苏教版六年级数学下:解决问题的策略2
- 格式:doc
- 大小:24.50 KB
- 文档页数:4
苏教版六年级数学下册第3单元《解决问题的策略》教案一. 教材分析苏教版六年级数学下册第3单元《解决问题的策略》主要让学生掌握解决问题的基本策略,如画图、列表、猜想与尝试等,培养学生解决问题的能力和数学思维。
本单元通过一系列生动有趣的问题,引导学生学会从不同角度分析问题,寻找解决问题的方法,提高学生解决问题的灵活性和创造性。
二. 学情分析六年级的学生在数学学习方面已有一定的基础,掌握了基本的加、减、乘、除等运算方法和一些常用的数学思想方法。
但学生在解决问题时,往往局限于一种固定的思维模式,缺乏灵活性和创新性。
因此,在本单元的教学中,教师需要关注学生的思维过程,引导他们尝试用不同的方法解决问题,培养学生的数学思维。
三. 教学目标1.知识与技能:使学生掌握解决问题的基本策略,如画图、列表、猜想与尝试等;2.过程与方法:培养学生解决问题的能力和数学思维,提高学生解决问题的灵活性和创造性;3.情感态度与价值观:激发学生学习数学的兴趣,培养学生合作、交流、探究的精神。
四. 教学重难点1.重点:让学生掌握解决问题的基本策略;2.难点:培养学生解决问题的能力和数学思维,提高学生解决问题的灵活性和创新性。
五. 教学方法1.情境教学法:通过生活情境和有趣的问题,激发学生的学习兴趣;2.启发式教学法:引导学生思考、探讨,培养学生的问题解决能力;3.合作学习法:鼓励学生相互合作、交流,提高学生的团队协作能力。
六. 教学准备1.课件:制作与教学内容相关的课件,包括图片、动画、实例等;2.学具:为学生准备相关的学习工具,如纸、笔、剪刀、胶水等;3.教学资源:收集与教学内容相关的实例和问题,以便进行教学拓展。
七. 教学过程1.导入(5分钟)利用课件展示一个有趣的生活情境,引出本节课的主题。
例如,展示一幅图片,图片中有若干个相同的小正方形,让学生观察并思考如何拼成一个较大的正方形。
2.呈现(10分钟)呈现一个具体的问题,让学生尝试解决。
《解决问题的策略(2)》(教案)六年级数学上册苏教版作为一名经验丰富的教师,我深知教学不仅仅是传授知识,更是引导学生思考和解决问题的过程。
在这份教案中,我将带领我的学生一起探讨《解决问题的策略(2)》。
一、教学内容本节课的教学内容来自苏教版六年级数学上册,主要涉及第107页至第109页的“解决问题的策略”这一章节。
我们将重点学习如何通过画图的方式来解决实际问题,并掌握画图解决问题的步骤。
二、教学目标通过本节课的学习,我希望学生能够:1. 理解画图解决实际问题的基本步骤。
2. 能够运用画图策略来解决一些简单的实际问题。
3. 培养学生的动手操作能力和解决问题的能力。
三、教学难点与重点重点:掌握画图解决问题的步骤。
难点:如何引导学生运用画图策略来解决实际问题。
四、教具与学具准备教具:黑板、粉笔、教学课件。
学具:练习本、铅笔、尺子。
五、教学过程1. 实践情景引入:我先给学生呈现一个实际问题:“小明家有一块长方形的地毯,长是12米,宽是8米,小明想将这块地毯分成几个相同大小的小正方形,每个小正方形的边长是多少米?”2. 自主探究:让学生尝试解决这个问题,鼓励他们运用画图策略。
学生在纸上画出长方形的地毯,并尝试找到合适的小正方形。
3. 合作交流:学生分享自己的解题过程,讨论如何通过画图来找到每个小正方形的边长。
在这个过程中,我引导学生理解画图解决问题的步骤。
4. 讲解例题:我选取几个典型的例题,讲解如何通过画图来解决问题。
例如,一个长方形的长是10厘米,宽是5厘米,如何找到一个最大的正方形,并计算这个正方形的面积。
5. 随堂练习:让学生独立完成一些类似的实际问题,并及时给予指导和反馈。
6. 板书设计:板书上列出画图解决问题的步骤,以及一些典型的例题和答案。
7. 作业设计:作业题目:一个长方形的长是15厘米,宽是10厘米,小明想将这块长方形分成几个相同大小的小正方形,每个小正方形的边长是多少厘米?请用画图策略解决这个问题。
苏教版数学六年级下册解决问题的策略精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题1.鸡兔同笼,共有5个头,16只脚,其中兔有()只。
