10-任意对任意激励的响应-傅里叶积分和拉氏变换解析
- 格式:ppt
- 大小:304.50 KB
- 文档页数:42
拉氏变换和傅里叶变换的关系一、拉氏变换1、拉氏变换的定义:如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为()()()0e d st F s L f t f t t ∞-=∆⎡⎤⎣⎦⎰ (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ⎰∞-0e st 称为拉普拉斯积分; )(s F 是函数)(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。
式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。
2、拉氏变换的意义工程数学中常用的一种积分变换。
它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。
对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。
拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。
在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。
在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用二、傅里叶变换1、傅里叶变换的定义:f(t )是t 的函数,如果t 满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。
则有下图①式成立。
称为积分运算f(t )的傅立叶变换,②式的积分运算叫做F (ω)的傅立叶逆变换。
F (ω)叫做f(t )的像函数,f(t )叫做 F (ω)的像原函数。
F (ω)是f(t )的像。
f(t )是F (ω)原像。
第一章 信号与系统的基本概念1.信号、信息与消息的差别?信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2.什么是奇异信号?函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。
例如:单边指数信号 (在t =0点时,不连续),单边正弦信号 (在t =0时的一阶导函数不连续)。
较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。
3.单位冲激信号的物理意义及其取样性质?冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。
它表达的是一类幅度很强,但作用时间很短的物理现象。
其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰ 4.什么是单位阶跃信号?单位阶跃信号也是一类奇异信号,定义为:10()00t u t t >⎧=⎨<⎩它可以表示单边信号,持续时间有限信号,在信号处理中起着重要的作用。
5.线性时不变系统的意义同时满足叠加性和均匀性以及时不变特性的系统,称为线性时不变系统。
即:如果一个系统,当输入信号分别为1()x t 和2()x t 时,输出信号分别是1()y t 和2()y t 。
当输入信号()x t 是1()x t 和2()x t 的线性叠加,即:12()()()x t ax t bx t =+,其中a 和b 是任意常数时,输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+;且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。
其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性;如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。
·39·傅立叶变换与拉普拉斯变换的关系陈基炜1朱振华1郭永新2薛 美2韩笑征3(1.江苏省昆山市中医医院 江苏 昆山 215300;2.泰山医学院放射学院 山东 泰安 271000)(3.贝朗爱墩济南办事处 山东 济南 250000)【摘 要】傅立叶变换和拉普拉夸变换之间存在着一定的关系,在一定的条件下,傅立叶变换可以转换为拉普拉夸变换,而且在另一些条件下拉普拉夸变换可以转换为傅立叶变换。
本文对他们的关系作了一些讨论。
【关键词】傅立叶变换 拉普拉夸变换 关系【中图分类号】G4 【文献标识码】A 【文章编号】2095-3089(2017)27-0039-021.引言 随着计算机、数字集成电路和通信技术的发展,傅立叶变换集中用于CT 成像方面。
锥形束CT(Cone Beam Computed Tomography,CBCT),而CBCT 图像重建算法主要分为解析重建算法和迭代重建算法。
解析重建算法主要以基于滤波反投影(Filtered Back Projection,FBP)算法的FDK 算法为主。
FBP 算法适用于平行束和扇形束图像重建,探测器为一维探测器。
此算法的实现流程包括:第一步,求出投影数据的一维傅里叶变换;第二步,对傅里叶变换后的数据乘以斜坡滤波器的传递函数;第三步,对第二步中的结果进行一维傅里叶反变换得到最终的重建图像[1]。
而拉普拉夸变换集中用于图像锐化突出骨骼的更多细节来增强图像,骨的边缘可以使用梯度变换来达到。
平滑过的梯度图像将用于掩蔽拉普拉夸图像,梯度操作对噪声和小细节的响应要比拉普拉夸操作的响应弱,在一定程度上可以平滑随机噪声[2]。
傅氏变换与拉氏变换在许多方面显示了他们的重大作用,尤其是应用在通讯领域,图像处理,和信号处理方面。
傅立叶变换与拉普拉夸变换虽是两个不同的变换,但它们之间存在着一定的关系,本文对它们之间的关系做了简单的讨论。
