高三数学一轮复习资料 第十编 计数原理 10.1 两个基本计数原理(教案)理
- 格式:doc
- 大小:95.00 KB
- 文档页数:5
§1.1两个基本计数原理教学目标:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学重点:分类计数原理与分步计数原理教学过程一.知识要点:1、分类计数原理(加法原理):完成一件事有n 类方式,由第1种方法中有1m 种不同的方法可以完成,由第2种方法有2m 种不同的方法可以完成,……由第n k 种途径有n m 种方法可以完成。
那么,完成这件事共有=N 种不同的方法。
2、分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……做第 n 步有n m 种不同的方法,那么完成这件事共有=N 种不同的方法。
三、典例分析:例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?例2.为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码。
在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个? (2)密码为4位,每位是0到9这10个数字中的一个,或是从A 到Z 这26个英文字母中的1个。
这样的密码共有多少个?(3)密码为4到6位,每位均为0到9这10个数字中的一个。
这样的密码共有多少个?例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?例4.用4种不同颜色给如左图所示的地图上色,要求相邻两块涂不同的颜色,共有多少种不同的涂法?变式:1、如果按照①、②、④、③的次序填涂,怎样解决这个问题?2、如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为( )A. 180B. 160C. 96D. 60 若变为图二,图三呢?练习:1、乘积))()((54321321321c c c c c b b b a a a ++++++++展开后共有多少项?2、(2006,北京,5分)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有 ( )A .36个 B.24个 C.18个 D.6个4、(2005,北京春(文),5分)从0,1,2,3这四个数中选三个不同的数作为函数c bx ax x f ++=2)(的系数,可组成不同的一次函数共有 个,不同的二次函数共有 个。
第一章计数原理第1节两个基本计数原理教材分析本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法.学情分析高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。
但在合作交流意识欠缺,有待加强. 目标分析⑴知识与技能①掌握分类计数原理与分步计数原理的内容②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题.⑵过程与方法①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题⑶情感、态度、价值观树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣.教学重难点分析教学重点:分类计数原理与分步计数原理的掌握教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题.教法、学法分析教法分析:①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识.教学过程一、创设情境:对于分类计数原理设计如下情境(看多媒体):该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是:第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫.第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法?设计的意图是让学生更清楚的认识到总方法数是各类方法数之和.第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律?接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.第四步由教师板书分类计数原理(加法原理)并说明由于总方法数是各类方法数之和,树立学生平时学习生活中的讲道理意识.在分类计数原理中设计如下问题情境,问题2与问题1的背景一样:都是乘车方法的计数问题.对于问题2的处理办法是:第一步由学生自主尝试分析解答,但该问题并没有问题1般简单所以就有了第二步教师电脑屏幕显示分析及解题过程,利用多媒体显示动画,辅助分析,展示不同的走法,帮助学生更直观的解决问题,然后由感性进入理性,这也符合一般的认知规律.第三步问题引申将问题引申为若从兰州到天水新增一辆4号汽车,则有多少种乘车方法?设计的意图是:通过引申让学生更加清楚的认识到总方法数是各步方法数相乘.第四步提出问题:你能否对照分类计数原理,归纳概括出问题2蕴含的计数规律,并尝试命名,这样设计一可指导学生通过类比给出分步计数原理,渗透类比思想第二也可在自主探究中掌握本节重点,当然重点的突破也为难点突破打下了知识基础第五部教师板书:分步计数原理(乘法原理),由学生说明其称为乘法原理的理由.分步计数原理(乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.二、建构数学在总结出两个计数原理的基础上让学生进行如下三个问题的探究,初步突破难点.探究1:对比两计数原理,指出相同点与不同点设计探究1的意图是通过自主探究合作探究,加深两个定理的理解并且在两个定理内容的比较中提高学生阅读数学的能力.探究方式:分组讨论(合作交流,加深理解)探究结果:共同点是:研究对象相同,它们都是研究完成一件事情,共有多少种不同的方法.不同点是:它们研究完成一件事情的方式不同,分类计数原理是“分类完成”,分步计数原理是“分步完成”由于学生的认识水平有限,在这里只要求认识到分类计数原理是“分类完成”,分步计数原理是“分步完成”.探究2:何时用分类计数原理,何时用分步计数原理探究方式:自主探究,代表发言,共同总结.探究结果:若完成一件事情有n类方法,则用分类计数原理.若完成一件事情有n个步骤,则用分步计数原理.设计意图:在探究1基础上进一步突破重难点,培养学生分析问题的能力.探究3:用两个计数原理解决计数问题的思维步骤探究方式:分组讨论,合作探究,代表发言,共同总结.探究结果:1、明确要完成什么事2、判断分类还是分步3、计算总方法数(一)两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.(二)例题分析例1 某学校食堂备有5种素菜、3种荤菜、2种汤。
第十章计数原理、概率、随机变量及其分布第1讲两个计数原理课标要求命题点五年考情命题分析预测了解分类加法计数原理、分步乘法计数原理及其意义.分类加法计数原理2023新高考卷ⅠT13两个计数原理是解决排列、组合问题的基本方法,也是与实际联系密切的部分,既能单独命题,也常与排列组合问题、概率计算问题综合命题,题型以小题为主,难度不大.在2025年高考的复习备考中要注意两个计数原理的区别并能灵活应用.分步乘法计数原理2023全国卷乙T7;2022新高考卷ⅡT5;2021全国卷乙T6;2020新高考卷ⅠT3;2020全国卷ⅡT14两个计数原理的综合应用学生用书P2241.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N =①m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =②m ×n 种不同的方法.辨析比较两个计数原理的联系与区别原理分类加法计数原理分步乘法计数原理联系都是对完成一件事的方法种数而言.区别一每类方案中的每一种方法都能独立完成这件事.各个步骤都完成才算完成这件事(每步中的每一种方法都不能独立完成这件事).区别二各类方法之间是相互独立的,既不能重复也不能遗漏.各步之间是相互依存的,缺一不可.1.[多选]下列说法正确的是(BD )A.在分类加法计数原理中,两类不同方案中的方法可以相同B.在分类加法计数原理中,每类方案中的方法都能直接完成这件事C.在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事D.从甲地经丙地到乙地是分步问题2.[教材改编]已知某公园有4个门,从一个门进,另一个门出,则不同的进出公园的方式有12种.解析将4个门分别编号为1,2,3,4,从1号门进入后,有3种出门的方式,同理,从2,3,4号门进入,也各有3种出门的方式,故不同的进出公园的方式共有3×4=12(种).3.[易错题]某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有243种.解析因为每封电子邮件有3种不同的发送方法,所以要发5封电子邮件,不同的发送方法有3×3×3×3×3=243(种).4.[教材改编]书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架中任取1本书,则不同的取法种数为9.解析分三类:第一类,从第1层取一本书,有4种取法;第二类,从第2层取一本书,有3种取法;第三类,从第3层取一本书,有2种取法.共有取法4+3+2=9(种).学生用书P224命题点1分类加法计数原理例1(1)我们把各位数字之和为6的四位数称为“六合数”(如2022是“六合数”),则首位为2的“六合数”共有(B)A.18个B.15个C.12个D.9个解析依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2,2,0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计3+6+3+3=15(个).(2)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为13.解析当a=0时,b的值可以是-1,0,1,2,(a,b)的个数为4.当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a=2,则b的值可以是-1,0,(a,b)的个数为2.由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.方法技巧分类加法计数原理的应用思路(1)根据题目中的关键词、关键元素和关键位置等确定恰当的分类标准,分类标准要明确、统一;(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.训练1集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是(B)A.9 B.14 C.15 D.21解析当x=2时,x≠y,y可从3,4,5,6,7,8,9中取,有7种方法.当x≠2时,由P⊆Q,得x=y,x可从3,4,5,6,7,8,9中取,有7种方法.综上,满足条件的点共有7+7=14(个).命题点2分步乘法计数原理例2(1)[2023全国卷乙]甲、乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有(C)A.30种B.60种C.120种D.240种解析甲、乙二人先选1种相同的课外读物,有6种情况,再从剩下的5种课外读物中各自选1本不同的读物,有5×4=20(种)情况,由分步乘法计数原理可得,共有6×20=120(种)选法,故选C.(2)[多选]有4位同学报名参加三个不同的社团,则下列说法正确的是(AC)A.每位同学限报其中一个社团,则不同的报名方法共有34种B.每位同学限报其中一个社团,则不同的报名方法共有43种C.每个社团限报一个人,则不同的报名方法共有24种D.每个社团限报一个人,则不同的报名方法共有33种解析对于A选项,第1个同学有3种报名方法,第2个同学有3种报名方法,后面的2个同学也有3种报名方法,根据分步乘法计数原理共有34种报名方法,A正确,B错误;对于C选项,每个社团限报一个人,则第1个社团有4种选择,第2个社团有3种选择,第3个社团有2种选择,根据分步乘法计数原理,共有4×3×2=24(种)选择,C正确,D错误.