A.1B.2C.3D.42.把圆柱的底面平均分成若干等份,切开后,拼成一个近似的长方体,这个近似的长方体与原来的圆柱相比,()。
A.体积、表面积都不变B.体积不变、表面积变大C.体积变大,表面积不变3.把3米长的木料平均锯成5段,每段占全长的().A.35B.35米C.15D.15米4.学校有35只足球,比篮球的只数少27,足球比篮球少多少只?下面列式错误的是()。
A.35×27B.35×272 C.35÷(1-27)×275.六(1)班调全班人数的110到六(2)班,两班人数相等,那么六(1)班和六(2)班人数比是()。
A.5∶4B.4∶5C.10∶96.甲数与乙数的和是42,甲数的3倍与乙数的5倍的和是174,乙数是()。
A.42B.6C.247.杨树棵数是柳树的29,杨树棵数是杨树和柳树之和的()。
A.27B.211C.9118.红花朵数是黄花朵数的23,黄花朵数是蓝花朵数的54,那么红花与蓝花朵数相比较()。
A.红花朵数多B.蓝花朵数多C.两种花朵数一样多9.在池塘边,有几只青蛙正和鸭子们一起玩耍。
数一数,共有15个头,48只脚,那么一共有()只青蛙。
评卷人得分二、解答题10.有三桶油,每桶20千克,第一桶用去的与第二桶剩下的一样多,第三桶用去2 5,这三桶油一共用去多少千克?11.小白兔晴天每天可采30朵蘑菇,雨天每天可采18朵蘑菇,一连几天小白兔共采了156朵蘑菇,平均每天采26朵,你知道这些天中共有几天是晴天吗?12.学校的环形跑道长400米,小月和小欣同时从跑道的同一处出发,相背而行,小月的速度是小欣的35。
苏教版六年级下册数学第三单元《解决问题的策略》教案一. 教材分析苏教版六年级下册数学第三单元《解决问题的策略》主要包括分析和解决问题的方法,通过本单元的学习,使学生掌握分析问题和解决问题的基本策略,提高解决问题的能力。
本单元的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣,培养学生的数学思维。
二. 学情分析六年级的学生已经具备了一定的解决问题的能力,他们对数学有一定的认识和理解。
但在解决问题的过程中,部分学生可能还存在一定的困难,如分析问题的方法不够灵活,解决问题的策略不够多样。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们运用不同的策略来解决问题。
三. 教学目标1.让学生掌握分析问题和解决问题的基本策略。
2.培养学生运用策略解决问题的能力。
3.提高学生的数学思维,培养学生的团队协作和交流能力。
四. 教学重难点1.教学重点:让学生掌握分析问题和解决问题的基本策略。
2.教学难点:引导学生运用不同的策略来解决问题,并能够灵活运用。
五. 教学方法1.情境教学法:通过生活实际情境,引发学生的学习兴趣,培养学生运用策略解决问题的能力。
2.案例分析法:通过分析具体案例,使学生了解并掌握不同的解决问题策略。
3.小组合作法:引导学生进行小组讨论,培养学生的团队协作和交流能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学情,设计教学活动和案例。
2.学生准备:回顾之前学过的解决问题的方法,准备参与到小组讨论中。
七. 教学过程1.导入(5分钟)教师通过一个生活实际情境,引发学生的学习兴趣。
如:小明买了一本书,原价是80元,书店搞活动满100元减30元,小明最后实付了50元,请问小明是怎么买的?2.呈现(10分钟)教师呈现问题,引导学生进行分析。
如:学校买了20盆花,其中12盆是红花,8盆是黄花,请问红花和黄花各有多少盆?3.操练(10分钟)教师引导学生进行小组讨论,运用不同的策略来解决问题。
