石灰土的无侧限抗压强度试验
- 格式:doc
- 大小:72.50 KB
- 文档页数:3
无机结合料稳定材料(外掺料)检测实施细则一、检测项目无机结合料含水量、击实、无侧限抗压强度、水泥或石灰剂量、石灰化学分析、粉煤灰细度、粉煤灰需水量比、粉煤灰含水量、粉煤灰安定性、粉煤灰烧失量、粉煤灰比表面积、石灰粉煤灰密度。
二、检测依据《公路工程无机结合料稳定材料试验规程》JTG E51-2009《用于水泥和混凝土中的粉煤灰》 GB1596-2005《粉煤灰混凝土应用技术规程》 DG/TJ 08-230-2006《水泥标准稠度用水量、凝结时间、安定性检验方法》GB/T 1346-2001三、检测方法1.无机结合料含水量(T 0801-2009烘干法)1.1目的和适用范围本法是测定无机结合料稳定土含水量的标准方法。
在105℃~110℃的条件下烘干到恒重的稳定土称为干稳定土的质量之比的百分率称为稳定土的含水量。
1.2仪器设备电热鼓风干燥箱(编号TG-05);电子天平(编号TG-03);电子天平(编号SH-06)。
1.3试验步骤1.3.1在开始试验前后应记录试验室的环境条件和仪器设备使用台帐。
1.3.2细粒土,称铝盒质量并精确至0.01g(m1),试样约50g放入铝盒中,称其质量并精确至0.01g(m2)。
中粒土,称铝盒质量精确至0.1g(m1)试样至少500g放入铝盒中称其质量并精确至0.1g(m2)。
粗粒土,称铝盒质量并精确至0.1g(m1),试样至少2000g放入铝盒中,称其质量并精确至0.1g(m2)。
1.3.3将其称好的试样与铝盒一起放到已达110℃的烘箱内进行烘干,需要的烘干时间随土类和试样数量而变。
当冷却试样连续两次称量的差(每次间隔4h)不超过原试样质量的0.1%时,即认为已经烘干。
1.3.4烘干后,从烘箱中取出盛有试样的铝盒,放置冷却。
1.3.5将铝盒和烘干的试样称其质量并精确至细粒土0.01g、中粒土0.1g、粗粒土0.1g(m3)。
1.4计算用下式计算无机结合料稳定土的含水量W(%)W=( m2- m3)×100/( m3- m1)式中:m1—铝盒的质量(g);m2—铝盒和湿稳定土的合计质量(g);m3—铝盒和干稳定土的合计质量(g);1.5结果无机结合料稳定土的含水量W两次平均值,保留至小数点后两位。
文章编号: 1671- 2579( 2010) 01- 0259- 05土壤固化剂在道路路基工程中的试验应用蒋永能( 中交一公局第六工程有限公司, 天津塘沽 300456)摘要: 该文结合天津港南港路土壤固化剂固化土路基试验段施工实际, 通过固化土和石灰土室内无侧限抗压强度、回弹模量、CBR 值以及现场弯沉、回弹模量、CBR 值的试验对比检测, 分析阐述了土壤固化剂的固化原理、力学性能及工程适应性。
关键词: 土壤固化剂; 路基; 无侧限抗压强度; 弯沉; 回弹模量; CBR 值; 试验应用收稿日期: 2009- 03- 31作者简介: 蒋永能, 男, 大学本科, 工程师. E- mail: jiangy ongneng@ sina. com天津港南港路是进出天津港南疆港的主干道, 是天津港进出口散货的主运输通道, 交通流量大, 重载车辆多。
在南港路设置了200 m 长的土壤固化剂固化土路基试验段, 目的在于实测土壤固化剂固化土层和传统石灰稳定土层的各项工程指标, 取得真实可靠的数据, 通过数据统计和对比分析, 并经过持续观测, 初步了解土壤固化剂的固化性能和工程适应性, 了解固化土路基的实际工程性能, 为在港区推广应用土壤固化剂提供技术和实践支持。