故选AC.方法技巧分步乘法计数原理的应用思路根据事件发生的过程合理分步,分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.训练2[多选]某校高二年级安排甲、乙、丙三名同学到A,B,C,D,E五个社区进行暑期社会实践活动,每名同学只能选择一个社区进行实践活动,且多名同学可以选择同一个社区进行实践活动,则下列说法正确的有(AC)A.如果社区A必须有同学选择,则不同的安排方法有61种B.如果同学甲必须选择社区A,则不同的安排方法有50种C.如果三名同学选择的社区各不相同,则不同的安排方法共有60种D.如果甲、乙两名同学必须在同一个社区,则不同的安排方法共有20种解析对于A,如果社区A必须有同学选择,则不同的安排方法有53-43=61(种),故A正确;对于B,如果同学甲必须选择社区A,则不同的安排方法有52=25(种),故B 错误;对于C,如果三名同学选择的社区各不相同,则不同的安排方法共有5×4×3=60(种),故C正确;对于D,甲、乙两名同学必须在同一个社区,第一步,将甲、乙视作一个整体,第二步,两个整体挑选社区,则不同的安排方法共有52=25(种),故D错误.故选AC.命题点3两个计数原理的综合应用例3(1)《周髀算经》是中国最古老的天文学和数学著作,其中记载了“勾股圆方图”(如图),用以证明勾股定理.现提供4种不同颜色给图中5个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则不同的涂色方法种数为(C)A.36B.48C.72D.96解析解法一根据题意得,涂色分2步进行:①对于区域A,B,E,三个区域两两相邻,有43=24(种)涂色方法;(区域E位于中心位置,其他4个区域均与区域E相邻,故先考虑两两相邻的区域A,B,E的涂色方法,再研究余下2个区域的涂色方法)②对于区域C,D,若区域C与区域A颜色相同,则区域D有2种涂色方法,若区域C与区域A颜色不同,当A,B,E涂色确定时,则区域C和区域D涂色方法确定,只有1种,由分类加法计数原理可知区域C,D有2+1=3(种)涂色方法.由分步乘法计数原理得,共有24×3=72(种)不同的涂色方法.故选C.解法二可分两种情况:①区域A,C不同色,先涂区域A有4种,区域C有3种,区域E有2种,区域B,D各有1种,有4×3×2=24(种)涂法.②区域A,C同色,先涂区域A有4种,区域E有3种,区域C有1种,区域B,D各有2种,有4×3×2×2=48(种)涂法.故共有24+48=72(种)涂色方法.(2)由0,1,2,3,4,5,6这7个数字可以组成420个无重复数字的四位偶数.解析要完成的一件事为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中的四个数字不重复.因此应先分类,再分步.第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,百位数字不能取与个位、千位数字重复的数字,十位数字不能取与个位、百位、千位数字重复的数字.根据分步乘法计数原理,不同的取法种数为3×4×5×4=240.第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除千位数字外的任意一个偶数数字,百位数字不能取与个位、千位数字重复的数字,十位数字不能取与个位、百位、千位数字重复的数字.根据分步乘法计数原理,不同的取法种数为3×3×5×4=180.根据分类加法计数原理,可以组成无重复数字的四位偶数的个数为240+180=420.方法技巧1.利用两个计数原理解决问题的一般步骤2.涂色问题常用的两种方法训练3(1)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是(D)A.48B.18C.24D.36解析第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(2)甲与其四位同事各有一辆汽车,甲的车牌尾号为9,其四位同事的车牌尾号分别是0,2,1,5.为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾号为奇数的车通行,偶数日车牌尾号为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为(B)A.64B.80C.96D.120解析5日至9日,有3个奇数日,2个偶数日.第一步,安排偶数日出行,每天都有2种选择,不同的用车方案共有2×2=4(种).第二步,安排奇数日出行,分两类讨论:第一类,选1天安排甲的车,不同的用车方案共有3×2×2=12(种);第二类,不安排甲的车,每天都有2种选择,不同的用车方案共有2×2×2=8(种).综上,不同的用车方案种数为4×(12+8)=80,故选B.1.[命题点1]设集合I={1,2,3,4},A与B是I的子集,若A∩B={1,2},则称(A,B)为一个“理想配集”.若将(A,B)与(B,A)看成不同的“理想配集”,则符合此条件的“理想配集”有9个.解析对子集A分类讨论:当A是{1,2}时,B可以为{1,2,3,4},{1,2,4},{1,2,3},{1,2},共4种情况;当A是{1,2,3}时,B可以为{1,2,4},{1,2},共2种情况;当A是{1,2,4}时,B可以为{1,2,3},{1,2},共2种情况;当A是{1,2,3,4}时,B为{1,2},有1种情况.根据分类加法计数原理可知,共有4+2+2+1=9(种)结果,即符合此条件的“理想配集”有9个.2.[命题点2]已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是(C)A.12B.8C.6D.4解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此可表示第一、二象限内不同点的个数是3×2=6.3.[命题点3]如果一个三位正整数“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为240.解析若a2=2,则百位数字只能选1,个位数字可选1或0,凸数为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则凸数有2×3=6(个).若a2=4,则凸数有3×4=12(个),……,若a2=9,则凸数有8×9=72(个).所以凸数共有2+6+12+20+30+42+56+72=240(个).4.[命题点3/2023哈尔滨六中检测]涂色能锻炼手眼协调能力,更能提高审美能力.现有四种不同的颜色:湖蓝色、米白色、橄榄绿、薄荷绿,欲给图中的小房子中的四个区域涂色,要求相邻区域不涂同一颜色,且橄榄绿与薄荷绿也不涂在相邻的区域内,则共有66种不同的涂色方法.解析可分四类:第一类,当选择两种颜色时,因为橄榄绿与薄荷绿不涂在相邻的区域内,所以共有42-1=5(种)选法,因此不同的涂色方法有5×2=10(种);第二类,当选择三种颜色且橄榄绿与薄荷绿都被选中时,有2种选法,因此不同的涂色方法有2×2×2=8(种);第三类,当选择三种颜色且橄榄绿与薄荷绿只有一个被选中时,有2种选法,因此不同的涂色方法有2×3×2×(2+1)=36(种);第四类,当选择四种颜色时,不同的涂色方法有2×2×2+2×2=12(种).所以共有10+8+36+12=66(种)不同的涂色方法.学生用书·练习帮P3821.[2024四川成都模拟]“数独九宫格”的游戏规则为:将1到9这9个自然数填到如图所示的九宫格的9个空格里,每个空格填1个数,且9个空格的数字各不相同.若中间空格已填数字5,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从小到大排列的,则不同的填法种数为(C)5A.72B.108C.144D.196解析按题意,5的上方和左边只能从1,2,3,4中选取,5的下方和右边只能从6,7,8,9中选取.第一步,填上方空格,有4种填法;第二步,填左方空格,有3种填法;第三步,填下方空格,有4种填法;第四步,填右方空格,有3种填法.由分步乘法计数原理得,不同的填法种数为4×3×4×3=144.故选C.2.[2023全国卷甲]现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有(B)A.120种B.60种C.30种D.20种解析先从5人中选择1人两天均参加公益活动,有5种方式;再从余下的4人中选2人分别安排到星期六、星期日,有4×3=12(种)安排方式.所以不同的安排方式共有5×12=60(种).故选B.3.[2024北京市顺义区联考]某班一天上午有4节课,下午有2节课.现要安排该班一天中语文、数学、政治、英语、体育、艺术6门课的课程表,要求数学课排在上午,体育课排在下午,则不同的排法有(D)A.48种B.96种C.144种D.192种解析由题意,要求数学课排在上午,体育课排在下午,先考虑这两门课程,有4×2=8(种)排法,再排其余4节课,有4×3×2×1=24(种)排法,根据分步乘法计数原理,共有8×24=192(种)排法,故选D.4.现有十二生肖的吉祥物各一个,已知甲同学喜欢牛、马和猴的吉祥物,乙同学喜欢牛、狗和羊的吉祥物,丙同学对所有的吉祥物都喜欢.让甲、乙、丙三位同学依次从中选一个珍藏,若每个人所选取的吉祥物都是自己喜欢的,则不同的选法共有(C)A.50种B.60种C.80种D.90种解析根据题意,按甲的选择分两类讨论:第一类,若甲选择牛的吉祥物,则乙的选法有2种,丙的选法有10种,此时不同的选法有2×10=20(种);第二类,若甲选择马或猴的吉祥物,则甲的选法有2种,乙的选法有3种,丙的选法有10种,此时不同的选法有2×3×10=60(种).所以不同的选法共有20+60=80(种).故选C.5.[2023南京六校联考]如图,用4种不同的颜色把图中A,B,C,D四块区域区分开,若相邻区域不能涂同一种颜色,则不同的涂法共有(C)A.144种B.73种C.48种D.32种解析由于A,B,C三块区域两两相邻,因此需填涂3种不同的颜色.①当D区域与A区域颜色相同时,只需从4种不同的颜色中选取3种分别填涂到A,B,C三块区域,有4×3×2=24(种)涂法;②当D区域与A区域颜色不同时,只需将4种不同的颜色分别填涂到A,B,C,D四块区域,有4×3×2×1=24(种)涂法.所以不同的涂法共有24+24=48(种),故选C.6.如图所示,从正八边形的八个顶点中任选三个构成三角形,则与正八边形有公共边的三角形有40个(用数字作答).解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形,此类三角形由正八边形中两个相邻的顶点和一个与所选顶点均不相邻的顶点构成,共有8×4=32(个);第二类,有两条公共边的三角形,此类三角形由正八边形中三个相邻的顶点构成,共有8个.由分类加法计数原理可知,共有32+8=40(个).7.[2023北京通州区质检]一个三位数,如果满足个位上的数字和百位上的数字都大于十位上的数字,那么我们称该三位数为三位数“凹数”,则没有重复数字的三位数“凹数”的个数为240.(用数字作答)解析依题意,无重复数字的三位数“凹数”,十位数字只可能为0,1,2,3,4,5,6,7之一,个位和百位上的数字从比对应十位数字大的数字中任取两个进行排列,所以没有重复数字的三位数“凹数”的个数为9×8+8×7+7×6+6×5+5×4+4×3+3×2+2×1=72+56+42+30+20+12+6+2=240.8.[2024北京市景山学校期末]在0,1,2,3,4,5,6这7个数中任取4个数,将其组成无重复数字的四位数,其中能被5整除且比4351大的数共有(C)A.54个B.62个C.74个D.82个解析根据被5整除的数特点,分成两类.第一类:个位为0,则千位为5或6时,有2×5×4=40(个)四位数大于4351;千位为4,百位为5或6时,有2×4=8(个)四位数大于4351;千位为4,百位为3时,十位为6,有1个四位数大于4351.第二类:个位为5,则千位为6时,有5×4=20(个)四位数大于4351;千位为4,百位是6时,有4个四位数大于4351;千位为4,百位为3时,有1个四位数大于4351.综上,满足条件的数共有40+8+1+20+4+1=74(个).故选C.9.算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).