超声波水表和电磁流量计优缺点比较
- 格式:ppt
- 大小:2.71 MB
- 文档页数:25
各种流量计的优缺点和适合的介质流量计是一种广泛应用于流体工程领域的仪器,用于测量和监测流体的流量。
根据工作原理和结构特点的不同,流量计可以分为多种类型,每种类型都有其独特的优点、缺点和适用介质。
下面将详细介绍几种常见的流量计。
1.机械式流量计机械式流量计是一种基于机械原理测量流体流量的仪器。
最常见的机械式流量计包括涡轮流量计、叶片式流量计和齿轮式流量计等。
(1)涡轮流量计优点:结构简单,易于安装和维护;适用范围广,可用于测量各种液态介质的流量;测量精度高,可达到±1%;响应速度快。
缺点:对流体介质的温度、压力和粘度等参数要求较高;易受颗粒物质的干扰。
适用介质:适用于各种液态介质,如石油、天然气、化工介质等。
(2)叶片式流量计优点:测量精度高,可达到±0.5%;结构简单,价格相对较低;可承受较高的工作压力。
缺点:叶片易受颗粒物与粘度高的介质的磨损;不适用于气体介质;需要一定的直管段来保证测量精度。
适用介质:适用于各种液态介质,如清水、石油和化工介质等。
(3)齿轮式流量计优点:测量精度高,可达到±0.2%;结构简单,工作可靠;适用于高温和高粘度液体的测量。
缺点:对流体介质的温度和粘度等参数要求较高;不适用于气体介质的测量;对颗粒物质敏感。
适用介质:适用于各种液态介质,尤其是粘度较高的液体。
2.电磁式流量计电磁式流量计是利用法拉第电磁感应原理进行测量的仪器,广泛用于液体和气体的流量测量。
优点:可适用于各种导电介质的流量测量;测量范围广,可达到远高于其他流量计的比例;无需添加额外的压力损失装置。
缺点:对被测流体的电导率要求较高;易受磁场干扰。
适用介质:适用于液体和气体,如腐蚀性介质、污水、纯水等。
3.热式流量计热式流量计是通过测量流体对热能的吸收或带走来确定流量的仪器。
优点:对流体介质的温度、压力和粘度要求较低;适用于小流量测量;响应速度快。
缺点:对流体介质的热导率要求较高;易受气泡和颗粒物的干扰。
在水资源管理中取水计量设施的应用分析滴要:水资源管理工作包括:实行计划用水、节约用水,征收水资源费和日常监督管理等各项工作,都需要对取用水单位或个人的取用水数量进行计量,以达到科学管理、合理利用水资源的目的。
为此,必须安装水计量设施,并保证其正常运行和准确计量。
本文简述了取水计量设施在水资源管理中的重大意义以及水表及其常用类型,分析了各类计量设施的优缺点,针对计量设施应用管理,提出了改进和完善的建议。
关键词:计量设施;水资源;优点;管理一、计量设施在水资源管理中的意义我国西北部地区属于干旱缺水地区,并且地下水超采严重,因此对水资源进行科学有效的管理和合理利用是应对水资源短缺,实现水资源优化配置的重要手段。
准确的取水计量数据,对保护宝贵的水资源、节约用水、提高经济效益、保障水资源可持续利用具有重要意义。
作为水资源总量控制和定额管理的重要技术装备和手段,地下水取水计量设备的应用发展、产品质量等状况是影响地下水保护、加强地下水管理的重要因素。
二、水表及其常用类型全面实施取水计量监督管理,实现用水计量科学化、信息化,是贯彻国家水法规、促进计划用水和节约用水,依法征收水资源费的一项重要基础工作,同时又是贯彻国家计量法规、维护国家及广大取水户的利益、保障正常生产和社会经济秩序的需要。
水表是重要的资源和能源贸易结算计量仪表,也是涉及面最广的法制计量仪表之一,是一种以其使用介质和用途命名的仪表,专门用于测量管道水流累积体积,广泛用于各个领域。
通过电子技术与机械式水表的结合实现水表多种形式的智能化功能,出现了比较先进电子远传水表和IC 卡智能式水表。
目前某市常用水表主要有机械式水表和IC 卡智能水表,下面分别对几种水表的工作原理进行介绍说明。
1、机械水表。
常用的旋翼式水表和螺翼式水表属于速度式计量水表,又称叶轮水表。
其工作原理与涡轮流量计基本相同,主要是利用流管中水对存在于流管中的叶轮或叶板冲击所形成的水流速与叶轮转速成正比这一原理进行工作的。