1 土壤固化剂简述试验路采用路邦EN- 1 土壤固化剂, 该产品是酸基高分子化学固化剂, 具有高氧化性能, 为浓缩液, 单位体积含硫量1 mg/ m3 , 外观为黑色、透明粘状液, 沸点大于282 e , pH 值1. 05, 毛体积密度1. 75 g/ cm3 ,能完全溶于水, 基本上不可燃不可爆, 对环境基本无不良影响。
与水稀释后, 可与土壤中矿物质及土壤颗粒发生溶解、结晶、吸收、扩散、再结晶的链式化学反应,从而将土体凝结成如下特点的板体结构: 1) 提高路基结构密实度, 增强路基承载能力; 2) 增强路基的强度,改善路基的结构; 3) 减少或不用传统硬凝性稳定剂,解决传统方法道路脆化问题; 4) 显著降低路基弯沉,提高路基的回弹模量; 5) 提高路基的温度稳定性, 在- 50~ + 70 e 间能有效减少路基的收缩、膨胀, 有效减少收缩裂缝, 降低结构的间隙率。
石灰拌合土施工一、施工准备(一)技术及材料准备1、进行原材料试验,在石灰土基层施工前,应取所定料场中有代表性的土样进行以下试验:颗粒分析、液限和塑性指数、击实试验、碎石或砾石的压碎值、有机质含量(必要时做)、磷酸盐含量(必要时做)。
此外,还需检验石灰的有效钙和氧化镁含量。
如试验碎石、碎石土、砂砾、砂砾土等继级配不好的材料,宜先改善其级配。
2、按照土壤种类及石灰质量通过击实试验确定配合比和石灰最佳含水量、最大干密度。
3、施工前进行100m~200m试验段施工,通过试验段的修筑,我们能够确定压实机械的选择和最佳组合,碾压的基本原则,灰土均匀性所需的拌和遍数,松铺系数及压实层厚度,碾前含水量偏差最佳含水量所允许的范围等。
这些参数的确定为以后石灰土规模化施工,提供第一手十分有价值的参考数据。
(二)材料要求1、石灰:石灰土选用Ⅲ级以上的钙质生石灰,其有效钙加氧化镁含量不得低于70%,在用于工程施工之前7天,充分进行消解,未消残渣含量5mm圆孔筛的筛余量不大于17%,稳定土选用塑性指数为10~15的黏性土,土粒的最大粒径不小于10mm,硫酸盐含量小于0。
8%,有机质含量小于10%。
水选用纯净的饮用水。
石灰土混合料压实后7天浸水无侧限抗压强度应不小于设计值,压实度大于设计值.通过试验选取最适宜的稳定土,确定必须的石灰剂量和混合料的最佳含水量.2、稳定土:采用固定取土场土质,用作高速公路和一级公路的底基层时,颗粒最大粒径不超过37.5mm。
土以塑性指数10~20的黏性土为宜;用石灰稳定无塑性指数的级配砂砾、级配碎石、未筛分碎石时,应添加15%左右的黏性土;试验塑性指数偏大的黏性土时,应进行粉碎,粉碎后土块的最大尺寸不应大于15mm。
土的有机质含量不超过10%,硫酸盐含量超过0.8%时不宜用石灰稳定.使用特殊类型的土壤如级配砾石、砂石、杂填土等应经试验决定.碎石或砾石的压碎值应符合以下要求:用于高速公路和一级公路底基层应不大于35%,用于二级和二级以下公路底基层应不大于40%;用于二级公路基层应不大于30%,用于二级以下公路基层应不大于35%.3、配合比设计(1)石灰剂量。
影响石灰稳定土无侧限抗压强度分析摘要:无机结合料稳定土具有较高的强度和水稳性,并有一定程度的抗冻性,整体性强。
在经级配改良或未改善的粘土类、亚粘土类、亚砂土类、粉土类中掺入各类稳定材料称为无机结合料稳定土。
与砂石材料相比,稳定土路面具有一定的抗拉强度和良好的稳定性,但耐磨性差,一般不用作面层。
关键词:石灰稳定土;强度;原理石灰稳定土因为取材广泛,施工成本低廉,因此在道路施工中应用广泛,含灰量低于5%时一般为改良土质,增强土质CBR强度,以满足规范对填料的要求,大于10%时,一般是利用石灰稳定土的强度、稳定性、整体性、刚性等来做低等级道路的基层或高等级道路的底基层。
1.石灰稳定土的组成1.1土质土的矿物成分对无机结合料稳定土性质具有重要影响。