若拨动图1算盘中的三枚算珠,则可以表示不同整数的个数为(C)图1图2A.16B.15C.12D.10解析由题意,拨动三枚算珠,有4种拨法:①个位拨动三枚,有2种结果:3,7;②十位拨动一枚,个位拨动两枚,有4种结果:12,16,52,56;③十位拨动两枚,个位拨动一枚,有4种结果:21,25,61,65;④十位拨动三枚,有2种结果:30,70.综上,拨动题图1算盘中的三枚算珠,可以表示不同整数的个数为2+4+4+2=12,故选C.10.[2023青岛检测]据史书记载,古代的算筹由一根根同样长短和粗细的小棍制成,如图所示,据《孙子算经》记载,算筹记数法则是:凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.即在算筹记数法中,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推.例如表示62,表示26,现有5根算筹,据此方式表示一个两位数(算筹不剩余且个位不为0),则可以表示不同的两位数的个数为12.解析当十位为1时,个位可以是4,8,共2种;当十位为2时,个位可以是3,7,共2种;当十位为3时,个位可以是2,6,共2种;当十位为4时,个位为1,共1种;当十位为6时,个位可以是3,7,共2种;当十位为7时,个位可以是2,6,共2种;当十位为8时,个位为1,共1种.所以可以表示的两位数有5×2+1×2=12(个).11.[与集合综合]设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},则集合A中满足条件1≤12+22+32+42+52≤4的元素个数为(B)A.180B.210C.240D.241解析因为A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},所以x1,x2,x3,x4,x5都有3种不同的赋值,集合A中共有35个元素,且0≤12+22+32+42+52≤5,其中满足12+22+32+42+52=0的只有1个元素,即(0,0,0,0,0).当12+22+32+42+52=5时,x1,x2,x3,x4,x5都有2种不同的赋值,共有25个元素.所以集合A中满足条件1≤12+22+32+42+52≤4的元素个数为35-1-25=210,故选B.12.[逻辑推理]小李和小王玩一个猜数游戏,规则如下:已知六张纸牌上分别写有1-(12)n(n∈N*,1≤n≤6)六个数,现小李和小王分别从中各随机抽取一张,然后根据自己手中纸牌上的数推测谁手中纸牌上的数更大.小李看了看自己手中纸牌上的数,想了想说:“我不知道谁手中纸牌上的数更大.”小王听了小李的判断后,思索了一下说:“我知道谁手中纸牌上的数更大了.”假设小王和小李做出的推理都是正确的,那么小李和小王拿到纸牌的情况共有14种.解析六张纸牌上的数分别为12,34,78,1516,3132,6364.因为小李不知道谁手中纸牌上的数更大,因此小李拿的纸牌上的数不是最大的6364,也不是最小的12,因此小李拿的纸牌有4种情况.接下来讨论小王:①当小王拿的纸牌上的数是12时,则小王知道小李拿的纸牌上的数一定比他大,此时有4种情况;②当小王拿的纸牌上的数是34时,则小王知道小李拿的纸牌上的数一定比他大,此时有3种情况;③当小王拿的纸牌上的数是3132时,则小王知道小李拿的纸牌上的数一定比他小,此时有3种情况;④当小王拿的纸牌上的数是6364时,则小王知道小李拿的纸牌上的数一定比他小,此时有4种情况;⑤当小王拿的纸牌上的数是1516或78时,此时小王无法判断小李拿的纸牌上的数与他拿的纸牌上的数谁大谁小,舍去.所以满足题意的情况共有4+3+3+4=14(种).。
两个基本计数原理教案第一章:概述1.1 计数原理的定义解释计数原理的概念和重要性强调计数原理在数学和实际生活中的应用1.2 两个基本计数原理介绍两个基本计数原理:排列原理和组合原理解释排列原理:从n个不同元素中取出m(m≤n)个元素的所有排列方式的个数解释组合原理:从n个不同元素中取出m(m≤n)个元素的所有组合方式的个数第二章:排列原理2.1 排列原理的公式介绍排列公式:P(n, m) = n! / (n-m)!解释排列公式的含义和推导过程2.2 排列原理的应用举例说明排列原理在实际问题中的应用练习题:根据给定的问题,运用排列原理计算不同的排列方式个数第三章:组合原理3.1 组合原理的公式介绍组合公式:C(n, m) = n! / [m! (n-m)!]解释组合公式的含义和推导过程3.2 组合原理的应用举例说明组合原理在实际问题中的应用练习题:根据给定的问题,运用组合原理计算不同的组合方式个数第四章:排列与组合的综合应用4.1 排列与组合的区别与联系解释排列与组合的概念及其区别强调排列与组合在解决实际问题中的综合应用4.2 综合应用举例举例说明排列与组合在实际问题中的综合应用练习题:根据给定的问题,运用排列与组合原理计算不同的方式个数第五章:练习与拓展5.1 练习题提供一系列练习题,巩固排列与组合原理的应用鼓励学生自主思考,提高解题能力5.2 拓展与应用探讨排列与组合原理在其他领域的应用鼓励学生发现生活中的数学问题,运用排列与组合原理解决第六章:排列与组合在概率论中的应用6.1 排列与组合在概率计算中的作用解释排列与组合在概率计算中的重要性介绍排列与组合在计算事件概率时的应用6.2 具体案例分析通过具体案例,展示排列与组合在概率计算中的应用练习题:根据给定的概率问题,运用排列与组合原理进行计算第七章:排列与组合在日常生活中的应用7.1 排列与组合在日常生活中的实例探讨排列与组合原理在日常生活中的应用实例强调排列与组合原理在解决实际问题中的重要性7.2 练习题提供一系列与日常生活相关的练习题,运用排列与组合原理进行解答鼓励学生自主思考,提高解决实际问题的能力第八章:排列与组合在算法与编程中的应用解释排列与组合在算法与编程中的应用介绍排列与组合在解决算法与编程问题时的作用第八章:排列与组合在算法与编程中的应用8.1 排列与组合在算法中的应用解释排列与组合在算法中的重要性介绍排列与组合在算法设计中的应用实例8.2 排列与组合在编程语言中的应用探讨排列与组合在编程语言中的应用实例强调排列与组合在编程问题解决中的重要性第九章:排列与组合在数学竞赛中的应用9.1 排列与组合在数学竞赛中的题目特点分析数学竞赛中排列与组合题目的特点解释排列与组合在数学竞赛中的重要性9.2 练习题提供一系列数学竞赛中的排列与组合题目,进行练习鼓励学生自主思考,提高解决竞赛题目的能力第十章:总结与提高10.1 排列与组合原理的总结回顾本教案的主要内容,总结排列与组合原理的重要性和应用强调排列与组合原理在数学和实际生活中的重要性10.2 提高题与研究性学习提供一系列提高题,鼓励学生深入研究排列与组合原理鼓励学生开展研究性学习,探索排列与组合原理在其他领域的应用重点和难点解析六、排列与组合在概率论中的应用重点:排列与组合在概率计算中的作用,具体案例分析难点:理解排列与组合在概率计算中的应用,以及如何将实际问题转化为概率问题七、排列与组合在日常生活中的应用重点:排列与组合在日常生活中的实例,练习题难点:将抽象的排列与组合原理应用到具体的生活情境中,提高解决实际问题的能力八、排列与组合在算法与编程中的应用重点:排列与组合在算法与编程中的应用,练习题难点:理解算法与编程中排列与组合的概念,以及在实际编程中应用这些概念九、排列与组合在数学竞赛中的应用重点:排列与组合在数学竞赛中的题目特点,练习题难点:解决数学竞赛中的排列与组合问题,需要学生具备较高的逻辑思维和解题能力十、总结与提高重点:排列与组合原理的总结,提高题与研究性学习难点:巩固所学知识,进一步探索排列与组合原理在其他领域的应用全文总结与概括:本教案主要介绍了排列与组合两个基本计数原理,通过讲解排列与组合的概念、公式及其在概率论、日常生活、算法与编程、数学竞赛等领域的应用,使学生能够理解并掌握这两个基本计数原理。
第十编计数原理§10.1 两个基本计数原理1.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法有种.答案122.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法有种.答案 53.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有种不同的选法.答案204.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有种.答案365.有一项活动需在3名老师,8名男同学和5名女同学中选人参加,(1)若只需一人参加,有多少种不同的选法?(2)若需一名老师,一名学生参加,有多少种不同的选法?(3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法?解(1)“完成这件事”只需从老师、学生中选1人即可,共有3+8+5=16种.(2)“完成这件事”需选2人,老师、学生各1人,分两步进行:选老师有3种方法,选学生有8+5=13种方法,共有3×13=39种方法.(3)“完成这件事”需选3人,老师、男同学、女同学各一人,可分三步进行,选老师有3种方法,选男同学有8种方法,选女同学有5种方法,共有3×8×5=120种方法.例1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解方法一按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类计数原理知,符合题意的两位数的个数共有:8+7+6+5+4+3+2+1=36(个).方法二按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个,所以按分类计数原理共有:1+2+3+4+5+6+7+8=36(个).例2已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?基础自测(3)P可表示多少个不在直线y=x上的点?解(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步计数原理,得到平面上的点数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步计数原理,得到第二象限点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得不在直线y=x上的点共有36-6=30个.例3(16分)现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种). 4分(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种). 8分(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法,14分所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种). 16分1.从1到20这20个整数中,任取两个相加,使其和大于20,共有几种取法?解当一个加数是1时,另一个加数只能是20,1种取法.当一个加数是2时,另一个加数可以是19,20,2种取法.当一个加数是3时,另一个加数可以是18,19,20,3种取法.……当一个加数是10时,另一个加数可以是11,12,…,20,10种取法.当一个加数是11时,另一个加数可以是12,13,…,20,9种取法.……当一个加数是19时,另一个加数是20,1种取法.由分类计数原理可得共有1+2+3+…+10+9+8+…+1=100种取法.2.某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把这种要求的号全买下,至少要花多少元钱?解先分三步选号,再计算总钱数.按号段选号,分成三步.第一步从01至17中选3个连续号,有15种选法;第二步从19至29中选2个连续号,有10种选法;第三步从30至36中选1个号,有7种选法.由分步计数原理可知,满足要求的号共有15×10×7=1 050(注),故至少要花1 050×2=2 100(元).3.某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)任选1个班的学生参加社会实践,有多少种不同的选法?(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?解(1)分三类:第一类从高一年级选1个班,有6种不同方法;第二类从高二年级选一个班,有7种不同方法;第三类从高三年级选1个班,有8种不同方法.由分类计数原理,共有6+7+8=21种不同的选法.(2)每种选法分三步:第一步从高一年级选一个班,有6种不同方法;第二步从高二年级选1个班,有7种不同方法;第三步从高三年级选1个班,有8种不同方法.