各类流量计工作原理优缺点与用途流量计是用来测量流体中的流量的仪器。
不同类型的流量计有不同的工作原理、优缺点和用途。
1.扬程罐:工作原理:扬程罐是一种基于液位高度来测量流量的设备。
它利用液位的变化来确定流体的流量。
当流体通过扬程罐时会造成液位变化,通过测量液位变化的速度来计算流体的流量。
优点:扬程罐结构简单,操作方便,适用于一般的低流速流体测量。
缺点:扬程罐不适用于高流速流体,精度有限。
用途:常用于低流速的物料流量测量,如水流量测量、油流量测量等。
2.差压流量计:工作原理:差压流量计是基于流体通过管道时,会产生差压的原理来测量流量。
通过测量流体通过流量计前后的压差来计算流体的流量。
优点:差压流量计精度高,可适用于各种流体和工况。
缺点:价格较高,需要定期校准。
用途:差压流量计适用于各种工况和流体,广泛应用于化工、石油、制药等行业中的流量测量。
3.涡街流量计:工作原理:涡街流量计是通过测量流体通过流量计时,产生的涡街频率和流体流速成正比的原理来测量流量。
利用流体通过流量计时形成的涡街产生的压力脉动,通过传感器将脉动转化为电信号,进而测量流体流速。
优点:具有良好的线性和重复性,可用于各种流体测量。
缺点:对液体含固体颗粒较大的流体不适用。
用途:涡街流量计适用于各种液体和气体的测量,广泛应用于供暖、供水、煤气等行业中的流量测量。
4.磁性流量计:工作原理:磁性流量计通过测量液体中的电磁感应来测量流体的流量。
当液体通过磁性流量计时,会在液体中产生垂直于流体流向的电磁感应,通过测量电磁感应的大小来计算流体流量。
优点:能够测量各种液体和气体,无压力损失。
缺点:对液体的电导率要求较高。
用途:磁性流量计适用于对液体和气体进行流量测量的场合,广泛应用于化工、石油、环保等行业中的流量测量。
5.超声波流量计:工作原理:超声波流量计利用超声波在流体中传播的速度来测量流体的流量。
通过向流体发送超声波信号,测量超声波传播的时间,根据传播时间来计算流体的流速和流量。
常见流量计选型对比测量特点两端装有检测线圈,质量流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。
LG型孔板流量计又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成。
采用均压环、一体型结构。
积式流量计的一种。
在一根由下向上扩大的垂直锥管中, 圆形横截面的浮子的重力是由液体动力承受的, 浮子可以在锥管内自由地上升和下降。
在流速和浮力作用下上下运动,与浮子重量平衡后,通过磁耦合传到与刻度盘指示流量。
金属管浮子流量计主要由三大部分组成a、指示器(智能型指示器,就地指示器)b、浮子c、锥形测量室无强腐蚀性、食品、油,柴油等液体。
液体涡轮流量计由涡轮和装于外部的检脉冲器构成,液体流进涡轮,引起转子旋转,特定的内径使转子转速直接与流量成比例。
缺点介绍:蒸气等多种介质。
涡街流量计是应用流体振荡原理来测量流量的,流体在管道中经过涡街流量变送器时,在三角柱的旋涡发生体后上下交替产生正比于流速的两列旋涡,旋涡的释放频率与流过旋涡发生体的流体平均速度及旋涡发生体特征宽度有关。
在流体中设置三角柱型旋涡发生体,则从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡门旋涡煤水浆、双氧水、(一体)式电磁流量计由传感器和转换器两部分构成。
它是基于法拉第电磁感应定律工作日的用来测量导电率大于5μS/cm导电液体的体积流量,是一种测量导电介质体积流量的感应式仪表。
除可测量一般导电液体的体积流量外,还可用于测量强酸强碱等强腐蚀液体和泥浆、矿浆、纸浆等均匀的液固两相悬浮液体的体积流量。
超声波流量计采用时差式测量原理:一个探头发射信收到,同时,第二个探头同样发射信号被第一个探头接收到,由于受到介质流速的影响,二者存在时间差Δt,根据推算可以得出流速V和时间差Δt之间的换算关系V=(C2/2L)×Δt,进而可以得到流量值Q。
空气流量计是根据法拉第电磁感应定律进行流量测量的流量计矿浆的流体流量。