试验表明,除有机质或硫酸盐含量高的士以外,各类砂砾土、砂土、粉土和粘土均可用无机结合料稳定。
一般规定本变化,且能保证稳定土达到所规定的强度和稳定性的前题下,取尽可能选低剂量、低成本的稳定材料。
1.2石灰各种化学组成的石灰均可用于稳定土。
在剂量不大的情况下,钙质石灰比镁质石灰稳定土的初期强度高。
镁质石灰稳定土在剂量较大时后期强度优于钙质石灰稳定土。
石灰的最佳剂量,对粘性土和粉性土为占千土重的8%~16%,对秒性土为10%~18%。
1.3含水量水分是稳定土的一个重要组成部分。
水分以满足稳定土形成强度的需要,同时使稳定土在压实时具有一定的塑性,以达到所需要的压实度。
水分还可使稳定土在养生时具有一定的湿度。
2.石灰土强度形成原理在土中掺入适量的石灰,并在最佳含水量下拌匀压实,使石灰与土发生一系列的物理、化学作用而逐渐形成强度。
石灰与土之间产生的化学与物理化学作用可分为四个方面:离子交换作用;结晶作用;碳酸化作用;火山灰作用。
2.1离子交换作用在石灰土中,由于水的作用使部分熟石灰离解成Ca++和(OH)-离子,溶液呈现出弱碱性,随着Ca++浓度增大,灰土中土粒表面原来吸的Na++、K+等一价离子被石灰中的二价Ca++离子替换。
(二)样品要求水泥或石灰稳定材料中水泥或石灰剂量测定:应使水泥或石灰稳定材料处于最佳含水状态,并短于水泥初凝时间。
1水泥或石灰稳定材料中水泥或石灰剂量测定试验方法(1)仪器设备酸式滴定管(50mL),滴定台,滴定管夹,大肚移液管(10mL,50mL),锥形瓶(200mL),烧杯(2000mL,300mL),容量瓶(1000mL),搪瓷杯(1200mL),玻璃棒,量筒(100mL,5mL),棕色广口瓶(60mL),电子天平(量程不小于1500g,感量0.01g),秒表,洗耳球,洗瓶等。
(2)试剂0.1mol/m3乙二胺四乙酸二钠(EDTA二钠)标准溶液(简称EDTA二钠标准溶液):准确称取EDTA二钠(分析纯)37.23g,用40~50℃的无二氧化碳蒸馏水溶解,待全部溶解并冷却至室温后,定容至1000mL。
10%氯化铵(NH4Cl)溶液:将500g氯化铵(分析纯或化学纯)放在10L的聚乙烯桶内,加蒸馏水4500mL,充分振荡,使氯化铵完全溶解。
也可以分批在1000mL的烧杯内配制,然后倒入塑料桶内摇匀。
1.8%氢氧化钠(内含三乙醇胺)溶液:用电子天平称18g氢氧化钠(NaOH)(分析纯),放入洁净干燥的1000mL烧杯中,加1000mL蒸馏水使其全部溶解,待溶解冷却至室温后,加入2mL三乙醇胺(分析纯),搅拌均匀后储于塑料桶中。
钙红指示剂:将0.2g钙试剂羧酸钠(分子式C21H13N2NaO7S,分子量460.39)与20g预先在105℃烘箱中烘1h的硫酸钾混合。
一起放入研体中,研成极细粉末,储于棕色广口瓶中,以防吸潮。
(3)准备标准曲线a、取样:取工地用石灰和土,风干后用烘干法测其含水率(如为水泥,可假定含水率为0)b、混合料组成计算公式:干料质量=湿料质量/(1+含水量)计算步骤:干混合料质量=湿混合料质量/(1+最佳含水量)干土质量=干混合料质量/(1+石灰或水泥剂量)干石灰或水泥质量=干混合料质量-干土质量湿土质量=干土质量×(1+土的风干含水量)湿石灰质量=干石灰质量×(1+石灰的风干含水量)石灰土中应加入的水=湿混合料质量-湿土质量-湿石灰质量c、准备5种试样,每种两个样品(以水泥稳定材料为例),如为水泥稳定中、粗粒土,每个样品取1000g左右(如为细粒土,则可以称取300g左右)准备试验。
土壤无侧限试验仪原理
土壤无侧限试验仪是一种用于测试土壤或类似土壤材料的无侧限抗压强度的仪器。