2020苏教版小学六年级数学下册单元知识点总结(后附单元试卷及答案)第3章解决问题的策略【知识点归纳总结】1. 归一归总问题1.归一应用题分为两类.(1)直进归一:求出一个单位量后,再用乘法求出结果.(2)逆转归一:求出一个单位量后,再用包含除法求出结果.从应用题的结构上看,给了单一量和数量,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的,然后根据总数量求出每份数,份数.总数量÷份数=每份数,总数量÷每份数=份数.归一问题应用题中必有一种不变的量.如汽车的速度不变,拖拉机每小时耕地的公顷数不变.在归一问题应用题中,常常用“照这样计算”、“用同样的…”等词句来表达不变的量,我们要抓准题中数量的对应关系.归一应用题分为正归一应用题、反归一应用题两类.正、反归一问题的相同点是:一般情况下,第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.2.归总问题:(1)定义:在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题.这类应用题叫做归总应用题.(2)解决方法:归总应用题的特点是先总数,再根据应用题的要求,求出每份是多少,或有这样的几份.【经典例题】分析:这是一个和生活相关的问题,存在这样一个关系:锯的次数=锯成的段数-1;锯成3段,要锯2次,锯成4段要锯3次,那么本题就可以改成,锯2次要9分钟,那么锯3次要几分钟?先求锯1次要几分钟,用除法即9÷2=4.5(分),再求锯3次要几分钟,用乘法,即4.5×3=13.5(分)解:3-1=2(次)9÷2=4.5(分)4-1=3(次)4.5×3=13.5(分)故答案为:13.5点评:这是生活实际问题,锯1次就可以锯成2段,存在这个关系:锯的次数=锯成的段数-1.2. 方阵问题将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题.数量关系:(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=(外边人数)2-(内边人数)2内边人数=外边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4.【经典例题】例1:四年级共选49位同学参加校运会开幕式,他们排成一个方阵.这个方阵的最外层一共有多少人?分析:先根据方阵总人数=每边人数×每边人数,求出这个方阵的每边人数,再利用方阵最外层四周人数=每边人数×4-4计算出最外层四周人数即可.解:因为7×7=49,所以49人组成的方阵的每边人数是7人,7×4-4,=28-4,=24(人);答:这个方阵的最外层有24人.点评:此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4-4的灵活应用.3. 年龄问题年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄几年前年龄=小年龄-大小年龄差÷倍数差.【经典例题】例1:儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?分析:根据题意,可知儿子20年后是6+20=26岁,父亲今年26+10=36岁.根据年龄增长是一样的,找出等量关系列出方程解答即可.解:儿子20年后是6+20=26岁,父亲今年26+10=36岁.设x年后,父亲的年龄恰好是儿子年龄的2倍.由题意得36+x=2(x+6)36+x=2x+12x=24由今年是公元2011年,则2011+24=2035,故当父亲的年龄恰好是儿子年龄的2倍时是公元2035年.点评:本题主要是考查年龄问题,首先要把题意弄清,再根据等量关系列出方程解答即可.【同步测试】单元同步测试题一.选择题(共8小题)1.学生问老师多少岁,老师说:“当我像你这么大时,你刚3岁;当你像我这么大时,我已经39岁了.”老师的年龄是()岁.A.21B.24C.27D.302.成都高新区小学组田径队有若干人,经过统计已知田径队平均年龄为10.8岁,后来因为项目调整又增补了两名队员,这两名队员年龄刚好分别为10岁和11岁,那么这时田径队的平均年龄应该()10.8岁.A.小于B.大于C.等于D.以上三种都可能3.学校运动会开幕式上,彩旗方阵,横、竖每行都是8个学生,它的最外围有()个学生.A.32B.64C.28D.304.刘强今年x岁,李红比刘强大5岁,再过三年刘强比李红小()岁.A.(x﹣3)岁B.5岁C.2岁D.