13能被击穿,Q6的基极能得到应有的偏置电压,进而能工作点亮荧光灯。
整个充电电路的电流,也就流过J1和R10的电流约等于I=U/Z,Z=1/2fπC,I=220/1447mA=152mA,U R10=0.152X(68//Rj)=0.15X40=6v,所以C6两端的电压大概14V左右。
Q3于外围的R11,R12,D10,D11,LED1,LED2组成蓄电池充电控制及指示电路,Q3,D10,R11组成蓄电池限压电路,蓄电池的电压最高不会超过7.5伏。
R11,R12,LED1组成交流指示电路。
D11,LED2,R11组成蓄电池充满指示电路。
分析过程比较简单可能有些许错误,水平有限望见谅。
应急照明灯原理分析与电路图核心提示:JYD-100消防应急灯采用、700mAh镍氢电池作为备用电源,使用时插头始终插在电源插座上。
有交流电时,外电源给电池充电;停电时,自动转为电池放电状态,将两组高亮度LED灯点亮,其照明时间≥...JYD-100消防应急灯采用、700mAh镍氢电池作为备用电源,使用时插头始终插在电源插座上。
有交流电时,外电源给电池充电;停电时,自动转为电池放电状态,将两组高亮度LED灯点亮,其照明时间≥90分钟。
下图是根据实物绘制的电路。
其工作原理:当交流供电正常时,220V交流电经过变压器降压后,输出8v交流电,然后经D1~D4整流、Cl滤波,输出10V左右直流电压。
该电压经R2、Vl、D6给电池充电。
Vl 基极接有稳压二极管DW,电阻Rl既是Vl的基极偏置电阻,又是DW的限流电阻,使Vl基极电压约为。
这样,充电电压最高约.其充电电流随着电池的电压而变化,电压越低充电电流越大;反之则越小。
在充电状态,V2饱和导通,V3由于D7、R9的作用而截止,V4也截止,LED灯不亮。
当220V交流电源因故停电时,电路中直流10V电压消失,D7正极无电压,由于V2断电前处于饱和导通状态,所以V3立刻由截止转为导通,V4基极电位升高,随之导通,LED 灯亮。
V4导通后,V4集电极为低电平,由于Rl0跨接在V3基极与V4集电极之间,它进一步使V3基极电位下降,维持V3的导通状态,LED灯一直点亮。
绿灯为主电源指示灯,红灯为充电指示灯。
绿灯亮表示220V交流电源、10v直流和Vl电路有电,红灯亮表示电池正在充电,可根据灯的亮度判断充电电流大小。
ON、OFF为LED灯的试验按钮,220V交流电源正常时,可通过这两个按钮打开或关闭LED灯,以测试电路的性能。
检修该应急灯时,可先观察两只指示灯的状态。
交流220V供电正常时,绿色指示灯和电池充电红色指示灯应亮。
如果绿灯不亮,则应检查变压器次级是否有8V交流电压输出,电容c1两端是否有10V直流电压,Vl发射极有无5V左右电压。
6V应急灯制作应急灯电路本文介绍的应急灯,采用6V蓄电池作电源,点亮双U节能灯管,功率只有5W,制作简单、耗电省,可作为停电时家庭应急使用。
工作原理图1是电路原理图。
220V市电经变压器T1降压后,次级输出6V 的交流电,经过二极管VD2~VD5桥式整流后,向蓄电池充电,充电电流约200mA,随着充电的进行,蓄电池的电压不断上升,充电电流将随之减少,直到充满为止。
当打开开关S之后,蓄电池的电压加到集成电路IC等元件上,IC是时基电路,它和外围元件构成矩形波振荡电路,产生约25kHz的矩形波信号、由IC的③ 脚输出。
经电阻R4限流后加到三极管VT的基极上,使三极管交替导通和截止。
这样,通过升压变压器T2上的线圈L1中的电流时通时断,并在线圈L2上感应出高压去点燃节能灯管。
电容C3用于加快灯管的点燃。
元件选择变压器T1选用3W,单6V的小型变压器,集成电路IC用NE555。
三极管VT用MJE13005,β=30。
升压变压器T2用EE25的铁氧化磁芯,初级用0.64mm的漆包线在骨架上绕15匝,次级用0.21mm漆包线绕160匝制成,灯管L用5W 双U节能灯管。
开关S用2×2的小型拨动开关。
蓄电池GB用6V 4AH 的。
VD1用Φ3的红色发光管。
制作和调试按图2制成线路板,并为三极管制作一个铝散热片。
检查焊接元件无误后将变压器T1、线路板和灯管用导线连接起来,先关闭开关S,接上220V的电源,发光管VD1应能发光,用万用表测充电电流应在200mA左右。
打开开关S,灯管应能正常发光。
如不发光,应检查振荡电路工作是否正常,变压器T2 上的线圈接头是否焊接良好。
如能发光,但光线暗,应测T2中线圈L1 的电流是否在700mA左右,如出入太大,可调整电阻R3。