由分步计数原理,共有6×7×8=336种不同的选法.(3)分三类,每类又分两步.第一类从高一、高二两个年级各选一个班,有6×7种不同方法;第二类从高一、高三两个年级各选1个班,有6×8种不同方法;第三类从高二、高三年级各选一个班,有7×8种不同的方法,故共有6×7+6×8+7×8=146种不同选法.一、填空题1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有种. 答案322.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位中带有数字“4”或“7”的一律作为优惠卡,则这组号码中“优惠卡”共有个.答案 5 9043.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列共有个.答案84.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.答案1805.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有种.答案486.(2019·全国Ⅰ文)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有种.答案127.在2019年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1、2、3、4、5、6、7、8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有种.答案 2 8808.若一个m,n均为非负整数的有序数对(m,n),在做m+n的加法时各位均不会进位,则称(m,n)为“简单的”有序数对,m+n称为有序数对(m,n)的值,那么值为1 942的“简单的”有序数对的个数是 . 答案300二、解答题9.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解(1)要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,四个都报完才算完成,于是按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有:3×3×3×3=81种报名方法.(2)完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,于是应以“确定三项冠军得主”为线索进行分步.而每项冠军是四人中的某一人,有4种可能的情况,于是共有:4×4×4=43=64种可能的情况.10.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?解完成该件事可分步进行.涂区域1,有5种颜色可选.涂区域2,有4种颜色可选.涂区域3,可先分类:若区域3的颜色与2相同,则区域4有4种颜色可选.若区域3的颜色与2不同,则区域3有3种颜色可选,此时区域4有3种颜色可选.所以共有5×4×(1×4+3×3)=260种涂色方法.11.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的元素,又点P到原点的距离|OP |≥5.求这样的点P 的个数. 解 按点P 的坐标a 将其分为6类: (1)若a =1,则b =5或6,有2个点; (2)若a =2,则b =5或6,有2个点; (3)若a =3,则b =5或6或4,有3个点; (4)若a =4,则b =3或5或6,有3个点; (5)若a =5,则b =1,2,3,4,6,有5个点; (6)若a =6,则b =1,2,3,4,5,有5个点; ∴共有2+2+3+3+5+5=20(个)点.12.将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?解 设由左到右五块田中要种a ,b ,c 三种作物,不妨先设第一块种a ,则第二块可种b ,c ,有两种选法.同理,如果第二块种b ,则第三块可种a 和c ,也有两种选法,由分步计数原理共有1×2×2×2×2=16.其中要去掉ababa 和acaca 两种方法.故a 种作物种在第一块田中时的种法数有16-2=14(种). 同理b 种或c 种作物种在第一块田中时的种法数也都为14种. 所以符合要求的种植方法共有3×(2×2×2×2-2)=3×(16-2)=42(种).§10.2 排列与组合1.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有 个. 答案 54基础自测2.(2019·福建理)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案共有种.答案143.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有种.(用式子表示)答案A884.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法种数是(用式子表示).答案3100C-394C5.(2019·天津理)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).答案390例1六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.解(1)方法一要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A14种站法,然后其余5人在另外5个位置上作全排列有A55种站法,根据分步计数原理,共有站法:A14·A55=480(种).方法二由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A25种站法,然后中间4人有A44种站法,根据分步计数原理,共有站法:A25·A44=480(种).方法三若对甲没有限制条件共有A66种站法,甲在两端共有2A55种站法,从总数中减去这两种情况的排列数,即共有站法:A66-2A55=480(种).(2)方法一先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有A55种站法,再把甲、乙进行全排列,有A22种站法,根据分步计数原理,共有A55·A22=240(种)站法.方法二先把甲、乙以外的4个人作全排列,有A44种站法,再在5个空档中选出一个供甲、乙放入,有A15种方法,最后让甲、乙全排列,有A22种方法,共有A44·A15·A22=240(种).(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A44种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有A25种站法,故共有站法为A44·A25=480(种).也可用“间接法”,6个人全排列有A66种站法,由(2)知甲、乙相邻有A55·A22=240种站法,所以不相邻的站法有A66-A55·A22=720-240=480(种).(4)方法一先将甲、乙以外的4个人作全排列,有A44种,然后将甲、乙按条件插入站队,有3A22种,故共有A44·(3A22)=144(种)站法.方法二先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A24种,然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有A33种方法,最后对甲、乙进行排列,有A22种方法,故共有A24·A33·A22=144(种)站法.(5)方法一首先考虑特殊元素,甲、乙先站两端,有A22种,再让其他4人在中间位置作全排列,有A44种,根据分步计数原理,共有A22·A44=48(种)站法.方法二首先考虑两端两个特殊位置,甲、乙去站有A22种站法,然后考虑中间4个位置,由剩下的4人去站,有A44种站法,由分步计数原理共有A22·A44=48(种)站法.(6)方法一甲在左端的站法有A55种,乙在右端的站法有A55种,且甲在左端而乙在右端的站法有A44种,共有A66-2A55+A44=504(种)站法.方法二以元素甲分类可分为两类:①甲站右端有A55种站法,②甲在中间4个位置之一,而乙不在右端有A14·A14·A44种,故共有A55+A14·A14·A44=504(种)站法.例2(16分)男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.解(1)第一步:选3名男运动员,有C36种选法.第二步:选2名女运动员,有C24种选法.共有C36·C24=120种选法. 4分(2)方法一至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246种. 8分方法二“至少1名女运动员”的反面为“全是男运动员”可用间接法求解.从10人中任选5人有C510种选法,其中全是男运动员的选法有C56种.所以“至少有1名女运动员”的选法为C510-C56=246种. 8分(3)方法一可分类求解:“只有男队长”的选法为C48;“只有女队长”的选法为C48;“男、女队长都入选”的选法为C38;所以共有2C48+C38=196种选法. 12分方法二间接法:从10人中任选5人有C510种选法.其中不选队长的方法有C58种.所以“至少1名队长”的选法为C510-C58=196种. 12分(4)当有女队长时,其他人任意选,共有C49种选法.不选女队长时,必选男队长,共有C48种选法.其中不含女运动员的选法有C45种,所以不选女队长时的选法共有C48-C45种选法.所以既有队长又有女运动员的选法共有C49+C48-C45=191种. 16分例3 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步计数原理,共有C14C24C13×A22=144种.(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C34C11A22种方法;第二类有序均匀分组有222224ACC·A22种方法.故共有C24( C34C11A22+222 22 4 A CC·A22)=84种.1.用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于3 125的数.解 (1)先排个位,再排首位,共有A13·A14·A24=144(个).(2)以0结尾的四位偶数有A35个,以2或4结尾的四位偶数有A12·A14·A24个,则共有A35+ A12·A14·A24=156(个).(3)要比3 125大,4、5作千位时有2A35个,3作千位,2、4、5作百位时有3A24个,3作千位,1作百位时有2A13个,所以共有2A35+3A24+2A13=162(个).2.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?解(1)只需从其他18人中选3人即可,共有C318=816(种).(2)只需从其他18人中选5人即可,共有C518=8 568(种).(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C12C418+C318=6 936(种).(4)方法一(直接法)至少一名内科医生一名外科医生的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C112C48+C212C38+C312C28+C412C18=14 656(种).方法二(间接法)由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C520-(C58+C512)=14 656(种).3.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式? (1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本; (3)分成每组都是2本的三组; (4)分给甲、乙、丙三人,每人2本.解 (1)分三步:先选一本有C 16种选法;再从余下的5本中选2本有C 25种选法;对于余下的三本全选有C 33种选法,由分步计数原理知有C 16C 25C 33=60种选法.(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此共有C 16C 25C 33A 33=360种选法.