(x+3)岁5.学校要美化校园,要在正方形水池四周摆花,四个角都摆一盆,每边都摆5盆,那么一共要准备()盆花.A.16B.20C.24D.266.五年级同学体操表演,站成一个方阵,最外围每边站10人,最外围有()人.A.100B.81C.40D.367.观察下面3个图形的规律,按这样的规律排列,第8个图形有()个.A.24B.28C.328.母亲的年龄比儿子大26岁,今年母亲的年龄恰好是儿子的3倍,儿子今年是多少岁?解:设儿子今年是x岁,依题意列方程,正确的是()A.3x﹣26﹣x B.3x=26C.3x﹣x=26D.3x+x=26二.填空题(共8小题)9.今年小华爸爸a岁,小华(a﹣25岁),再过x年后,爸爸与小华差岁.10.爸爸今年40岁,明明今年8岁,8年后爸爸的年龄是明明的倍.11.学校组织学生排成一个实心方阵进行团体操表演,最外层共站了64人,这个方阵共有人.12.在一个正方形的每条边上摆4枚棋子,四条边上最多能摆枚,最少能摆枚.13.爸爸和小明年龄的和是46岁,5年后爸爸比小明大22岁,爸爸今年岁,小明今年岁.14.有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是岁.15.小红用棋子摆了一个空心方阵,每边可看到14个棋子,小红一共用了个棋子.16.今年王平、刘军、张华三个人的年龄和为39岁,四年后王平16岁,刘军和张华的年龄之和为岁.三.判断题(共5小题)17.小红今年比妈妈小24岁,再过十年她比妈妈小14岁.(判断对错)18.今年明明与爸爸的年龄比是1:4,三年后明明与爸爸的年龄还是1:4..(判断对错)19.方阵每向里面进一层,每层的个数就减少8.(判断对错)20.在一个正方形的花坛四周摆放花盆.如果每边都要放6盆,最少需要准备24盆..(判断对错)21.奶奶的年龄一定大于爸爸的年龄..(判断对错)四.应用题(共6小题)22.同学们做早操,小刚站在左起第6列,右起第12列;从前面数是第7个,从后面数是第13个.如果每列的人数同样多,每行的人数也同样多,则一共有多少个同学在做早操?23.淘气的爸爸和妈妈的年龄和是66岁,爸爸比妈妈大4岁,淘气爸爸和妈妈的年龄分别是多少岁?(用方程解)24.某织布车间5名工人8小时织布320米,照这样的效率,要在10小时内织布1600米,需要增加多少名工人?25.28个小朋友要排成一个正方形,要求每边都是8个小朋友,你知道怎么排吗?26.壮壮和爷爷今年分别多少岁?(列方程解决问题)27.学校为了方便同学们做早操时排队,在正方形操场上做了记号(如图).如果每个点站1人,最外层每边可站21人.最外层可站多少人?操场上一共可站多少人?参考答案与试题解析一.选择题(共8小题)1.【分析】根据年龄差不会变这一特性,从年龄差入手:年龄差+3=学生现在的年龄,年龄差+老师现在的年龄=39,由此可知:老师+学生=42 再联系3岁和39岁的条件,可知老师27岁,学生15岁.【解答】解:39﹣(39﹣3)÷(2+1)=39﹣12=27(岁);答:老师的年龄是27岁.故选:C.【点评】解答此题的关键是:抓住年龄差不会变这一特性,从年龄差入手,进行分析进行解答即可.2.【分析】先求得增补的两名队员的平均年龄是多少,再与10.8比较得解.【解答】解:(10+11)÷2=21÷2=10.5(岁)10.5<10.8答:这时田径队的平均年龄应该小于10.8岁.故选:A.【点评】此题考查了求平均数的方法在年龄问题中的运用.3.【分析】根据题干分析可得,这个方阵的每边人数都是8,由此根据最外层人数=每边人数×4﹣4即可解答问题.【解答】解:8×4﹣4=28(人),答:最外层有28人.故选:C.【点评】此题考查了方阵问题中,最外层点数=每边点数×4﹣4这个公式的计算应用.4.【分析】李红比刘强大5岁,即刘强比李红小5岁,由于年龄差不随时间的变化而改变,所以再过3年,他们相差的岁数不变,由此求解.【解答】解:李红比刘强大5岁,即刘强比李红小5岁,再过三年刘强还是比李红小5岁.故选:B.【点评】理解年龄差不随时间的变化而改变是解答此题的关键.5.【分析】由题意,此题可看作是一个空心方阵,要求四周一共要摆多少盆花,根据“四周的盆数=(每边的盆数﹣1)×4”解答即可.