各种流量计工作原理与优缺点目录流量计总则 (3)1、按测量原理分类 (4)2、按流量计结构原理分类 (5)1.差压式流量计 (5)2.孔板流量计 (7)3.浮子流量计 (8)4.容积式流量计 (9)5.污水流量计种类 (11)6.涡轮流量计 (12)7.涡街流量计(USF) (14)8.电磁流量计(EMF) (17)9.超声流量计 (20)10.质量流量计 (24)11.热式质量流量计(恒温差TMF) (25)12.科里奥利质量流量计(CMF) (25)13.明渠流量计 (27)14.静电流量计 (27)(electrostatic flowmeter) (27)15.复合效应流量仪表 (27)(combined effects meter) (27)16.转速表式流量传感器 (28)(tachmetric flowrate sensor) (28)流量计总则测量流体流量的仪表统称为流量计或流量表。
流量计是工业测量中重要的仪表之一。
随着工业生产的发展,对流量测量的准确度和范围的要求越来越高。
流量测量技术日新月异,为了适应各种用途,各种类型的流量计相继问世,目前已投入使用的流量计已超过 100 种。
每种产品都有它特定的适用性,也都有它的局限性。
按测量原理分为力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。
按流量计的结构原理进行分类,有容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计。
按测量对象划分,就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。
总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。
因此, 以严格意义来分流量计和总量表已无实际意义。
1、按测量原理分类1.力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。
常见流量计的不同用途1.涡轮流量计:涡轮流量计是一种利用流体通过涡轮产生旋转力矩来测量流量的装置。
它在工业生产中被广泛应用于液体和气体的流量测量。
涡轮流量计可以用于测量液态燃料、天然气、蒸汽、水和空气等流体的流量,广泛应用于化工、石化、供热、供气、供水等领域。
2.电磁流量计:电磁流量计是一种利用电磁感应原理测量导电液体流量的装置。
它可以应用于各种液体(如水、酸、碱、乳液等)的流量测量,具有精确、可靠、维护方便等优点。
电磁流量计广泛应用于给水、污水处理、化工、石油、冶金等领域。
3.转子流量计:转子流量计是一种利用液体通过转子流动时产生转动损失与流动速度成正比的原理来测量流量的装置。
它可以用于测量各种液体(如燃油、化工原料、廉价介质等)的流量,并广泛应用于石化、能源、冶金、制药、农业等领域。
4.肯尼迪流量计:肯尼迪流量计是一种利用流体通过肯尼迪管产生压力差以及差压与流量成正比的原理来测量流量的装置。
它可以用于测量气体和液体流体的流量,广泛应用于石化、化工、冶金、电力、供暖等领域。
5.悬臂管流量计:悬臂管流量计是一种利用液体或气体通过悬臂管(也称为插入式流量计)时产生压力差以及差压与流量成正比的原理来测量流量的装置。
它可以应用于测量各种气体和液体流体的流量,并广泛应用于石油、化工、电力、冶金、供暖等领域。
6.脉冲流量计:脉冲流量计是一种利用流体通过流量计产生脉冲信号来测量流量的装置。
它可以应用于各种气体和液体流体的流量测量,具有结构简单、体积小、价格低廉等特点。
脉冲流量计广泛应用于供水、供气、供热、环保、农业等领域。
7.超声波流量计:超声波流量计是一种利用超声波在流体中传播速度与流速成正比的原理来测量流量的装置。
它可以应用于各种液体和气体的流量测量,具有不易堵塞、不易损坏、不受介质成分影响等优点。
超声波流量计广泛应用于给水、污水处理、化工、石油、环保等领域。
