高中数学必修三角函数诱导公式及练习
- 格式:doc
- 大小:224.50 KB
- 文档页数:4
三角函数的诱导公式(一)(15分钟30分)的值为( ) A. C.【解析】=tan=tan=-.【补偿训练】tan(5π+α)=m,则的值为( ) A. B.【解析】选A.因为tan(5π+α)=tan α=m,所以原式===.2.在平面直角坐标系中,若角α的终边经过点P,则cos= ( )A. B.【解析】,所以cos α=-,所以cos=-cos α=.3.若c os(π+α)=-,π<α<2π,则sin(α-2π)等于( )A. B.± C.【解析】选D.由cos(π+α)=-,得cos α=,故sin(α-2π)=sin α=-=-=-(α为第四象限角).4.的值等于.【解析】原式=====-2.答案:-2<α<,cos=m(m≠0),求tan的值.【解析】因为-α=π-,所以cos=cos=-cos=-m.由于<α<,所以0<-α<.于是sin==.所以tan==-.(20分钟40分)一、选择题(每小题5分,共20分)=,则cos= ( ) A. C.【解析】+=π,所以cos=-cos=-.2.已知n为整数,化简所得的结果是( )A.tan nαB.-tan nαC.tan αD.-tan α【解析】选C.当n=2k,k∈Z时,===tan α;当n=2k+1,k∈Z时,====tan α.+sin的值为( ) B.C. D.【解析】选C.原式=cos-sin=cos-sin=-cos+sin=.4.若sin(π-α)=log8,且α∈,则cos(π+α)的值为( ) A.C.±【解析】选B.因为sin(π-α)=sin α=log81-log84=0-log822=0-2log82=-,所以cos(π+α)=-cos α=-=-=-.二、填空题(每小题5分,共10分)=,则sin= .【解析】因为sin=,所以sin=sin=-sin=-.答案:-6.已知cos(α-55°)=-,且α为第四象限角,则sin(α+125°)的值为. 【解析】因为cos(α-55°)=-<0且α是第四象限角.所以α-55°是第三象限角. 所以sin(α-55°)=-=-.因为α+125°=180°+(α-55°),所以sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=.答案:三、解答题7.(10分)已知f(α)=.(1)化简f(α).(2)若f(α)=,且<α<,求cos α-sin α的值.(3)若α=-,求f(α)的值.【解析】(1)f(α)==sin α·cos α. (2)由f(α)=sin αcos α=可知(cos α-sin α)2=cos2α-2sin αcos α+sin2α=1-2sin αcos α=1-2×=.又因为<α<,所以cos α<sin α,即cos α-sin α<0.所以cos α-sin α=-.(3)因为α=-=-6×2π+,所以f=cos·sin=cos·sin=cos·sin=cos·sin=cos·=×=-.。
高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
三角函数诱导公式sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα,sin(π/2+α)=cosα,cos(π/2+α)=-sinα,tan(π/2+α)=-cotα,cot(π/2+α)=-tanα,sin(π-α)=sinαcos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotαsin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanαcot(π+α)=cotα,sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinαtan(3π/2-α)=cotα,cot(3π/2-α)=tanα,sin(3π/2+α)=-cosαcos(3π/2+α)=sinα,tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanαsin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanαcot(2π-α)=-cotα,sin(2kπ+α)=sinα,cos(2kπ+α)=cosαtan(2kπ+α)=tanα,cot(2kπ+α)=cotα(其中k∈Z)习题精选一、选择题1.若,则的值为().A.B.C.D.2.的值等于().A.B.C.D.3.在△ 中,下列各表达式为常数的是().A. B.C.D.5.已知是方程的根,那么的值等于().A.B.C.D.二、填空题6.计算.7.已知,,则,.8.若 ,则 .9.设 ,则 .10..三、解答题 11.求值:12.已知角终边上一点的坐标为,(1)化简下列式子并求其值: ;(2)求角 的集合. 14.若,求 的值.15.已知 、、为△的内角,求证: (1) ;(2).16.已知 为锐角,并且 ,,求的值.一、选择题1、cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A.23 B. 21C. 23±D. —232、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于 ( ) A .-23 m B .-32 m C .23 m D .32 m3、已知sin(4π+α)=23,则sin(43π-α)值为( )A.21 B. —21C. 23D. —234、如果).cos(|cos |π+-=x x 则x 的取值范围是( )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5、已知,)1514tan(a =-π那么=︒1992sin( )A .21||aa + B .21aa +C .21aa +-D .211a+-6、设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A .33B .-33C .3D .-37、若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A .0B .1C .-1D .23 8、在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形二、填空题1、求值:sin160°cos160°(tan340°+cot340°)= .2、若sin (125°-α)=1213,则sin (α+55°)=.3、cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π7 = .4、设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 .三、解答题1、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.2、若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.4、记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.参考答案一、选择题 ABCC CCCC二、填空题1、1.2、1312. 3、0.4、211aa ++-4、由已知:a -=26tan ,于是:21126cos a+=;2126sin aa +-=.∴ ()()21126cos 26sin 206cos 206sin aa ++-=-=-+-.三、解答题1、7.2、25. 3、0. 4、3.4、()()()42000cos 2000sin 2000++++=απαπb a f()[]()[]41999cos 1999sin ++++++=αππαππb a ()()841999cos 1999sin +-+-+-=απαπb a ()381999=+-=f一、选择题1.B 2.D 3.C 4.D 5.A二、填空题 6.2 7. , 8. 9. 10.三、解答题 11. . 12.(1) ;(2).13.提示:.14.18.提示:先化简,再将 代入化简式即可.15.提示:注意及其变式.16..提示:化简已知条件,再消去得.。