【解答】解:(5﹣1)×4=4×4=16(盆)答:一共要准备16盆花.故选:A.【点评】此题考查了方阵问题中最外层点数=每边点数×4﹣4的灵活应用.6.【分析】方阵每边人数与四周人数的关系:四周人数=(每边人数﹣1)×4;据此解答即可.【解答】解:(10﹣1)×4=9×4=36(人)答:最外围有36人.故选:D.【点评】此题考查了方阵问题中:四周人数=(每边人数﹣1)×4;或最外层四周点数=每边点数×4﹣4的灵活应用.7.【分析】每边圆圈的个数=图形顺序+1;再利用方阵最外层四周点数=每边点数×4﹣4计算出最外层四周圆圈数即可.【解答】解:(8+1)×4﹣4=36﹣4=32(人)答:第8个图形有32个.故选:C.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.8.【分析】根据题意可得等量关系式,今年母亲的年龄﹣儿子的年龄=26岁,设儿子今年是x岁,那么今年母亲的年龄是3x岁,然后列方程解答即可.【解答】解:设儿子今年是x岁,那么今年母亲的年龄是3x岁,3x﹣x=262x=26x=13答:儿子今年是13岁.故选:C.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.二.填空题(共8小题)9.【分析】爸爸今年a岁,小华今年(a﹣25)岁,那么爸爸与小华的年龄差是25岁,无论再过多少年,两人的年龄差都是25岁.【解答】解:a﹣(a﹣25)=a﹣a+25=25(岁)答:再过x年后,爸爸与小华差25岁.故答案为:25.【点评】解决本题关键是熟知两人的年龄差是始终不变的.10.【分析】“爸爸今年40岁,明明今年8岁”,8年后爸爸和明明的年龄都增加了8岁,由此求出8年后除爸爸和明明的年龄,然后用爸爸的年龄除以明明的年龄即可.【解答】解:(40+8)÷(8+8)=48÷16=3答:8年后爸爸的年龄是明明的3倍.故答案为:3.【点评】本题的关键是求出8年后除爸爸和明明的年龄,再根据基本的数量:求一个数是另一个数的几倍用除法计算.11.【分析】要求这个学校一共有多少个学生,就是求这个方阵的总点数;需要先求得这个方阵最外层的每边人数,根据方阵问题中:四周点数=每边点数×4﹣4可知:每边点数=(四周点数+4)÷4.再利用总点数=每边点数×每边点数解答.【解答】解:最外层每边人数为:(64+4)÷4=68÷4=17(人),所以这个方阵的总人数为:17×17=289(人),答:这个方阵共有289人.故答案为:289.【点评】此题考查了方阵问题中的数量关系:最外层每边点数=(四周点数+4)÷4和总点数=每边点数×每边点数.12.【分析】四个角都不放时,需要的棋子数最多,利用每边棋子数×4计算即可;四个角都放时,需要的棋子数最少,根据每边棋子数×4﹣4即可解答.【解答】解:4×4=16(枚)4×4﹣4=12(枚)答:四条边上最多能摆16枚,最少能摆12枚.故答案为:16,12.【点评】此题考查了空心方阵中四周点数=每边点数×4﹣4的计算应用,要注意顶点处不放时,需要的棋子数最多.13.【分析】5年后爸爸比小明大22岁,他们现在的年龄差也是22岁,用两人的年龄和加上年龄差,再除以2就是爸爸的年龄,进而求出小明的年龄.【解答】解:(46+22)÷2=68÷2=34(岁)34﹣22=12(岁)答:爸爸今年34岁,小明今年12岁.故答案为:34,12.【点评】本题根据年龄差不变,得出现在两人的年龄差,再根据和差公式:(两数和+两数差)÷2=较大数进行求解.14.【分析】根据三个学生的年龄乘积是1620,先把1620分解质因数(即写成几个因数相乘的形式),然后再根据他们的年龄一个比一个大3岁的条件进行组合.【解答】解:1620=2×2×3×3×3×3×5,又因为,他们的年龄一个比一个大3岁,所以,他们中最小的年龄不可能是偶数,只能是奇数,1620=9×12×15,这三个学生年龄分别是:9岁,12岁,15岁,所以,他们年龄的和是:9+12+15=36(岁),答:这三个学生年龄的和是36岁,故答案为:36.【点评】解答此题的关键是,将1620分解质因数后,在将他们的年龄进行组合时,可以根据条件(年龄一个比一个大3岁)缩小范围,再一步一步的确定.15.