除了上述常见的流量计,还有其他一些特殊用途的流量计,如质量流量计、液面流量计、毛细管流量计等,它们根据不同的测量原理和应用场景,被应用于各种需要流量测量的工业领域,为工业生产提供了重要的技术支持和保障。
四种常见流量计的应用范围流量计是工业自动化中常用的一种仪表,它通常用来测量液体或气体的流量。
随着技术的不断发展和进步,现今市场上出现了很多种流量计,各种流量计的适用场景也有所不同。
本文将介绍四种常见流量计的应用范围。
涡轮流量计涡轮流量计是一种常见的流量计,它利用涡轮转子转动的原理来测量液体或气体的流速。
它适用于较干净的液体,例如水和汽油等。
涡轮流量计的特点是精度高,可以测量较小的流量,而且响应速度比较快。
因此,涡轮流量计广泛应用于工业和实验室的测量领域,例如化学实验中的物质流速测量以及各种流体系统的流速控制。
磁性流量计磁性流量计是另一种常见的流量计,它是通过液体中的电导率变化来测量流速的。
磁性流量计适用于导电液体,如水和混合液等。
磁性流量计的优点是精度高,而且不受液体的粘度、密度及温度的变化影响。
磁性流量计广泛应用于石油、化学、医药、食品和饮料工业等。
超声波流量计超声波流量计是一种通过超声波测量液体或气体流速的流量计。
这种流量计适用于各种液体和气体,而且不会影响液体的流动。
超声波流量计的优点是精度高、测量范围广、响应时间短、维护简单等。
因此,超声波流量计适用于各种流量测量需求严格的场合,例如水电站、石油化工、市政工程等。
振荡管流量计振荡管流量计是利用振荡管内振动的原理来测量液体或气体流动的一种流量计。
这种流量计适用于低粘度的气体和液体,例如水和油。
振荡管流量计的优点是响应速度快、精度高、结构简单、维护方便等。
振荡管流量计广泛应用于航空、冶金、制药、石油和化工等领域。
综上所述,四种常见流量计各有其适用场景。
涡轮流量计和磁性流量计适用于不同种类的液体或气体测量,超声波流量计适用于各种流量测量需求严格的场合,振荡管流量计适用于低粘度气体和液体。
在选择流量计的时候,需要根据具体的测量需求和实际情况进行选择。
常用流量计分类及优缺点分析测量流体流量的仪表统称为流量计或流量表。
流量计是工业测量中重要的仪表之一。
随着工业生产的发展,对流量测量的准确度和范围的要求越来越高,流量测量技术日新月异。
为了适应各种用途,各种类型的流量计相继问世。
目前已投入使用的流量计已超过100种。
每种产品都有它特定的适用性,也都有它的局限性。
按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。
按流量计的结构原理进行分类:有容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计。
按测量对象划分就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。
总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。
因此,以严格意义来分流量计和总量表已无实际意义。
一、按测量原理分类1.力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰槽式等等。
2.电学原理:用于此类原理的仪表有电磁式、差动电容式、电感式、应变电阻式等。
3.声学原理:利用声学原理进行流量测量的有超声波式.声学式(冲击波式)等。
4.热学原理:利用热学原理测量流量的有热量式、直接量热式、间接量热式等。
5.光学原理:激光式、光电式等是属于此类原理的仪表。
6.原子物理原理:核磁共振式、核幅射式等是属于此类原理的仪表。
7.其它原理:有标记原理(示踪原理、核磁共振原理)、相关原理等。
二、按流量计结构原理分类按当前流量计产品的实际情况,根据流量计的结构原理,大致上可归纳为以下几种类型:差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。
电磁水表和超声波水表的区别提到水表,大家肯定都不陌生,因为每家都有。