2.傅立叶变换与拉普拉斯变换的定义2.1傅立叶变换定义:若函数满足傅立叶积分定理中的条件(1.在任一有限区域上满足狄拉克雷条件2.在无限区间(+−∞∞,)上绝对可积[3]),则在夸(t )的连续点处, 有1()[(())]2j j t f t f d d e e ωτωττωπ+∞+∞−−∞−∞=∫∫ 成立, 设()()j t F f t dt e ωω+∞−−∞=∫ 式-1 则1()()2j t f t F d e ωωωπ+∞−∞=∫式-2 (t )和()F ω通过指定的积分运算可以互相表达,其中式-1称为夸(t )的傅立叶变换,式-2称为()F ω的傅立叶逆变换)。
1。
关于傅里叶变换变换?(来自百度知道)答:fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,而fourier变换此时可看成仅在jΩ轴);z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT。
——参考郑君里的《信号与系统》。
傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。
所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。
对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。
已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。
这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。
所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。
傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。
我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。
我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。
目 录第一部分 考研真题精选2008年同等学力申硕《机械工程学科综合水平全国统一考试》真题及详解2009年同等学力申硕《机械工程学科综合水平全国统一考试》真题及详解2010年同等学力申硕《机械工程学科综合水平全国统一考试》真题及详解第二部分 章节题库第一章 机械工程控制基础第二章 机械动力学基础第三章 现代设计方法第四章 CAM和先进制造技术第五章 机电一体化技术第六章 机车车辆动力学第七章 汽车动力学第一部分 考研真题精选2008年同等学力申硕《机械工程学科综合水平全国统一考试》真题及详解注:本试卷满分为100分,其中第一部分必考题60分,每位考生必答;第二部分选考题40分,共五组试题,任选一组作答。
多选者只按首选计分。
第一部分 必考题(两组,共60分)A组(共30分)一、填空题(本大题共8空,每空1分,共8分)1控制系统的基本性能要求一般有______、______和______。
【答案】稳定性;快速性;准确性【解析】本题的考点是控制系统的基本性能要求,通常指稳定性、快速性和准确性。
2若系统的______是线性的,则这种系统是______,线性系统最重要的特性是______原理。
【答案】数学模型的表达式;线性系统;可以运用叠加本题的考点是线性系统的定义和特征。
线性系统指数学模型表达式是线性的系统;【解析】线性系统可以运用叠加原理,即系统在多个外加作用下的响应等于各个外加作用单独作用下的响应之和。
3方块图是系统中各环节的功能和信号流向的图解表示方法,由______、______和分支点等构成。
【答案】基本方块;相加点【解析】本题的考点是方块图的定义。
方块图表示系统中各环节的功能和信号流向,包括基本方块、相加点和分支点。
二、简答题(本大题共4小题,每小题3分,共12分)1试解释机械工程系统中的信息传递、反馈及反馈控制。
【答案】(1)信息及信息传递①信息:指所有能表达一定含义的信号、密码、情报和消息。
傅里叶变换、拉氏变换、z变换的含义1、什么是傅里叶变换?答:fourier变换是将连续的时间域信号转变到频率域;它可以说是laplace变换的特例,laplace变换是fourier变换的推广,存在条件比fourier变换要宽,是将连续的时间域信号变换到复频率域(整个复平面,而fourier变换此时可看成仅在jΩ轴);z变换则是连续信号经过理想采样之后的离散信号的laplace变换,再令z=e^sT时的变换结果(T为采样周期),所对应的域为数字复频率域,此时数字频率ω=ΩT。
——参考郑君里的《信号与系统》。
傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的。
所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。
对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。
已经说过,傅里叶变换是把各种形式的信号用正弦信号表示,因此非正弦信号进行傅里叶变换,会得到与原信号频率不同的成分——都是原信号频率的整数倍。
这些高频信号是用来修饰频率与原信号相同的正弦信号,使之趋近于原信号的。
所以说,频谱上频率最低的一个峰(往往是幅度上最高的),就是原信号频率。
傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的——实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。
我的语言可能比较晦涩,但我已尽我所能向你讲述我的一点理解——真心希望能对你有用。
我已经很久没在知道上回答过问题了,之所以回答这个问题,是因为我本人在学习傅里叶变换及拉普拉斯变换的过程中着实受益匪浅——它们几乎改变了我对世界的认识。