(3)先分三步,则应是C 26C 24C 22种选法,但是这里面出现了重复,不妨记六本书为A 、B 、C 、D 、E 、F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则C 26C 24C 22种分法中还有(AB 、EF 、CD ),(CD 、AB 、EF )、(CD 、EF 、AB )、(EF 、CD 、AB )、(EF 、AB 、CD )共有A 33种情况,而且这A 33种情况仅是AB 、CD 、EF 的顺序不同,因此,只算作一种情况,故分法有33222426A C C C =15种.(4)在问题(3)的工作基础上再分配,故分配方式有33222426A C C C ·A 33= C 26C 24C 22=90种.一、填空题1.用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有 个. 答案 362.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法共有 种. 答案 103.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 种. 答案 9604.在图中,“构建和谐社会,创美好未来”,从上往下读(不能跳读),共有 种不同的读法.答案2525.(2019·天津理)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有种.答案 1 2486.(2019·安徽理)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是(用式子表示).答案C28A267.平面α内有四个点,平面β内有五个点,从这九个点中任取三个,最多可确定个平面,任取四点,最多可确定个四面体.(用数字作答)答案72 1208.(2019·浙江理,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是 .(用数字作答)答案40二、解答题9.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?解可先分组再分配,据题意分两类,一类:先将3个项目分成两组,一组有1个项目,另一组有2个项目,然后再分配给4个城市中的2个,共有C23A24种方案;另一类1个城市1个项目,即把3个元素排在4个不同位置中的3个,共有A34种方案.由分类计数原理可知共有C23A24+A34=60种方案.10.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.解(1)一名女生,四名男生,故共有C15·C48=350(种).(2)将两队长作为一类,其他11人作为一类,故共有C22·C311=165(种).(3)至少有一名队长含有两类:有一名队长和两名队长.故共有:C12·C411+C22·C311=825(种).或采用间接法:C513-C511=825(种).(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生.故选法为C25·C38+C15·C48+C58=966(种).11.已知平面α∥β,在α内有4个点,在β内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?解(1)所作出的平面有三类:①α内1点,β内2点确定的平面,有C14·C26个;②α内2点,β内1点确定的平面,有C24·C16个;③α,β本身.∴所作的平面最多有C14·C26+C24·C16+2=98(个).(2)所作的三棱锥有三类:①α内1点,β内3点确定的三棱锥,有C14·C36个;②α内2点,β内2点确定的三棱锥,有C24·C26个;α内3点,β内1点确定的三棱锥,有C34·C16个.∴最多可作出的三棱锥有:C14·C36+C24·C26+C34·C16=194(个).(3)∵当等底面积、等高的情况下三棱锥的体积相等,且平面α∥β,∴体积不相同的三棱锥最多有C36+C34+C26·C24=114(个).12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法?解∵前排中间3个座位不能坐,∴实际可坐的位置前排8个,后排12个.(1)两人一个前排,一个后排,方法数为C18·C112·A22种;(2)两人均在后排左右不相邻,共A212-A22·A111=A211种;(3)两人均在前排,又分两类:①两人一左一右,共C14·C14·A22种;②两人同左同右,有2(A24-A13·A22)种.综上可知,不同排法种数为C18·C112·A22+A211+C14·C14·A22+2(A24-A13·A22)=346种.§10.3 二项式定理1.在(1+x )n(n ∈N *)的二项展开式中,若只有x 5的系数最大,则n = . 答案 102.在(a 2-2a 31)n的展开式中,则下列说法错误的有 个. ①没有常数项②当且仅当n =2时,展开式中有常数项 ③当且仅当n =5时,展开式中有常数项 ④当n =5k (k ∈N *)时,展开式中有常数项 答案 33.若多项式0C n (x +1)n-C 1n (x +1)n -1+…+(-1)rC r n (x +1)n -r+…+(-1)nC nn =a 0x n+a 1x n -1+…+a n -1x +a n ,则a 0+a 1+…+a n -1+a n = . 答案 14.(2019·山东理)(x -31x)12展开式中的常数项为 .答案 -2205.(2019·福建理,13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5= .(用数字作答) 答案 31基础自测例1 在二项式(x +421x)n的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.解 ∵二项展开式的前三项的系数分别是1,2n ,81n (n -1), ∴2·2n =1+81n (n -1), 解得n =8或n =1(不合题意,舍去), ∴T k +1=C k 8x 28k-k⎪⎪⎭⎫ ⎝⎛421x =C k 82-k x 4-43k,当4-43k ∈Z 时,T k +1为有理项, ∵0≤k ≤8且k ∈Z ,∴k =0,4,8符合要求. 故有理项有3项,分别是 T 1=x 4,T 5=835x ,T 9=2561x -2.∵n =8,∴展开式中共9项,中间一项即第5项的二项式系数最大.T 5=835x . 例2 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1 ① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37②(1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2, 得a 1+a 3+a 5+a 7=2317--=-1 094. (3)(①+②)÷2,得a 0+a 2+a 4+a 6=2317+-=1 093.(4)∵(1-2x )7展开式中,a 0,a 2,a 4,a 6都大于零, 而a 1,a 3,a 5,a 7都小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7| =(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7), ∴由(2)、(3)即可得其值为2 187.例3 (14分)(1)已知n ∈N *,求证:1+2+22+23+…+25n -1能被31整除;(2)求0.9986的近似值,使误差小于0.001. (1)证明 ∵1+2+22+23+…+25n -1=21215--n=25n-1=32n-1 3分=(31+1)n-1=31n+C1n·31n-1+C2n·31n-2+…+C1-n n·31+1-1=31(31n-1+C1n·31n-2+…+C1-n n)6分显然括号内的数为正整数,故原式能被31整除. 7分(2)解∵0.9986=(1-0.002)6=1-C16(0.002)+C26(0.002)2-C36(0.002)3+…10分第三项T3=15×(0.002)2=0.000 06<0.001,以后各项更小,∴0.9986≈1-0.012=0.988. 14分1.在(3x-2y)20的展开式中,求:(1)二项式系数最大的项;(2)系数绝对值最大的项;(3)系数最大的项.解(1)二项式系数最大的项是第11项,T11=C1020310(-2)10x10y10=C1020610x10y10.(2)设系数绝对值最大的项是第r+1项,于是⎪⎩⎪⎨⎧⋅⋅≥⋅⋅⋅⋅≥⋅⋅----+-+-1211202020119120202023C23C23C23Crrrrrrrrrrrr,化简得⎩⎨⎧≥--≥+rrrr3)21(2)20(2)1(3,解得752≤r≤852.所以r=8,即T9=C820312·28·x12y8是系数绝对值最大的项.(3)由于系数为正的项为奇数项,故可设第2r-1项系数最大,于是⎪⎩⎪⎨⎧⋅⋅≥⋅⋅⋅⋅≥⋅⋅----------rrrrrrrrrrrr222022022222222042224422022222222023C23C23C23C,化简得⎪⎩⎪⎨⎧≥-+≤-+9241631007711431022rrrr.解之得r=5,即2×5-1=9项系数最大.T9=C820·312·28·x12y8.2.求x(1-x)4+x2(1+2x)5+x3(1-3x)7展开式中各项系数的和.解 设x (1-x )4+x 2(1+2x )5+x 3(1-3x )7=a 0+a 1x +a 2x 2+…+a n x n在原式中,令x =1,则1×(1-1)4+12×(1+2)5+13×(1-3)7=115, ∴展开式中各项系数的和为115. 3.求证:3n>(n +2)·2n -1(n ∈N *,n >2). 证明 利用二项式定理3n=(2+1)n展开证明.因为n ∈N *,且n >2,所以3n=(2+1)n展开后至少有4项.(2+1)n=2n+C 1n ·2n -1+…+C 1-n n ·2+1≥2n+n ·2n -1+2n +1>2n+n ·2n -1=(n +2)·2n -1,故3n >(n +2)·2n -1.一、填空题1.(1-2x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则|a 0|+|a 1|+|a 2|+…+|a 6|的值为 . 答案 7292.(2019·安徽理)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1,…,a 8中奇数的个数为 . 答案 23.(2019·全国Ⅱ理)(1-x )6(1+x )4的展开式中x 的系数是 . 答案 -3 4.已知(x -xa )8展开式中常数项为1 120,其中实数a 为常数,则展开式中各项系数的和为 . 答案 1或385.若(1+5x 2)n的展开式中各项系数之和是a n ,(2x 3+5)n的展开式中各项的二项式系数之和为b n ,则nn n b a 13+的值为 . 答案31 6.设m ∈N *,n ∈N *,若f (x )=(1+2x )m+(1+3x )n的展开式中x 的系数为13,则x 2的系数为 . 答案 31或407.(1+x )6(1-x )4展开式中x 3的系数是 . 答案 -88.(2019·天津理,11)52⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中x 2的系数是 .(用数字作答) 答案 40 二、解答题 9.已知(x +22x )n (n ∈N *)的展开式中第5项的系数与第3项的系数之比为10∶1.求展开式中系数最大的是第几项?解 依题意,第5项的系数为C 4n ·24,第三项的系数为C 2n ·22,则有2244C 2C 2nn ⋅⋅=110,解得n =8. 设展开式中第r +1项的系数最大,则⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--118811882C 2C ,2C 2C r r rr r r r r 解得5≤r ≤6. ∴第6项和第7项的系数相等且最大, 即最大为56×25=7×28=1 792.10.已知(32x +3x 2)n展开式中各项的系数和比各项的二项式系数和大992.求展开式中系数最大的项.解 令x =1,得各项的系数和为(1+3)n=4n,而各项的二项式系数和为:C 0n +C 1n +…+C nn =2n,∴4n =2n+992. ∴(2n-32)(2n+31)=0∴2n=32或2n=-31(舍去),∴n =5 设第r +1项的系数最大,则⎪⎩⎪⎨⎧≥≥++--;3C 3C ,3C 3C 11551155r r rr r r r r 即⎪⎪⎩⎪⎪⎨⎧+≥--≥;1351,613r r r r ∴27≤r ≤29,又r ∈Z ,∴r =4, ∴系数最大的项是T 5=C 45x32(3x 2)4=405x326.11.(1)求(x 2-x21)9的展开式中的常数项; (2)已知(x a -2x )9的展开式中x 3的系数为49,求常数a 的值;(3)求(x 2+3x +2)5的展开式中含x 的项. 解 (1)设第r +1项为常数项,则T r +1=C r9(x 2)9-r·(-x 21)r =(-21)r C r 9x r318- 令18-3r =0,得r =6,即第7项为常数项.T 7=621⎪⎭⎫ ⎝⎛-C 69=1621.∴常数项为1621. (2)设第r +1项是含x 3的项,则有 C r 9(xa )9-r rx⎪⎪⎭⎫⎝⎛-2=49x 3,得:x r -9x 2r =x 3,。
