理论力学课件 第十一章动能定理,质点的,以及力的功
- 格式:pdf
- 大小:446.79 KB
- 文档页数:25
第十一章动量定理动量定理、动量矩定理和动能定理统称为动力学普遍定理.§11--1 动量与冲量1、动量的概念:产生的相互作用力⑴定义:质点的质量与速度的乘积称为质点的动量,-----记为mv。
质点的动量是矢量,它的方向与质点速度的方向一致。
kgms/单位)i p v 质点系的动量()i i i i c im r m r r m m ∑∑==∑质心公式:⑵、质点系内各质点动量的矢量和称为质点系的动量。
)idr p v dt ()i i dm r dt∑注意:质量m i是不变的如何进一步简化?参考重心、形心公式。
李禄昌()i i i i c im r m r r m m ∑∑==∑) p r r cm v =质点系的动量等于质心速度与其全部质量的乘积。
求质点系的动量问题转化为求刚体质心问题。
cωv C =0v Ccωcov C2.冲量的概念:tF IF I d d IF d 物体在力的作用下引起的运动变化,不仅与力的大小和方向有关,还与力作用时间的长短有关。
用力与作用时间的乘积来衡量力在这段时间内积累的作用。
冲量是矢量,方向与常力的方向一致。
冲量的单位是N.S 。
§11-2 动量定理—-确定动量与冲量的关系由牛顿第二定律:F v m )F v m d )称为质点动量定理的微分形式,即质点动量的增量v v ~ ⎰==-21d 12t t It F v m v m称为质点动量定理的积分形式,即在某一时间间隔⎰==-21d 12t t It F v m v m 2、质点系的动量定理(F (F外力:,内力:(F (F M FF F v tF F v i i d )(∑+)()(d d d e ie i It F p ∑=∑=)(d d e i F tp ∑=称为质点系动量定理的微分形式,即质点系动量的质点系动量对时间的导数等于作用于质点系的外力的矢量和(主矢)动力学与静力学联系。
)(112e ini Ip p =∑=-p p ~ 称为质点系动量定理的积分形式,即在某一时间)(d d e xx F tp ∑=)(d d e yy Ftp ∑=)(d d e z z F tp ∑=动量定理微分形式的投影式:动量定理积分形式的投影式:)(12e xx x Ip p ∑=-)(12e yy y Ip p ∑=-)(12e zz z Ip p ∑=-动量定理是矢量式,在应用时应取投影形式。
9. 动能定理动能:是描述质系运动强度的一个物理量,任一质点在某瞬时的动能为212i i m v 。
质点动能定理的微分形式:作用于质点上力的元功等于质点动能的微分。
质点动能定理的积分形式:作用于质点上的力在有限路程上的功等于质点动能的改变量。
力的元功:力在一无限小位移中力所做的功。
力在有限路程上的功:力在此路程上元功的定积分21d M M W =⋅⎰F r 。
理想约束:约束力的元功的和等于零的约束。
质系动能定理的微分形式:在质系无限小的位移中,质系动能的微分等于作用于质系全部力所做的元功之和,即d δF T W =∑。
质系动能定理的积分形式:质系在任意有限路程的运动中,起点和终点动能的改变量,等于作用于质系的全部力在这段路程中所做功的和,即21i T T W -=∑。
质点系的动能:组成质点系的各质点动能的算术和,即2112ni i i T m v ==∑。
柯尼西定理:平面运动刚体的动能等于随质心平动的动能与绕通过质心的转轴转动的动能之和。
功率:在单位时间内所做的功。
力场:如质点在某空间内任一位置都受有一个大小和方向完全由所在位置确定的力作用,具有这种特性的空间就称为力场。
势力场或保守力场:如质点在某一力场内运动时,力场力对于质点所做的功仅与质点起点与终点位置有关,而与质点运动的路径无关,则这种力场称为势力场或保守力场。
质点在势力场内所受的力称为势力或保守力。
势能:在势力场中,质点由某一位置M 运动到选定的参考点M 0的过程中,有势力所做的功,以V 表示,即0x d d d d M M y z MMV F x F y F z =⋅=++⎰⎰F r 。
保守系统:具有理想约束,且所受的主动力皆为势力的质系。
机械能:质系在某瞬时的动能与势能的代数和。
机械能守恒定律:保守系统在运动过程中,其机械能保持不变。
即,质系的动能和势能可以互相转化,但总的机械能保持不变。