【分析】利用方阵最外层四周点数=每边点数×4﹣4计算出最外层四周个数即可.【解答】解:14×4﹣4=56﹣4=52(个);答:小红一共用了52个棋子.故答案为:52.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.16.【分析】先根据“四年后王平16岁”求出王平今年的年龄是16﹣4=12岁,再根据“今年王平、刘军、张华三个人的年龄和为39岁”求出今年刘军和张华的年龄和是39﹣12=28岁,求四年后刘军和张华的年龄之和分别加4即可.【解答】解:16﹣4=12(岁)39﹣12=27(岁)27+4+4=35(岁)答:刘军和张华的年龄之和为35岁.故答案为:35.【点评】解答本题关键是明确:经过4年,即每个人都增加4岁.三.判断题(共5小题)17.【分析】因为不管经过多长时间,小红与妈妈的年龄差是不变的,今年相差24岁,所以过10年后妈妈和小红仍相差24岁.【解答】解:两个人的年龄差是不变的,今年小红今年比妈妈小24岁,再过十年她比妈妈仍然小24岁.故答案为:×.【点评】此题应抓住年龄差不变来求解,因为不管经过多长时间,二人增长的时间是一样的,故差不变.18.【分析】今年明明与爸爸的年龄比是1:4,可知明明的年龄相当于1份的数,爸爸的年龄相当于4份的数;再过三年后,明明的年龄是1份的数加上3,爸爸的年龄是4份的数加上3,比值改变了,所以他俩的年龄比就一定不会是1:4,据此解答.【解答】解:由于年龄是每过一年都增加1岁,今年明明与爸爸的年龄比是1:4,可知明明的年龄相当于1份的数,爸爸的年龄相当于4份的数;再过三年后,明明的年龄是1份的数加上3,爸爸的年龄是4份的数加上3,比值改变了,所以他俩的年龄比就一定不会是1:4,所以原题说法错误;故答案为:×.【点评】此题考查年龄问题与比的性质的综合运用,比的前项和后项同乘或除以一个相同的数(0除外),比值不变;此题是比的前、后项同加上3,所以比值变了,比也就变了,可举例进一步验证.19.【分析】由于方阵每向里面进一层,每边的个数就减少2个,所以四条边一共减少2×4=8个,据此解答.【解答】解:2×4=8(个).答:方阵每向里面进一层,每层的个数就减少8个.故答案为:√.【点评】本题关键是求出每边减少的个数;方阵问题相关的知识点是:四周的人数=(每边的人数﹣1)×4,每边的人数=四周的人数÷4+1,外层边长数2﹣中空边长数2=实面积数.20.【分析】先用6×4,求出正方形的四个边从理论上放置花的盆数,但四个角上只要各有一盆花即可,所以要去掉重复的4盆,由此得出最少的答案.【解答】解:6×4﹣4=24﹣4=20(盆)答:这个花坛四周最少需要准备20盆.故答案为:×.【点评】解答此题的关键是,四个角上都要有一盆花,所以要把重复放置的花减去.21.【分析】根据事件发生的可能性和不可能性进行分析:奶奶的年龄一定比爸爸的年龄大;据此解答.【解答】解:奶奶的年龄一定比爸爸的年龄大,属于确定事件中的必然事件;故答案为:√.【点评】此题考查了事件发生的可能性和不可能性.四.应用题(共6小题)22.【分析】根据题意可知,左数的人数加上右数的人数,这样就把小刚多数了一次,再减去1就是每行的人数,同样可以求出每列的人数;然后每行与每列的人数相乘即可得出答案.【解答】解:每行的人数:6+12﹣1=17(人),每列的人数:7+13﹣1=19(人),所以总人数:17×19=323(人);答:一共有323个同学在做早操.【点评】解题的关键是找到每行和每列的人数,求每行和每列的人数时,把数重的人数减去,才能准确求出结果.23.【分析】根据题意可得等量关系式:淘气爸爸的年龄+妈妈的年龄=66岁,设妈妈的年龄是x岁,那么淘气爸爸的年龄就是(x+4)岁,然后列方程解答即可.【解答】解:设妈妈的年龄是x岁,那么淘气爸爸的年龄就是(x+4)岁,x+(x+4)=662x=62x=3131+4=35(岁)答:淘气爸爸和妈妈的年龄分别是35岁、31岁.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.24.