其原理是基于无侧限压力试验,通过施加轴向压力,使试样在无侧限条件下发生压缩直至破裂。
在无侧限压力试验中,试样在无侧限条件下受到轴向压力的压缩,随着压力的增加,试样逐渐被压缩,最终达到破裂状态。
通过测量试样破裂时的压力和尺寸变化,可以计算出无侧限抗压强度。
土壤无侧限试验仪一般由压力机、试验筒和测力计等部分组成。
压力机用于施加轴向压力,试验筒用于盛装试样,测力计则用于测量试样受到的压力。
在试验过程中,试样被放置在试验筒中,然后通过压力机施加轴向压力。
随着压力的增加,试样逐渐被压缩,同时测力计记录下试样受到的压力。
当试样破裂时,试验结束,记录下破裂时的压力和尺寸变化。
土壤无侧限试验仪的应用范围广泛,可以用于测试土壤、岩石、混凝土等材料的无侧限抗压强度。
通过该试验可以了解材料的力学性质、强度特性、应力应变关系等重要参数,为工程设计和施工提供重要的参考依据。
石灰稳定土检测
石灰:钙、镁含量2、配合比试验按照施工采用的土料、石灰,取适量样品,按照一定的配合比例开展室内重型击实试验,确定最大干密度、最优含水率,同时测定混合料的灰剂量;按照规定的最大干密度、最优含水率制备不同石灰剂量的试件,在规定温度下养生、浸水,按《公路工程无机结合料稳定材料试验规程》(JTG E51-xx)进行无侧限抗压强度试验,最终确定满足设计要求的无侧线抗压强度指标的石灰土配合比。
3、施工过程的质量检测填筑前的石灰土含水率检测、石灰剂量检测:烘干法、化学滴定法压实度检测:环刀法或灌砂法(根据混合料粒径确定)。
检测方法:分层取样检测,取样位置在每层表面以下的2/3厚度处;取样数量及位置为,每压实层100m检测1个断面,每个断面路基表层左、中、右至少各1点。
无侧限抗压强度检测:从每压实层已摊铺好灰土的地段现场取样,在室内按要求的压实度(设计压实度指标对应的干密度、最优含水率)制样,成型、养护,进行无侧限抗压强度试验。
检测频次为每层每5000m2检测左、中、右三组。
无侧限抗压强度每一组取样数量:小试件直径50mm,高50mm,6个试件,需取混合料3-4kg;中试件直径
100mm,高100mm,9个试件,需取混合料25-30kg。
第 1 页共 1 页。
土壤固化剂在辽滨景观道路路基工程中的应用文章结合辽滨景观道路工程土壤固化剂固化土路基的施工实际,通过固化石灰土和水泥石灰稳定土的室内无侧限抗压强度、承载比以及现场弯沉、压实度的试验对比检测,分析了土壤固化剂的固化原理、力学性能及工程适应性,了解固化剂土路基的工程性能,为营口地区推广应用土壤固化剂提供技术和实践支持。
标签:土壤固化剂;盐渍土路基;击实;无侧限抗压强度;承载比(CBR)地处辽河北岸的营口辽滨景观道路工程中,由于原状土质为淤泥质粉质粘土,土的坚固系数低,氯化钠盐份含量超过1%,这样的盐渍土路基易受水的侵害,导致路基的处理成为难以攻克的问题。
以往在营口沿海产业基地修建的道路虽然采用1米粒料石灰土换填层的方法,但在工程造价和工程材料方面无疑是一项重大的消耗。
为了同时兼顾增强路基强度和节约造价两方面的问题,采用新型材料无疑是最佳选择。
本试验采用的土壤固化剂是经过大量实践应用的土壤固化材料,通过击实试验、无侧限抗压强度试验和承载比试验、弯沉与压实度现场检测所获得的数据证明,这一材料完全可以应用于此项工程。
1 原材料分析1.1 土壤固化剂土壤固化剂是一种离子型类固化剂,是一种高浓缩的酸性有机溶液,具有很强的氧化、溶解能力,可将土壤中的矿物质和土壤分子分解,使其重新结晶形成金属盐,产生新的化学键,保持土壤持久稳定。
利用固化剂的强离子交换促使土壤具有活性,来破坏土壤颗粒表面的双电层结构,减弱土壤表面与水的化学作用力,破坏土壤毛细结构,脱出土壤颗粒表面水,使之成为自由水。