专题10.1 计数原理【考纲要求】1. 理解分步计数原理和分类计数原理,并能用这两个原理分析和解决一些简单的实际问题.2.了解排列、组合的意义,理解排列数、组合数计算公式,并能用它们解决一些简单的实际问题.3.了解组合数的性质.【考向预测】1. 计数原理的应用2. 排列数的应用3. 组合数的应用【知识清单】1. 分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=__m1+m2+…+m n__种不同的方法.知识点二分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=__m1·m2·…·m n__种不同的方法.重要结论分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互联系、相互依存,只有各个步骤都完成了才算完成这件事.2.排列与排列数(1)排列的定义:从n个__不同__元素中取出m(m≤n)个元素,按照一定的__顺序__排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的__所有不同排列__的个数叫做从n个不同元素中取出m个元素的排列数,用符号__A m n__表示.(3)排列数公式:A m n=__n(n-1)(n-2)…(n-m+1)__.(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,A n n=n×(n-1)×(n-2)×…×2×1=__n!__.排列数公式写成阶乘的形式为A m n=n!(n-m)!,这里规定0!=__1__.3.组合与组合数(1)组合的定义:一般地,从n个__不同__元素中取出m(m<n)个元素__合成一组__,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的__所有不同组合__的个数,叫做从n个不同元素中取出m个元素的组合数,用符号__C m n__表示.(3)组合数的计算公式:C m n=A m nA m m=n!m!(n-m)!=n(n-1)(n-2)…(n-m+1)m!,这里规定Cn=__1__.(4)组合数的性质:①C m n=__C n-mn __;②C m n+1=__C m n__+__C m-1n__.重要结论对于有附加条件的排列、组合应用题,通常从三个途径考虑(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.【考点分类剖析】考点一计数原理例1.6人分乘两辆不同的出租车,每辆车最多乘4人,则不同的乘车方案数为()A.70B.60C.50D.40例2.要将甲、乙、丙、丁4名同学分别到A,B,C三个班级中,要求每个班级至少分到一人,则甲被分到A班的分法种数为__ __.(用数字作答)例3(1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有__ __种不同的报名方法.【变式探究】1.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有__ __种(用数字作答).2.某县政府为了加大对一贫困村的扶贫力度,研究决定将6名优秀干部安排到该村进行督导巡视,周一至周四这四天各安排1名,周五安排2名,则不同的安排方法共有()A.320种B.360种C.370种D.390种考点二两个计数原理的综合应用例1.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的个数有()A.512B.192C.240D.108例2.将一个四棱锥的每个顶点染上1种颜色,并使同一条棱的两个端点异色,若只有4种颜色可供使用,则不同的染色方法有()A.48种B.72种C.96种D.108种【变式探究】1.如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24种B.48种C.72种D.96种2.由数字0,1,2,3组成的无重复数字的4位数,比2 019大的有()个()A.10B.11C.12D.13考点三排列问题——自主练透例1.有3名男生、4名女生,在下列不同条件下,不同的排列方法总数,分别为:(1)选其中5人排成一排;__ __(2)排成前后两排,前排3人,后排4人;__ __(3)全体排成一排,甲不站排头也不站排尾;__ __(4)全体排成一排,女生必须站在一起;__ __(5)全体排成一排,男生互不相邻;__ __(6)全体排成一排,甲、乙两人中间恰好有3人;__ __(7)全体排成一排,甲必须排在乙前面;__ _(8)全部排成一排,甲不排在左端,乙不排在右端.__ _【变式探究】1. 某车队有6辆车,现要调出4辆按一定的顺序出去执行任务,要求甲、乙两车必须参加,且甲车要先于乙车开出,则共有__ __种不同的调度方法.(用数字填写答案)2.2020年3月31日,某地援鄂医护人员A,B,C,D,E,F,6人(其中A是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长站在两端且BC相邻,而BD不相邻的排法种数为()A.36种B.48种C.56种D.72种考点四组合问题——师生共研例1.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85B.49C.56D.28例2.福建省第十六届运动会于2018年在宁德召开,组委会预备在会议期间将A,B,C,D,E,F这六名工作人员分配到两个不同的地点参与接待工作.若要求A,B必须在同一组,且每组至少2人,则不同的分配方法有()A.15种B.18种C.20种D.22种【变式探究】我国进入双航母时代,航母编队的要求是每艘航母配2~3艘驱逐舰,1~2艘核潜艇.船厂现有5艘驱逐舰和3艘核潜艇全部用来组建航母编队,则不同的组建方法种数为()A.30B.60C.90D.120考点五排列、组合的综合应用例1.(1)某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有__ __种.(2)某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课方案的种数是()A.16B.24C.8D.12例2.从5名学生中选出4名分别参加数学、物理、化学、生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为()A.48B.72C.90D.96例3.按下列要求分配6本不同的书,各有多少种不同的分配方式?将答案填在对应横线上.①分成三份,1份1本,1份2本,1份3本;__ __②甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;__ __③平均分成三份,每份2本;__ __④平均分配给甲、乙、丙三人,每人2本;__ _;⑤分成三份,1份4本,另外两份每份1本;__ __⑥甲、乙、丙三人中,一人得4本,另外两人每人得1本;__ __⑦甲得1本,乙得1本,丙得4本._ __【变式探究】1. 某学校组织劳动实习,其中两名男生和两名女生参加农场体验活动,体验活动结束后,农场主人与四名同学站一排合影留念,已知农场主人站在中间,两名男生不相邻,则不同的站法共有__ __种.2.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有() A.36种B.42种C.48种D.60种3.为抗击新冠疫情,5名专家前往支援三家定点医院,要求每家医院至少分到一名专家,则不同的分配方案有__ __种.专题10.1 计数原理【考纲要求】1. 理解分步计数原理和分类计数原理,并能用这两个原理分析和解决一些简单的实际问题.2.了解排列、组合的意义,理解排列数、组合数计算公式,并能用它们解决一些简单的实际问题.3.了解组合数的性质.【考向预测】1. 计数原理的应用2. 排列数的应用3. 组合数的应用【知识清单】1. 分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=__m1+m2+…+m n__种不同的方法.知识点二分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=__m1·m2·…·m n__种不同的方法.重要结论分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互联系、相互依存,只有各个步骤都完成了才算完成这件事.2.排列与排列数(1)排列的定义:从n个__不同__元素中取出m(m≤n)个元素,按照一定的__顺序__排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的__所有不同排列__的个数叫做从n个不同元素中取出m个元素的排列数,用符号__A m n__表示.(3)排列数公式:A m n=__n(n-1)(n-2)…(n-m+1)__.(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,A n n=n×(n-1)×(n-2)×…×2×1=__n!__.排列数公式写成阶乘的形式为A m n=n!(n-m)!,这里规定0!=__1__.3.组合与组合数(1)组合的定义:一般地,从n个__不同__元素中取出m(m<n)个元素__合成一组__,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的__所有不同组合__的个数,叫做从n个不同元素中取出m个元素的组合数,用符号__C m n__表示.(3)组合数的计算公式:C m n=A m nA m m=n!m!(n-m)!=n(n-1)(n-2)…(n-m+1)m!,这里规定Cn=__1__.(4)组合数的性质:①C m n=__C n-mn __;②C m n+1=__C m n__+__C m-1n__.重要结论对于有附加条件的排列、组合应用题,通常从三个途径考虑(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.【考点分类剖析】考点一计数原理例1.6人分乘两辆不同的出租车,每辆车最多乘4人,则不同的乘车方案数为(C) A.70B.60C.50D.40[解析]C46+C36+C26=50或C46·A22+C36=50.故选C.例2.要将甲、乙、丙、丁4名同学分别到A,B,C三个班级中,要求每个班级至少分到一人,则甲被分到A班的分法种数为__12__.(用数字作答)[解析]由题意可分两类,第一类,甲与另一人一同分到A,有6种;第二类,甲单独在A,则两人在B有C23=3种或两人在C有C23=3种,共有6种,共12种.例3(1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(B)A.24B.18C.12D.9(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有__120__种不同的报名方法.[解析](1)从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).