水表主要分为机械水表和电子水表两大类,机械水表俗称小表,主要有旋翼水表、螺翼水表、容积式水表三种,电子水表又叫大表,主要分为电磁水表、超声波水表、射流式水表。
随着水表的不断发展,电子水表的流量传感技术更优异、更先进。
与机械运动的水表相比,电子式水表在当前的智能水表中发展较为迅速。
它改变了机械式水表出现的误差曲线难以校正的问题以及解决了长期应用中磨损的问题。
今天,我们主要来说一下电磁水表和超声波水表的区别是什么?电磁水表1、水体规定电磁水表:不会受到物质中砂砾野草等残渣,化合物危害,但受带磁化学物质影响;超声波水表:测量管内无运动部件,压损小;测量范围宽、具有较好的小流量检测能力;几乎不会受到物质中砂砾野草等残渣,化合物,带磁化学物质影响;2、量程比电磁水表:低流速测量性能较差,中高流速计量性能稳定。
量程比覆盖范围覆盖不到小流量区。
超声波水表:量程普遍优于100:1,始动流速极低,可低于0.01m/s ,有效测量范围大,能有效防止跑、冒、滴、漏现象。
3、防水等级电磁水表:电子类产品,对防护等级严格达到IP68要求较高,必须质量合格产品可以达到。
超声波水表:电子器件产品,对防水等级严苛做到IP68规定较高,务必品质合格产品能够做到。
4、压力损失超声波水表:满足压损的Z小等级ΔP10电磁水表:满足压损的Z小等级ΔP105、磨损性超声波水表:无任何机械活动部件,永不磨损,精度与使用时间关系不大,一般计量检定周期超过3年。
电磁水表:无一切机械设备主题活动构件,绝不损坏,精密度与使用时间没有太大的关系,一般计量检定周期时间超过3年;6、安裝方法电磁水表:U10D5或者U5D3:上游需10/5倍管段孔径长度,下游需5/3倍管段孔径长度;水平或垂直,电极务必在同一平面;超声波水表:行业领先产品可优于U3D0:上游需3倍管段孔径长度,下游可直接接弯管,随当场标准随意选择安裝方法水平、垂直,歪斜安裝均可;电子水表自带电信号输出,克服了计量数据输出转换的问题,在智能化方面相对机械水表有着先天的优势,可更方便地完成数据远传、预付费等功能。
超声波流量计和电磁流量计各自特点及区别比较叙述了超声波流量计和电磁流量计在概论、工作原理、分类和工作性能的区别,提出,我国现阶段2种最常用流量计的特征和不同优势。
1超声波流量计和电磁流量计的概念超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。
超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。
电磁流量计是1种根据法拉第电磁感应定律来测量管内导电介质体积流量的感应式仪表,采用单片机嵌入式技术,实现数字励磁,同时在电磁流量计上采用CAN现场总线。
2超声波流量计和电磁流量计的工作原理超声波流量计由超声波换能器、电子线路及流量显示和累积系统3部分组成。
超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。
这样就实现了流量的检测和显示。
超声波流量计常用压电换能器。
它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振动。
超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。
发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。
电磁流量计的工作原理是基于法拉第电磁感应定律。
在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的2个电磁线圈产生恒定磁场。
当有导电介质流过时,则会产生感应电压。
管道内部的两个电极测量产生的感应电压。
测量管道通过不导电的内衬(橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。
导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”。