三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。
三角函数定义及诱导公式练习题代数式sin 120o cos21C °的值为(A.6 .已知 tan( ) 4 A 、4B5A. B. C. D.2. tan120 A.、.3.■■ 3贝U sin a+ cos a 等于()7 5a 的终边经过点 B.753. A.154. 已知扇形的面积为2cm,扇形圆心角B 的弧度数是4,则扇形的周长为( 已知角 (3a ,— 4a)(a <0), C . -15D .(A)2cm(B)4cm (C)6cm (D)8cm5 .已知f ()cos(— 2 cos(3 )si n()2,则 f( )tan()25§ )的值为(3“),则sin( ?)10. (14分)已知tan a =—,求证: /八 sin a cosa ⑴ 二_ _ ;sin a cosa(2)sin 2 a+ sin a COS a = - .11 .已知 tan 2.(1)求 3sin 一2CO 二的值; sin coscos( )cos( )sin()⑵求品盘窗勺的值;(3)若 是第三象限角,求cos 的值. 312.已知 sin ( a — 3n ) = 2cos( a — 4n ),求 si (2si n— — si n(—二)+ 5cos (2 —3-的值. )f(25 )=cos 325 325 =cos- 3 = cos 8 1 —=cos —= 3 3 2参考答案1. B【解析】 试题分析:180°,故1200 -.3考点:弧度制与角度的相互转化•2. A.【解析】试题分析:由诱导公式以可得,sin 120 ° cos210° =sin60 ° x (-cos30 ° )=- ^ x2十3,选A.考点:诱导公式的应用. 3. C【解析】试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由tan120 tan(18060 ) tan 603,选 C.考点:诱导公式• 4. A【解析】 试题分析:r 55 , sin —-, cos -, sin cos r 55考点:三角函数的定义 5. C【解析】设扇形的半径为R,则错误!未找到引用源。
三角函数诱导公式练习题一、选择题(共21 小题)1、已知函数 f( x)=sin , g(x) =tan(π﹣ x),则()A、 f( x)与 g( x)都是奇函数B、 f( x)与 g( x)都是偶函数C、 f ( x)是奇函数, g(x)是偶函数D、 f( x)是偶函数, g( x)是奇函数2、点 P( cos2009 ,° sin2009 )°落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若 tan160 =a°,则 sin2000 等°于()A、B、C、D、﹣5、已知 cos(+α)=﹣,则 sin(﹣α) =()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣ 3B、﹣ 2C、D、﹣ 17、本式的值是()A、 1B、﹣ 1C、D、8、已知且α是第三象限的角,则cos( 2π﹣α)的值是()A、B、C、D、9、已知 f(cosx) =cos2x,则 f ( sin30 )°的值等于()A、B、﹣C、 0 D、110、已知 sin( a+ ) = ,则 cos( 2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、D、13、已知 cos( x﹣) =m,则 cosx+cos( x﹣) =()A 、 2mB 、 ± 2mC 、D 、14、设 a=sin ( sin20080),b=sin ( cos20080),c=cos ( sin20080),d=cos ( cos20080),则 a ,b , c , d 的大小关系是()A 、 a <b <c < dB 、 b < a <d < cC 、 c < d < b < aD 、 d < c < a < b15 、在△ ABC 中,① sin ( A+B )+sinC ;② cos (B+C )+cosA ;③tantan ;④,其中恒为定值的是()A 、②③B 、①②C 、②④D 、③④16 、已知 tan28 =a °,则 sin2008 =°( )A 、B 、C 、D 、17、设 ,则 值是( )A 、﹣ 1B 、 1C 、D 、18、已知 f ( x ) =asin (π x+ α)+bcos ( π x+)β+4(a , b , α,β 为非零实数),f ( 2007) =5,则 f ( 2008 ) =()A 、 3B 、 5C 、 1D 、不能确定19 、给定函数① y=xcos ( +x ),② y=1+sin 2( π+x ),③ y=cos ( cos ( +x ))中,偶函数的个数是()A 、 3B 、 2C 、 1D 、 020 、设角的 值等 于()A 、B 、﹣C 、D 、﹣21 、在程序框图中,输入 f 0( x ) =cosx ,则输出的是 f 4( x )=﹣ csx ()A 、﹣ sinxB 、 sinxC 、 cosxD 、﹣ cosx二、填空题(共 9 小题)22、若(﹣ 4,3)是角终边上一点, 则Z 的值为 .23、△ ABC 的三个内角为 A 、B 、 C ,当 A 为°时, 取得最大值,且这个最大值为 .24、化简:=25 、化:= .26 、已知, f( 1)+f( 2) +f( 3) +⋯ +f( 2009 )= .27 、已知tan θ =3,(π θ)= .28 、sin(π+) sin(2π+) sin( 3π+)⋯ sin( 2010 π+)的等于.29 、f( x)= , f( 1°)+f(2°)+⋯ +f( 58°)+f( 59°) = .30 、若,且, cos(2π α)的是.答案与评分标准一、选择题(共21 小题)1、已知函数f( x)=sin,g(x)=tan(π﹣x),则()A、 f( x)与 g( x)都是奇函数B、 f( x)与 g( x)都是偶函数C、 f ( x)是奇函数, g(x)是偶函数D、 f( x)是偶函数,g( x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。
三角函数诱导公式练习
一、选择题
1.若,
则的值为().