【分析】“照这样的效率”,说明每人每小时织布的长度是相同的,先用320米除以8小时,再除以5人,求出每人每小时织布的长度,再乘10小时,1名工人10小时织布的长度,然后再用1600米除以1名工人10小时织布的长度,求出需要工人的总数,再减去5人,即可求出需要增加的人数.【解答】解:1600÷[(320÷5÷8×10)]﹣5=1600÷80﹣5=20﹣5=15(名)答:10小时织布1600米需要增加15名工人.【点评】解决本题先求出不变的每人的工作效率,进而求出1人10小时的工作量,再根据除法的意义,求出需要的工人数,进而求出增加的人数.25.【分析】排成一个正方形空心方阵,最外层方阵总人数=四周人数=(每边人数﹣1)×4,由此即可解答.【解答】解:(8﹣1)×4=7×4=28(人)所以,排成一个正方形空心方阵,每边都是8个小朋友,公共顶点各一人,答:排成一个正方形空心方阵,每边都是8个小朋友.【点评】此题考查了方阵问题中:方阵每边人数与四周人数的关系:四周人数=(每边人数﹣1)×4.26.【分析】根据题意可得等量关系式:爷爷的年龄﹣壮壮的年龄=60,设壮壮今年x岁,则爷爷今年7x 岁,然后列方程解答即可.【解答】解:设壮壮今年x岁,则爷爷今年7x岁.7x﹣x=606x=60x=10爷爷:10×7=70(岁)答:壮壮和爷爷今年分别10岁和70岁.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.27.【分析】最外层每边可站21人,根据“最外层四周点数=每边点数×4﹣4”可以求出最外层可站多少人,然后根据“总点数=每边点数×每边点数”解答即可.【解答】解:21×4﹣4=84﹣4=80(人)21×21=441(人)答:最外层可站80人,操场上一共可站441人.【点评】此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4﹣4的灵活应用.。
苏教版六年级数学下册《解决问题的策略—假设的策略》教案一. 教材分析苏教版六年级数学下册《解决问题的策略—假设的策略》这一章节,是在学生已经掌握了基本的数学知识和解决问题的方法的基础上进行教学的。
本节课的主要内容是通过实例让学生学会使用假设的策略来解决问题,培养学生解决问题的能力和思维能力。
教材中提供了丰富的实例,引导学生通过探究、讨论、交流等方式来理解和掌握假设的策略,并能够灵活运用到实际问题中。
二. 学情分析六年级的学生已经具备了一定的数学基础和解决问题的能力,他们在学习过程中善于发现和探究问题,具备一定的合作和交流能力。
但是,学生在解决问题时,往往过于依赖直接计算或者直观的图示方法,对于使用假设的策略来解决问题还不够熟练,需要在教学过程中进行有针对性的引导和训练。
三. 教学目标1.让学生通过实例体验和理解假设的策略,并能够运用假设的策略来解决问题。
2.培养学生的问题解决能力和思维能力,提高学生解决问题的效率。
3.培养学生合作、交流的能力,增强学生的团队协作意识。
四. 教学重难点1.重点:让学生理解和掌握假设的策略,并能够运用到实际问题中。
2.难点:如何引导学生从多种假设的策略中选择合适的方法来解决问题,并能够灵活运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过发现问题、分析问题、解决问题的方式来学习。
2.运用小组合作、讨论、交流等教学方法,培养学生的团队协作能力和解决问题的能力。
3.采用案例教学法,通过具体的实例来引导学生理解和掌握假设的策略。
六. 教学准备1.准备相关的教学案例和问题,用于引导学生进行探究和讨论。
2.准备教学课件,用于辅助教学。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个具体的问题情境,引导学生发现需要解决的问题,激发学生的学习兴趣。
2.呈现(10分钟)呈现教材中的实例,引导学生观察和分析问题,让学生尝试用自己的方法来解决问题。
3.操练(10分钟)让学生分组讨论,每组选择一种假设的策略来解决问题,并展示解题过程和结果。
苏教版数学六年级下册解决问题的策略精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、选择题1.鸡兔同笼,共有5个头,16只脚,其中兔有()只。