通过碾压排掉水分子,使土壤由亲水性变为斥水性。
土壤颗粒表面的相互作用增强,含水率下降,路面压得更为密实,形成坚实的板块,从而提高路基的水稳定性。
本试验采用的土壤固化剂为路邦EN-1型浓缩液,酸基化合物,硫酸含量>1% (wl),单位体积含硫量1mg/m3,比重为1.70/25 ℃,PH值1.05;密度1.70g/cm3,完全溶于水,蒸汽压0.133pa,形态气味为黑色、透明、粘状液体,具有较强硫酸气味。
下面仅就石灰稳定土混合料配合比设计为例进行介绍。
【设计资料】某地区二级公路路面底基层设计为石灰稳定土,请按现行部颁技术规范的要求设计石灰稳定土混合料配合比。
(1)该路面底基层设计为30cm石灰稳定土,要求7d无侧限饱水抗压强度为0.8MPa。
(2)该路沿线土质为轻亚黏土,石灰材料采用Ⅲ级以上钙质消石灰,有效钙加氧化镁含量测得结果为74.8%,未消化残渣含量测得结果为9.6%。
黏土的物理性质试验结果表表2-25(3)该路石灰土混合料生产采用集中厂拌法,分二层铺筑,要求施工压实度为95.0%。
【设计步骤】1.原材料检验及选定(1)石灰材料:该路段沿线盛产钙质石灰,经试验检测各项技术指标均满足现行有关技术指标要求,(CaO+MgO)含量平均值为74.8 %,未消化残渣含量平均值为9.6%。
(2)土料:该路土场的土质为轻亚黏土,该土的试验检测结果列在表2-25中。
土料的各项技术指标符合现行技术规范要求。
2.确定石灰剂量的掺配范围参照当地的经验,石灰土的石灰剂量按8%、10%、12%、14%和16%五种比例配制。
3.确定最佳含水量和最大干密度用重型击实试验法确定各种不同石灰剂量的石灰土混合料最佳含水量和最大干密度的结果列在表2-26中。
4.测试7d无侧限饱水抗压强度(1)计算每个试件的石灰土用量采用 50mm×50mm的试件,每个试件的体积为98cm³。
施工中对石灰土底基层的压实度要求为95%。
每个试件需要用不同石灰土混合料的干质量应用公式(2-20)计算。
Q d =V ×m d ⋅γ×K c (2-20)式中:Q d ——试件的干质量,g ; V ——试件的体积,cm³;m d ⋅γ——混合料的最大干密度,g /cm³;c K ——现场要求的压实度,以小数计。
将上述各有关数值代人式(2-20)计算得每个试件需用不同石灰土混合料的干质量列在表2-27中。
石灰土质量控制要点石灰土是道路基层材料中的一种重要类型,因其具有较高的强度、抗水性和耐久性,在公路建设中被广泛使用。
然而,石灰土的质量控制至关重要,以确保其满足施工要求和使用寿命。
本文将探讨石灰土质量控制要点。
一、原材料控制1、石灰:石灰应采用三级以上钙质石灰,且应具有较高的活性。
在储存和运输过程中,应采取措施防止其受潮或污染。
2、土:土应选用具有一定强度、粒径均匀、耐久性好的砂性土或粘性土。
土中不得含有有机物、草根等杂质。
3、水:使用的水应洁净、无污染,不得含有有害物质。
二、配合比设计1、根据设计要求和试验数据,确定石灰土的配合比。
配合比应考虑到石灰土的强度、耐久性和施工要求。
2、配合比设计应通过试验确定,并进行优化,以达到最佳效果。
三、拌合与运输1、石灰土应采用机械拌合,以确保拌合均匀。
拌合过程中应控制好水量,以避免出现“素土”或“弹簧土”等问题。
2、石灰土拌合后应及时运输,避免长时间停留造成离析或水分蒸发。
运输过程中应采取措施防止污染和离析。
四、摊铺与碾压1、石灰土摊铺前应对基层进行验收,确保基层平整、坚实、无杂物。
2、摊铺时应注意控制好摊铺厚度和含水量,以避免出现“干缩裂缝”或“弹簧土”等问题。