A.B.C.D.
2.的值等于().
A.B.C.D.
3.在△ 中,下列各表达式为常数的是().
A. B.
C.D.
5.已知是方程的根,那么的值等于().
A.B.C.D.
二、填空题
6.计算.
7.已知,,则,.
8.若,则.
9.设,则.
10..
三、解答题
11.求值:
12.已知角终边上一点的坐标为,
(1)化简下列式子并求其值:;
(2)求角的集合.
14.若,
求 的值.
15.已知 、
、
为△
的内角,求证:
(1) ;(2)
.
16.已知 为锐角,并且 ,
,求
的值.
一、选择题
1、cos(π+α)= —
21,2
3π<α<π2,sin(π2-α) 值为( ) A.
23 B. 21
C. 23±
D. —2
3
2、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于 ( ) A .-23 m B .-32 m C .23 m D .3
2 m
3、已知sin(
4π+α)=23,则sin(4
3π
-α)值为( )
A.
21 B. —21
C. 23
D. —
2
3
4、如果).cos(|cos |π+-=x x 则x 的取值范围是
( )
A .)(]
22
,
22
[Z k k k ∈++-ππ
ππ
B .)()22
3,22(Z k k k ∈++ππππ
C .)(]22
3
,22[
Z k k k ∈++ππππ
D .)()2,2(Z k k k ∈++-ππππ
5、已知,)15
14
tan(a =-π那么=︒1992sin
( )
A .
2
1||a
a + B .
2
1a
a +
C .2
1a
a +-
D .2
11a
+-
6、设角则,6
35
πα-
=)(cos )sin(sin 1)cos()cos()sin(22
2απαπααπαπαπ+--+++--+的值等于 ( ) A .
33
B .-
3
3
C .3
D .-3
7、若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )
A .0
B .1
C .-1
D .
2
3 8、在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )
A .等腰三角形
B .直角三角形
C .等腰或直角三角形
D .等腰直角三角形
二、填空题
1、求值:sin160°cos160°(tan340°+cot340°)= .
2、若sin (125°-α)=
12
13
,则sin (α+55°)=
.
3、cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π
7 = .
4、设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 .
三、解答题
1、已知 3)tan(=+απ, 求)
2sin()cos(4)
sin(3)cos(2a a a a -+-+--πππ的值.
2、若cos α=23
,α是第四象限角,求
sin(2)sin(3)cos(3)cos()cos()cos(4)
απαπαππαπααπ-+--------的值.
4、记4)c o s ()s i n ()(++++=βπαπx b x a x f ,(a 、b 、
α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.
参考答案
一、选择题 ABCC CCCC
二、填空题
1、1.
2、
13
12. 3、0.
4、2
11a
a ++-
4、由已知:a -=
26tan ,于是:2
1126cos a
+=
;2
126sin a
a +-=
.
∴ (
)()2
1126cos 26
sin 206cos 206
sin a
a ++-
=-=-+-
.
三、解答题
1、7.
2、
2
5
. 3、0. 4、3.
4、()()()42000cos 2000sin 2000++++=απαπb a f
()[]()[]41999cos 1999sin ++++++=αππαππb a ()()841999cos 1999sin +-+-+-=απαπb a ()381999=+-=f
一、选择题1.B 2.D 3.C 4.D 5.A
二、填空题 6.2 7. , 8. 9. 10.
三、解答题 11. .
12.(1) ;(2)
.
13.提示:
.
14.18.提示:先化简,再将 代入化简式即可.15.提示:注意
及其变式.
16. .提示:化简已知条件,再消去
得
.。