A.1 B.2 C.3 D.42.把圆柱的底面平均分成若干等份,切开后,拼成一个近似的长方体,这个近似的长方体与原来的圆柱相比,()。
A.体积、表面积都不变B.体积不变、表面积变大C.体积变大,表面积不变3.把3米长的木料平均锯成5段,每段占全长的().A.35B.35米C.15D.15米4.学校有35只足球,比篮球的只数少27,足球比篮球少多少只?下面列式错误的是()。
A.35×27B.35×272C.35÷(1-27)×275.六(1)班调全班人数的110到六(2)班,两班人数相等,那么六(1)班和六(2)班人数比是()。
A.5∶4 B.4∶5 C.10∶96.甲数与乙数的和是42,甲数的3倍与乙数的5倍的和是174,乙数是()。
A.42 B.6 C.247.杨树棵数是柳树的29,杨树棵数是杨树和柳树之和的()。
A.27B.211C.9118.红花朵数是黄花朵数的23,黄花朵数是蓝花朵数的54,那么红花与蓝花朵数相比较()。
A.红花朵数多B.蓝花朵数多C.两种花朵数一样多9.在池塘边,有几只青蛙正和鸭子们一起玩耍。
数一数,共有15个头,48只脚,那么一共有()只青蛙。
A.8 B.9 C.10二、解答题10.有三桶油,每桶20千克,第一桶用去的与第二桶剩下的一样多,第三桶用去25,这三桶油一共用去多少千克?11.小白兔晴天每天可采30朵蘑菇,雨天每天可采18朵蘑菇,一连几天小白兔共采了156朵蘑菇,平均每天采26朵,你知道这些天中共有几天是晴天吗?12.学校的环形跑道长400米,小月和小欣同时从跑道的同一处出发,相背而行,小月的速度是小欣的35。
苏教版六年级数学下:解决问题的策略2教学目标:
1.通过练习使学生进一步学会运用替换和假设和策略分析关系、确定解题思路,并能更好地解决实际问题。
2.通过练习使学生在不断的反思中,感受两种方法对于解决问题的价值,进一步发展学生的分析、综合能力。
3.更好地培养学生能乐于和同学交流自已解决问题的想法。
能有克服并运用有关策略解决问题的成功体验。
教学重点:能根据解决实际问题的需要,恰当选择替换和假设的策略进行思考。
教学难点:根据问题的具体情部优确定合理的解题思路,并有效地解决问题。
教学过程:
一、复习
1、在解决问题策略中我们学到了哪两种解决问题的策略?
2、听说过鸡兔同笼的问题吗?请阅读课本第93页的下面的有关内容。
3、讨论第93页中的有关练习,并让学生说说是怎样想的?
二、练习
1、完成练习第2题
(1)出示题目:读题后思考
(2)学生练习,并集体订正,说说用了哪种解决问题的策略?
2、完成第3题
出示题目,读题
要求学生借助示意图或列表的方法进行数量关系的分析。
解法一:把40枚硬币都看作是1元的,则总钱数是40元,比实承钱数多7元。
学生列式解答。
解法二:把40枚硬币都看作是5角的,则总钱数有什么变化的?
学生讨论。
讨论衙进行解答。
3、完成练习十七的第4题
出示题目,读题。
学生讨论解答的方法
讨论让学生不同的解答方法。
学生选择不同的方法进行解答。
4、补充题
1、粮店有大米20袋,面粉50袋,共重2250千克,已知1袋大米的重量和2袋面粉的重量相等,那么一袋大米重多少千克?
2、5千克香蕉与4千克苹果价钱相等,1千克苹果比1千克香蕉贵0.40元。
香蕉每千克多少元?
3、鸡和兔放在一只笼子里,上面有29个头,下面有92只脚。
问:笼中有鸡兔各多少只?
4、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。
小华参加了这次竞赛,得了64分。
问:小华做对几道题?
5、一辆公共汽车共载客50人,其中一部分人在中途下车,每张票价0.6元,另一部分到终点下车,每张票价0.9元。
售票员共收票款36.9元。
问:中途下了多少人?
三、全课总结
1、说说通过今天的的学习,你学会了什么?
2、还有什么不懂的问题?
3、小结:本单元主要学习了替换与假设的策略解决简单的实际问题。
在解决此类问题时,要学会借助画图和列表等方法进行分析,使原来比较复杂的问题转化成比较简单的实际问题。
四、课堂作业。