【变式探究】1.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有__36__种(用数字作答).2.某县政府为了加大对一贫困村的扶贫力度,研究决定将6名优秀干部安排到该村进行督导巡视,周一至周四这四天各安排1名,周五安排2名,则不同的安排方法共有(B)A.320种B.360种C.370种D.390种[解析] 1.第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).2.第一步安排周五2名,有C26=15(种)方法;第二步安排周一至周四,有A44=24(种)方法,故不同的安排方法共有15×24=360种,故选B.考点二两个计数原理的综合应用例1.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的个数有( D )A .512B .192C .240D .108[解析] 能被5整除的四位数末位是0或5的数,因此分两类,第一类,末位为0时,其它三位从剩下的数中任意排3个即可,有A 35= 60个,第二类,末位为5时,首位不能排0,则首位只能从1,2,3,4选1个,第二位和第三位从剩下的4个数中任选2个即可,有A 14·A 24= 48个,根据分类计数原理得可以组成60+48 =108个不同的能被5整除的四位数,故选D .例2.将一个四棱锥的每个顶点染上1种颜色,并使同一条棱的两个端点异色,若只有4种颜色可供使用,则不同的染色方法有( B )A .48种B .72种C .96种D .108种[解析]如图四棱柱P -ABCD ,涂P 有4种方法⇒涂A 有3种方法⇒涂B 有2种方法⇒涂C ⎩⎪⎨⎪⎧ C 与A 同色有1种方法C 与A 不同色有1种方法⇒涂D ⎩⎪⎨⎪⎧有2种方法有1种方法,则不同的涂法共有4×3×2×(1×2+1×1)=72种,故选B . 【变式探究】1.如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为( C )A .24种B .48种C .72种D .96种2.由数字0,1,2,3组成的无重复数字的4位数,比2 019大的有()个(B)A.10B.11C.12D.13考点三排列问题——自主练透例1.有3名男生、4名女生,在下列不同条件下,不同的排列方法总数,分别为:(1)选其中5人排成一排;__2_520__(2)排成前后两排,前排3人,后排4人;__5_040__(3)全体排成一排,甲不站排头也不站排尾;__3_600__(4)全体排成一排,女生必须站在一起;__576__(5)全体排成一排,男生互不相邻;__1_440__(6)全体排成一排,甲、乙两人中间恰好有3人;__720__(7)全体排成一排,甲必须排在乙前面;__2_520__(8)全部排成一排,甲不排在左端,乙不排在右端.__3_720__ [解析](1)从7个人中选5个人来排,是排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人排在前排,有A37种方法,余下4人排在后排,有A44种方法,故共有A37·A44=5 040(种).事实上,本小题即为7人排成一排的全排列,无任何限制条件.(3)优先法:解法一:(元素分析法)甲为特殊元素.先排甲,有5种方法;其余6人有A66种方法,故共有5×A66=3 600种.解法二:(位置分析法)排头与排尾为特殊位置.排头与排尾从非甲的6个人中选2个排列,有A26种方法,中间5个位置由余下5人进行全排列,有A55种方法,共有A26×A55=3 600种.(4)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有A44种方法,再将4名女生进行全排列,也有A44种方法,故共有A44×A44=576种.(5)(插空法)男生不相邻,而女生不作要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出5个空位中任选3个空位排男生,有A35种方法,故共有A44×A35=1 440种.(6)把甲、乙及中间3人看作一个整体,第一步先排甲、乙两人,有A22种方法;第二步从余下5人中选3人排在甲、乙中间,有A35种;第三步把这个整体与余下2人进行全排列,有A33种方法.故共有A22·A35·A33=720种.(7)消序法:A772!=2 520.(8)间接法:A77-2A67+A55=3 720.位置分析法:分甲在右端与不在右端两类.甲在右端的排法有A66(种)排法,甲不在右端的排法有5×5A55(种)排法,∴共有A66+25A55=3 720(种).【变式探究】1.某车队有6辆车,现要调出4辆按一定的顺序出去执行任务,要求甲、乙两车必须参加,且甲车要先于乙车开出,则共有__72__种不同的调度方法.(用数字填写答案)2.2020年3月31日,某地援鄂医护人员A,B,C,D,E,F,6人(其中A是队长)圆满完成抗击新冠肺炎疫情任务返回本地,他们受到当地群众与领导的热烈欢迎.当地媒体为了宣传他们的优秀事迹,让这6名医护人员和接见他们的一位领导共7人站一排进行拍照,则领导和队长站在两端且BC相邻,而BD不相邻的排法种数为(D)A.36种B.48种C.56种D.72种[解析](1)C24C24A22=72.或C24·A442=72(2)①领导和队长站在两端,有A22=2种情况,②中间5人分2种情况讨论:若BC相邻且与D相邻,有A22A33=12种安排方法,若BC相邻且不与D相邻,有A22A22A23=24种安排方法,则中间5人有12+24=36种安排方法,则有2×36=72种不同的安排方法;故选D.考点四组合问题——师生共研例1.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为(B)A.85B.49C.56D.28[解析]∵丙没有入选,∴可把丙去掉,总人数变为9个.∵甲、乙至少有1人入选,∴可分为两类:一类是甲、乙两人只选一人的选法有C12·C27=42(种),另一类是甲、乙都入选的选法有C22·C17=7(种),根据分类加法计数原理知共有42+7=49(种).例2.福建省第十六届运动会于2018年在宁德召开,组委会预备在会议期间将A,B,C,D,E,F这六名工作人员分配到两个不同的地点参与接待工作.若要求A,B必须在同一组,且每组至少2人,则不同的分配方法有(D)A.15种B.18种C.20种D.22种[解析]先从两个不同的地点选出一地点分配A,B两人,有C12=2(种)情况,再将剩余4人分入两地有三种情况,4人都去A,B外的另一地点,有1种情况;有3人去A,B外的另一地点,有C34=4(种)情况;有2人去A,B外的另一地点,有C24=6(种)情况.综上,共有2×(1+4+6)=22(种),故选D.【变式探究】我国进入双航母时代,航母编队的要求是每艘航母配2~3艘驱逐舰,1~2艘核潜艇.船厂现有5艘驱逐舰和3艘核潜艇全部用来组建航母编队,则不同的组建方法种数为(D)A.30B.60C.90D.120[解析](1)问题等价于将这3盏关着的灯插入4盏亮着的灯形成的5个空档中,所以关灯方案共有C35=10种.(2)有两种情况,①一艘航母配2艘驱逐舰和1艘核潜艇,另一艘航母配3艘驱逐舰和2艘核潜艇,②一艘航母配2艘驱逐舰和2艘核潜艇,另一艘航母配3艘驱逐舰和1艘核潜艇,C12·(C25C13+C25C23)=120,故选D.考点五排列、组合的综合应用例1.(1)某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有__120__种.(2)某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课方案的种数是(A)A.16B.24C.8D.12[解析](1)①当甲在首位,丙、丁捆绑,自由排列,共有A44×A22=48种;②当甲在第二位,首位不能是丙和丁,共有3×A33×A22=36种;③当甲在第三位,前两位分为是丙、丁和不是丙、丁两种情况,共A22×A23+A23×A22×A22=36种,因此共48+36+36=120种.(2)根据题意,分三步进行分析,①要求语文与化学相邻,将语文和化学看成一个整体,考虑其顺序,有A22=2(种)情况;②将这个整体与英语全排列,有A22=2(种)情况,排好后,有3个空位;③数学课不排第一节,有2个空位可选,在剩下的2个空位中任选1个,安排物理,有2种情况,则数学、物理的安排方法有2×2=4(种),则不同排课方案的种数是2×2×4=16,故选A.例2.从5名学生中选出4名分别参加数学、物理、化学、生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为(D)A.48B.72C.90D.96[解析]由于甲不参加生物竞赛,则安排甲参加另外3场竞赛或甲不参加任何竞赛.①当甲参加另外3场竞赛时,共有C13·A34=72(种)选择方案;②当甲学生不参加任何竞赛时,共有A44=24(种)选择方案.综上所述,所有参赛方案有72+24=96(种).例3.按下列要求分配6本不同的书,各有多少种不同的分配方式?将答案填在对应横线上.①分成三份,1份1本,1份2本,1份3本;__60__②甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;__360__③平均分成三份,每份2本;__15__④平均分配给甲、乙、丙三人,每人2本;__90__;⑤分成三份,1份4本,另外两份每份1本;__15__⑥甲、乙、丙三人中,一人得4本,另外两人每人得1本;__90__ ⑦甲得1本,乙得1本,丙得4本.__30__ [解析](1)①C 16C 25C 33=60;②C 16C 25C 33A 33=360;③C 26C 24C 22A 33=15;④C 26C 24C 22=90;⑤C 26=15;⑥C 46A 33=90; ⑦C 16C 15C 44=30.【变式探究】1.某学校组织劳动实习,其中两名男生和两名女生参加农场体验活动,体验活动结束后,农场主人与四名同学站一排合影留念,已知农场主人站在中间,两名男生不相邻,则不同的站法共有__16__种. 2.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( B ) A .36种 B .42种 C .48种D .60种3.为抗击新冠疫情,5名专家前往支援三家定点医院,要求每家医院至少分到一名专家,则不同的分配方案有__150__种.[解析] (1)先排男生甲有C 14种方法,再排男生乙有C 12种方法,最后排两女生有A 22种方法,故共有C 14C 12A 22=16种方法.另解(间接法):农场主人在中间共有A 44=24种站法,农场主人在中间,两名男生相邻共有2A 22·A 22=8种站法,故所求站法共有24-8=16种.(2)根据题意,最左端只能排甲或乙,可分为两种情况讨论: ①甲在最左端,将剩余的4人全排列,共有A 44=24种不同的排法;②乙在最左端,甲不能在最右端,有3种情况,将剩余的3人全排列,安排好在剩余的三个位置上,此时共有3A 33=18种不同的排法,由分类加法计数原理,可得共有24+18=42种不同的排法,故选B . (3)5名专家前往支援三家定点医院,要求每家医院至少分到一名专家,则有两种情况,①将5名专家分成三组,一组3人,另两组都是1人,有C 35=10种方法,再将3组分到3个医院,共有10·A 33=60种不同的分配方案,②将5名专家分成三组,一组1人,另两组都是2人,有C 15·C 24A 22=15种方法,再将3组分到3个医院,共有15·A 33=90种不同的分配方案,根据分类加法计算原理可得一共有60+90=150种不同的分配方案.。
课题: 10.1加法原理和乘法原理(一)教学目的:1,激发学生的兴趣.2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力.3.会利用两个原理分析和解决一些简单的应用问题.教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解教具:多媒体、实物投影仪内容分析:两个基本原理是排列、组合的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以在教学目标中特别提出要使学生学会准确地应用两个基本原理分析和解决一些简单的问题对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样的,目的就在于帮助学生对这一知识的理解与应用两个原理是教与学重点,又具有相当难度.加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小”,即“分解”的思想.更具体地说就是把事物分成类或分成步去数.“分类”、“分步”,看似简单,不难理解,却是全章的理论依据和基本方法,贯穿始终,所以,是举足轻重的重点.两个原理,要能在各种场合灵活应用并非易事,所以,着实有其难用之处教学过程:一、[设置情境]――引入新课由“不问能知姓,量手定终身,测不准不要钱,测准要两元”的街头骗术引入。