3超声波流量计和电磁流量计的分类根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。
超声波流量计和水表介绍超声波流量计和水表是用于测量液体流量的仪器,它们在工业生产和民用水表计量中起到重要的作用。
本文将详细介绍超声波流量计和水表的原理、应用以及优势。
超声波流量计原理超声波流量计是利用超声波在流体中传播的特性来测量流量。
它包括发射器和接收器,发射器发出超声波脉冲,经过流体后被接收器接收。
根据超声波在流体中传播的速度和传播时间差,可以计算出流体的流速和体积流量。
应用超声波流量计广泛应用于石油、化工、电力、冶金等行业的流体流量测量。
它具有不易受流体性质变化影响、不易堵塞、精度高等优点,适用于各种液体介质的测量。
优势1.非侵入式测量:超声波流量计可以通过管道外壁进行测量,不需要直接接触流体,避免了对流体的污染和阻力的影响。
2.宽测量范围:超声波流量计可以测量各种介质的流量,包括液体、气体和蒸汽等。
3.高精度:超声波流量计的测量精度通常可以达到±1%。
4.可靠性高:超声波流量计采用非接触式测量,不易受介质腐蚀和堵塞等因素的影响,具有较长的使用寿命。
5.易于安装和维护:超声波流量计结构简单,安装方便,维护成本低。
水表原理水表是用来测量供水系统中的水量消耗的仪表。
常见的水表有机械式水表和电子式水表两种。
机械式水表通过叶片或涡轮的旋转来测量水流量,电子式水表则利用电磁感应或超声波等原理进行测量。
应用水表广泛应用于民用供水系统和工业用水计量中。
它可以精确记录每户或每个用户的用水量,为水费计算提供依据,也可以用于检测漏水和节约用水。
优势1.精确计量:水表采用先进的测量原理和技术,可以精确测量水流量,提供准确的用水数据。
2.高可靠性:水表经过严格的质量检测和标定,具有较高的可靠性和稳定性,长期使用不易出现故障。
3.节约用水:水表可以帮助用户了解自己的用水情况,促使用户节约用水,推动可持续发展。
4.自动抄表:电子式水表具有自动抄表功能,可以远程读取水表数据,提高抄表效率和减少人工成本。
超声波流量计和水表的比较测量原理超声波流量计利用超声波的传播速度和传播时间差来测量流速和体积流量,水表则通过机械叶片或涡轮的旋转来测量水流量。
电磁流量计和超声波流量计哪个更好用电磁流量计和超声波流量计各有其优势和局限性,哪个更好用取决于具体的应用场景和需求。
以下是对两者优缺点的详细比较:电磁流量计优点高精度测量:电磁流量计不受流体密度、粘度、温度、压力变化的影响,在一定电导率范围内,测量精度高。
宽量程比:量程比宽,可达1:100,适用于不同的流量测量需求。
无压力损失:由于测量管内无阻碍流动部件,不会对流体造成额外的压力损失。
良好的耐腐蚀性:可选用不同的电极和衬里材料,适合测量多种腐蚀性介质。
无机械惯性:响应灵敏,可以测量瞬时脉动流量,线性好。
安装简便:直管段要求相对较低,安装和维护相对简单。
局限性对介质电导率有要求:不能测量电导率很低的液体介质,如蒸馏水、石油制品或有机溶剂等。
不能测量非导电介质:如气体、蒸汽等,仅限于测量导电液体。
受温度限制:由于测量管绝缘衬里材料受温度的限制,不能测量高温高压流体。
易受电磁干扰:流量计的传感器信号较小,易受外界电磁干扰的影响。
维护需求:如果测量介质中含有污垢,电极上污垢物达一定厚度可能导致仪表测量误差加大。
成本问题:相比于某些其他类型的流量计,电磁流量计的购置和维护成本可能较高。
超声波流量计优点非接触式测量:不会改变流体的流动状态,不会产生压力损失,且便于安装。
测量范围广:可以测量不易接触、不易观察的流体流量和大管径流量。
可测非导电介质:能够测量强腐蚀性介质和非导电介质的流量。
测量不受流体物性参数影响:测量的体积流量不受被测流体的温度、压力、粘度及密度等热物性参数的影响。
局限性稳定性较差:长时间测量下,换能器可能产生疲劳,影响稳定性。
直管段要求高:如果直管段不能满足标准,测量精度会受到影响。
抗干扰能力差:易受气泡、结垢、泵及其它声源混入的超声杂音干扰,影响测量精度。