同时,还可以检查灯管是否良好,三极管β值选择是否正确,直到正常发光,并且三极管散热片不烫手。
最后,将变压器、线路板和蓄电池装入塑料外壳中,把灯管装在塑料壳的上方。
消防应急疏散标志灯电路原理及维修辽宁凌丽消防应急疏散标志灯上标有“安全出口”和“ EXIT ”字样,还有人形跑动和箭头指示图案。
一旦发生火灾,导致突然断电将使照明系统瘫痪,然而此刻标志灯却是亮的,建筑物内人员可按标志灯的指引找到安全出口.迅速逃离现场,以免造成重大人员伤亡事故。
本文以LAT-380 型标志灯为例,介绍其电路工作原理及测试与维修方法,供参考。
一、电路工作原理1 .标志灯正常状态显示及后备电池充电电路正常状态显示及充电电路如图 1 所示。
220V 交流电源L 线经C1 降压、D1-D4 整流,再经R3 、C2 、ZD1 平滑、限压形成比较稳定的14 .5V 直流电压。
一路经R5 、D5 给标志灯背光管( 高亮度绿色LED1 、LED2 、IJED3 、LED4 四管串联) 供电发光显示。
同时该电压又经R7 加到IC1 ⑥脚和⑦脚。
另一路直接加到V1 发射极,又经R5 、R6 加到V1 基极。
第三路经R4 限流并降压为7 .04V 。
该电压在电路板上代号为“ A ”,A 电压从主板上经导线加到副板上,在副板上 A 电压经R10 、LED5( 红色) 、LED6( 绿色) 变为“ B ”电压,充电时LED5 及LED6 亮。
在 A 、B 电压之间并联试验开关SW1 和电阻R11 。
B 电压又经导线从副板回到主板,给后备电池BAT1 进行充电。
B 电压将随着BAT1 电压的变化而变化。
2 .由正常状态到应急状态自动转换电路自动转换及应急状态工作电路如图 2 所示。
由V1 和R7 组成了自动转换电路。
正常状态V1 饱和导通.集电极输出14 .20V ,使IC1 ⑤脚为高电平。
禁止IC1 输出,也就是在正常状态只允许对BAT1 充电,而不允许BAT1 放电。
当电网断电时.V1 集电极电压迅速降为0 .04V 。
对IC1 解禁,允许IC1 输出。
正常状态12 .87V 工作电压经R7 降为6 .10V 加到IC1 ⑥脚,作为IC1 工作电压,使IC1 内部振荡器起振。
应急灯电路图与工作原理
这里介绍一个简单、实用的应急灯的制作。
它可以在停电时自动实现切换供电。
正常供电时,自动对后备蓄电池充电,并有充电保护功能。
其电路见图1。
下面介绍其工作原理。
在供电正常时,J2得电吸合,其动触点与“N/O(常开点)”接通,后备蓄电池正端与IC1的反相端相联。
IC1(LM308)和D5、D6组成电压比较器,参考电压由D5、D6决定。
这里用一个硅二极管(D5)和一个6.2V的稳压二极管(D6)组成6.9V的参考电压,对充电压电压进行监控。
当IC1的2脚输入电压(既蓄电池电压)低于6.9V时,IC1的6脚输出高电平,T1导通,J1得电,其动触点与“N/O(常开点)”接通,电源电压通过R2对蓄电池充电,同时LED2点亮为充电指示。
改变R2阻值可调整充电电流。
随着充电时间增加,IC1的2脚电压逐渐增加,当电压大于参考电压6.9V时,IC1的6脚输出低电平,T1截止,J1失电,断开充电回路,实现自动充电保护功能。
当停电时,J2失去电源,其动触点与“N/C(常闭点)”接通,蓄电池通过S1对应急灯电路供电,实现停电时自动切换功能。
S1在这里用来手动切断应急灯电路部分。
由IC2(NE555)、T2、T3、T4、X2等组成应急灯电路。
IC2组成50Hz信号发生器,由IC2的3脚输出50Hz信号,经T2反相、放大分别驱动由T3、T4、X2组成的推挽电路,在X2的高压侧感应出220V 的交流电,使日光灯管点亮。
这里的X2可以直接使用次级为4.5伏、初级为220V的成品电源变压器,功率试日光灯管的功率而定。
使用时,注意T3、T4应加散热器。
制作时,X1选用次级为6V/200mA的电源变压器。
J1、J2选用线圈电压为6V的继电器。
其他器件选择可参考图示,无特殊要求。
电路调试很简单,接通主电源电时,J2应该动作,LED1为电源指示。
然后测量IC1的3脚电压是否为6.9V左右,之后可用一个外接电源接入IC2脚来调整充电保护电路。
当输入电压大于6.9V时,J1应该动作断开。
短开S1,用外接电源接入应急灯电路,测量IC2的输出是否50Hz,然后可测量X2输出部分电压是否为220V左右既可。
LED3为停电/应急灯工作指示。