地上有一大张纸上有16个方格每个方格有16个姓,另有16张卡片且每张卡片上有16个姓,找到有你姓的卡片盖住有你姓的方格,然后“高人”装模作样测量手长就可以算出你的姓。
第一节分类加法计数原理与分步乘法计数原理【知识重温】一、必记3个知识点1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,则完成这件事情,共有N=①____________________种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,…,完成第n步有m n种不同的方法,那么完成这件事情共有N=②____________________种不同的方法.3.两个原理的区别与联系分类加法计数原理与分步乘法计数原理,都涉及③____________________的不同方法的种数.它们的区别在于:分类加法计数原理与④________有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与⑤________有关,各个步骤⑥________,只有各个步骤都完成了,这件事才算完成.二、必明2个易误点1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.()二、教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各取一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12B.8C.6D.43.如图,从A城到B城有3条路;从B城到D城有4条路;从A 城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.三、易错易混4.已知a,b∈{2,3,4,5,6,7,8,9},则log a b的不同取值个数为________.5.某项测试要过两关,第一关有3种测试方案,第二关有5种测试方案,某人参加该项测试,不同的测试方法种数为() A.3+5 B.3×5 C.35D.53202210.1四、走进高考6.[2020·山东卷]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种考点一分类加法计数原理[自主练透型]1.[2021·湘赣十四校联考]有一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为()A.8B.15C.18D.302.椭圆错误!+错误!=1的焦点在x轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.3.如图,从A到O有________种不同的走法(不重复过一点).悟·技法1。
高三数学(理)一轮复习教案第十编计数原理总第51期§10.1 两个基本计数原理基础自测1.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法有种.答案122.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法有种.答案 53.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有种不同的选法.答案204.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有种.答案365.有一项活动需在3名老师,8名男同学和5名女同学中选人参加,(1)若只需一人参加,有多少种不同的选法?(2)若需一名老师,一名学生参加,有多少种不同的选法?(3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法?解(1)“完成这件事”只需从老师、学生中选1人即可,共有3+8+5=16种.(2)“完成这件事”需选2人,老师、学生各1人,分两步进行:选老师有3种方法,选学生有8+5=13种方法,共有3×13=39种方法.(3)“完成这件事”需选3人,老师、男同学、女同学各一人,可分三步进行,选老师有3种方法,选男同学有8种方法,选女同学有5种方法,共有3×8×5=120种方法.例题精讲例1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解方法一按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类计数原理知,符合题意的两位数的个数共有: 8+7+6+5+4+3+2+1=36(个).方法二按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个,所以按分类计数原理共有:1+2+3+4+5+6+7+8=36(个).例2已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?解(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步计数原理,得到平面上的点数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步计数原理,得到第二象限点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得不在直线y=x上的点共有36-6=30个.例3现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种)(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法,所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种)巩固练习1.从1到20这20个整数中,任取两个相加,使其和大于20,共有几种取法?解当一个加数是1时,另一个加数只能是20,1种取法.当一个加数是2时,另一个加数可以是19,20,2种取法.当一个加数是3时,另一个加数可以是18,19,20,3种取法.……当一个加数是10时,另一个加数可以是11,12,…,20,10种取法.当一个加数是11时,另一个加数可以是12,13,…,20,9种取法.……当一个加数是19时,另一个加数是20,1种取法.由分类计数原理可得共有1+2+3+…+10+9+8+…+1=100种取法.2.某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把这种要求的号全买下,至少要花多少元钱?解先分三步选号,再计算总钱数.按号段选号,分成三步.第一步从01至17中选3个连续号,有15种选法;第二步从19至29中选2个连续号,有10种选法;第三步从30至36中选1个号,有7种选法.由分步计数原理可知,满足要求的号共有15×10×7=1 050(注),故至少要花1 050×2=2 100(元).3.某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)任选1个班的学生参加社会实践,有多少种不同的选法?(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?解(1)分三类:第一类从高一年级选1个班,有6种不同方法;第二类从高二年级选一个班,有7种不同方法;第三类从高三年级选1个班,有8种不同方法.由分类计数原理,共有6+7+8=21种不同的选法.(2)每种选法分三步:第一步从高一年级选一个班,有6种不同方法;第二步从高二年级选1个班,有7种不同方法;第三步从高三年级选1个班,有8种不同方法.由分步计数原理,共有6×7×8=336种不同的选法.(3)分三类,每类又分两步.第一类从高一、高二两个年级各选一个班,有6×7种不同方法;第二类从高一、高三两个年级各选1个班,有6×8种不同方法;第三类从高二、高三年级各选一个班,有7×8种不同的方法,故共有6×7+6×8+7×8=146种不同选法.回顾总结知识方法思想课后作业一、填空题1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有种.答案322.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位中带有数字“4”或“7”的一律作为优惠卡,则这组号码中“优惠卡”共有个.答案 5 9043.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列共有个.答案84.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.(第4题)(第5题)(第6题)答案1805.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有种.答案486.将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有种.答案127.在2008年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1、2、3、4、5、6、7、8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有种.答案 2 8808.若一个m,n均为非负整数的有序数对(m,n),在做m+n的加法时各位均不会进位,则称(m,n)为“简单的”有序数对,m+n称为有序数对(m,n)的值,那么值为1 942的“简单的”有序数对的个数是 .答案300二、解答题9.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解(1)要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,四个都报完才算完成,于是按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有:3×3×3×3=81种报名方法.(2)完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,于是应以“确定三项冠军得主”为线索进行分步.而每项冠军是四人中的某一人,有4种可能的情况,于是共有:4×4×4=43=64种可能的情况.10.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?解完成该件事可分步进行.涂区域1,有5种颜色可选.涂区域2,有4种颜色可选.涂区域3,可先分类:若区域3的颜色与2相同,则区域4有4种颜色可选.若区域3的颜色与2不同,则区域3有3种颜色可选,此时区域4有3种颜色可选.所以共有5×4×(1×4+3×3)=260种涂色方法.11.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的元素,又点P到原点的距离|OP|≥5.求这样的点P的个数.解按点P的坐标a将其分为6类:(1)若a=1,则b=5或6,有2个点;(2)若a=2,则b=5或6,有2个点;(3)若a=3,则b=5或6或4,有3个点;(4)若a=4,则b=3或5或6,有3个点;(5)若a=5,则b=1,2,3,4,6,有5个点;(6)若a=6,则b=1,2,3,4,5,有5个点;∴共有2+2+3+3+5+5=20(个)点.12.将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?解设由左到右五块田中要种a,b,c三种作物,不妨先设第一块种a,则第二块可种b,c,有两种选法.同理,如果第二块种b,则第三块可种a和c,也有两种选法,由分步计数原理共有1×2×2×2×2=16.其中要去掉ababa和acaca两种方法.故a种作物种在第一块田中时的种法数有16-2=14(种).同理b种或c种作物种在第一块田中时的种法数也都为14种.所以符合要求的种植方法共有3×(2×2×2×2-2)=3×(16-2)=42(种).。