温度测量范围有限:一般只能测量温度低于200℃的流体。
安装不确定性:安装的不确定性会给流量测量带来较大误差。
结论综上所述,电磁流量计和超声波流量计各有优劣,选择哪个更好用需要根据具体的应用场景和需求来决定。
超声波流量计与电磁流量计的优缺点
圣世援流量仪表是水务、石化等行业的重要仪器之一,可以用计量的眼睛来比喻。
对于水务水利行业,更是具有特殊的意义。
比如供水行业中的药剂的添加,如果相关的计量仪表精度不高,将直接影响到水质的优差,甚至会影响到用户人群的安全和健康!目前流量仪表种类繁多,如:容积式流量计、涡轮流量计、涡街流量计、差压流量计、明渠流量计、电磁流量计、超声波流量计、质量流量计等等。
在水利、水污行业中我们粗略的统计了一下,其中超声波流量计和电磁流量计的使用规模接近85%,其中超声波流量计的使用,随着其电子技术的发展,有上升的趋势。
以下,谈谈电磁流量计与超声波流量计的优缺点,供同行参考。
电磁流量计是基于电磁感应定律(切割磁力线)来进行工作的流量计:其特点:
1、测量精度高、重复性好,
2、价格与管径大小成正比
3、要求所测量介质具有一定的导电率超声波流量计的特点:1、无可动部件,无压损2、对流体物理特性无要求3、非接触测量4、费用与管径大小无关5、安装方便,无须停车很多人,认为电磁流量计是非接触测量的工作方式,或者认为电磁流量计对直管段要求低等,都是错误的,这种错误的认识,往往是以牺牲精度为代价。
在实践中,超声波流量计的精度已经可以做到0.5%的精度,其诸多的优越点,将在未来的行业应用中逐步体现。
当然也有很多人,会反驳超声波流量计的诸多缺点,所以希望大家在选型时,要明确自己的应用工况,然后根据工况选择合适的流量仪表。
选择精度不同的仪表。
只有满足自己实际工作需求的仪器,才是好的仪器。
电磁流量计的品牌众多,一般其精度等级与价格有成正比的倾向,超声波流量计也分为多个等级的品牌,其对应的。
常用流量计的基础知识和比较流量计是一种用于测量流体流动速度和体积的仪器。
常用的流量计主要有:差压式流量计、涡街式流量计、电磁式流量计、超声波流量计和质量流量计。
本文将为您介绍这些常用流量计的基础知识和比较。
一.差压式流量计差压式流量计是通过测量绕流体管道的压差(即扩压器前后的压差)来计算流量的。
其优点是测量范围较宽,从小到几毫升/分钟到大量的水/秒不等,测量误差较小、可靠性高。
但是,差压式流量计对管道结构和管道粗糙度的要求较高,对于粘度和密度变化较大的流体,测量误差会增大。
涡街式流量计是通过测量涡轮绕轴线自转的角速度来计算流量的。
其优点是测量范围广泛,可以适应不同流体粘度的测量,并且安装与使用方便。
但是,涡街式流量计对流体在管道中的流动方向要求比较苛刻,具有一定的压力损失,且易受流体中颗粒物的影响。
电磁式流量计是通过测量液体通过磁场产生的电动势来测量液体的流量,其优点在于测量范围非常广泛,测量误差小,使用寿命长,对于含有颗粒物和腐蚀性强的流体,电磁式流量计有很好的稳定性和精度。
但是,其安装必须采用同轴式电极或成对电极,仪器成本较高,也需要较高的安装精度。
四.超声波流量计超声波流量计是通过测量超声波传播速度和方向,来测量流量的。
其优点在于测量范围广泛,不易受流体颜色、浊度、气泡和颗粒物的影响,具有使用方便等优点。
但是,超声波流量计在某些情况下会受到流体波动和结构振动的影响,其测量精度和稳定性有待更进一步改善。
五.质量流量计质量流量计是一种基于质量守恒原理和热力学平衡原理测量瞬时流量的仪器。
其优点在于可以不受温度、压力和流体密度等参数的影响,能够精确测量几乎所有的流体,并且可以反映温度、压力等流体参数变化的影响,具有系统灵敏性和速度性能高等优点。
但是,质量流量计具有高昂的价格和较高的维护成本,需要使用优质的精密元器件,并需要高级的使用和维护技术人员。
总体来看,不同的流量计具有不同的优缺点,一般应根据实际需要选择合适的流量计。
1、超声波流量计和电磁流量计的概念TCS-600超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。
超声波流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计, 特别在大口径流量测量方面有较突出的优点,近年来它是发展迅速的一类流量计之一。
ZYF62电磁流量计是一种根据法拉第电磁感应定律来测量管内导电介质体积流量的感应式仪表,采用单片机嵌入式技术,实现数字励磁,同时在电磁流量计上采用CAN 现场总线。
2、超声波流量计和电磁流量计的工作原理TCS-600超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。
超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。
这样就实现了流量的检测和显示。
超声波流量计常用压电换能器。
它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振动。
超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。
发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。
ZYF62电磁流量计的工作原理是基于法拉第电磁感应定律。
在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定磁场。
当有导电介质流过时,则会产生感应电压。
管道内部的两个电极测量产生的感应电压。
测量管道通过不导电的内衬( 橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。
导电性液体在垂直于磁场的非磁性测量管内流动,与流动方向垂直的方向上产生与流量成比例的感应电势,电动势的方向按“弗来明右手规则”。
3 超声波流量计和电磁流量计的分类根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。
超声波水表和电磁流量计优缺点比较引言在现代社会的各个领域,水资源的管理和控制变得越来越重要。
为了准确测量和监控水的流动,超声波水表和电磁流量计成为了被广泛应用和比较的两种技术。
本文将对超声波水表和电磁流量计的优缺点进行比较分析。
超声波水表超声波水表是一种利用超声波测量原理来测量流体流量的仪器。
它有以下几个优点:1. 高精度测量超声波水表采用非接触式测量原理,不会因为管道内存在一定的压力损失而导致测量不准确。
并且,超声波水表通常具有精确的测量范围和稳定的测量性能,可以满足不同场景的测量需求。
2. 低压损耗超声波水表的测量原理不会引起管道内的流体压力损耗,这意味着在长时间使用过程中,超声波水表不会对管道系统产生一定的压力影响,从而保证了管道系统的正常运行。
3. 无移动部件超声波水表没有移动部件,这降低了机械磨损和故障的概率。
相比于传统的机械水表,超声波水表的维护成本更低,使用寿命更长。
然而,超声波水表也存在一些缺点:1. 受介质影响较大超声波水表对介质的要求比较高,如果介质中悬浮物质较多或含有气泡,可能会影响测量的准确性。
因此,在选用超声波水表时需要对介质进行合理的处理,以提高测量的准确性。
2. 对管道尺寸和形状有限制超声波水表的测量原理要求管道的尺寸和形状必须符合一定的要求,才能保证测量的准确性。
如果管道尺寸过小或形状复杂,超声波的传播会受到一定的阻碍,从而影响测量效果。
电磁流量计电磁流量计是一种利用电磁感应原理来测量流体流量的仪器。
它具有以下优点:1. 适用范围广电磁流量计适用于各种介质的流量测量,包括导电液体和泥浆等。
而且,电磁流量计的测量原理不受温度、压力和粘度等因素的影响,可以适用于不同环境下的流量测量。
2. 反向测量能力强电磁流量计具有良好的反向测量能力,可以准确地测量正向和反向的流量。
这使得电磁流量计在一些特殊的应用场景中具有优势,如短时倒流、断流和双向流量测量等。
3. 高信号稳定性电磁流量计的输出信号稳定可靠,并且不受环境干扰的影响。