3、碾压是石灰土施工的关键环节之一,应采用合适的压路机型号和碾压工艺,确保碾压均匀、密实。
碾压过程中应控制好压实度和含水量,避免出现“过压”或“欠压”等问题。
4、摊铺和碾压过程中应加强检测和记录,确保符合设计和规范要求。
五、养生与维护1、石灰土碾压完成后应及时进行养生,以避免出现“开裂”或“脱皮”等问题。
养生期间应保持表面湿润,并采取措施防止车辆和人员破坏。
2、在养生期间,应对石灰土进行维护和管理,包括防止车辆和人员进入、清理表面杂物等。
养生期结束后,应对石灰土进行验收,确保满足设计和规范要求。
六、质量检测与评估1、质量检测是石灰土质量控制的重要环节之一,应采用合适的检测方法和设备进行检测。
检测内容包括石灰土的强度、耐久性、稳定性等方面。
二灰稳定土0000摘要:二灰稳定土中石灰与粉煤灰结合料的比例及其性能对于其稳定性和强度起到主要作用,而石灰的特性及剂量对于初期强度的形成更显重要。
本文着重对二灰稳定土中有关石灰问题进行了试验研究和对比分析。
二灰稳定土石灰剂量特性试验研究半刚性基层路面是我国交通部"六五"科技攻关成果,近十多年来已成为我国高等级路面的主要形式,常用的半刚性基层有:水泥稳定粒料土类、石灰稳定粒料土类和石灰粉煤灰粒料土类(简称二灰稳定土类)等。
其特性为强度高、耐久性好、造价低、利于环境保护等诸多优点。
成果推广以来普遍受到工程界和社会欢迎。
我省有九大火力发电厂,粉煤灰料源充足。
堆弃的粉煤灰既占用土地,又污染环境。
因此,自1978年以来多以二灰稳定土类作为高等级公路的底基层和基层。
在沪宁高速公路、宁连、宁通一级公路、南京机场高速公路的修建中,采用了二灰土、二灰碎石作为底基层和基层,体现出良好的整体强度。
本文着重就南京机场高速公路应用二灰稳定土材料的中有关石灰问题,开展有益的试验研究和对比分析。
1二灰材料分析1.1石灰质量石灰中氧化钙(CaO)和氧化镁(MgO)的含量对二灰稳定土类材料的强度有着明显的影响。
虽然用石灰稳定某种土时,有时石灰剂量的多少石灰土强度的影响不会明显地反应出来,一旦加入粉煤灰后,石灰用量的多少对二灰稳定土类混合料强度的影响就变得极为明显。
《公路路面基层施工技术规范》(JTJ-034-93)(以下简称"规范)中规定,石灰质量应符合Ⅲ级消石灰或Ⅲ级生石灰的技术指标。
南京机场高速公路所用石灰为南京地产石灰,消石灰中有效钙镁含量均在55%以上,生石灰中有效钙镁含量均在70%以上,完全符合"规范"有关要求。
1.2粉煤灰质量粉煤灰是一种火山灰材料,是一种硅质的或硅铝质的材料。
它本身很少或没有粘结性,但是当它以细分散的状态与水和消石灰混合时,在常温下与氢氧化钙发生反应能生成一种具有粘结性的化合物。
路拌法石灰土施工(公路工程)石灰土路拌施工时,应设置试验段,通过试验段来确定施工控制参数,如压路机功率、碾压遍数、碾压厚度等。
影响石灰改良土路堤压实的主要参数包括:前期准备、灰土含水率、石灰的撒布和翻拌、碾压层厚度、碾压机械性能参数及碾压遍数、滞压时间等。
(1)前期准备①填料准备:在填土前7日将石灰运到工地,如发现消解未完全时,则用挖机挖开再消解一定保证石灰全部消解完毕后才能使用,同时为保证石灰的质量须对石灰进行过筛将杂质清除。
消石灰消解时间不超过7天,消解后存放时间不超过30天。
②下承层准备:改良土的下承层要求表面平整、坚实,标高、路拱、压实度、指标符合规范要求,否则应处理至符合要求,并在上土前将表面洒水润湿。
(2)填料含水量控制施工中改良土最佳压实含水率控制在Wopt+2.0%(±0.5%)。
在开始碾压前于现场取样进行一次含水率检测,若过湿则晾晒,若过干则洒水。
(3)石灰的撒布和翻拌①在施工过程中,石灰的掺量和翻拌的质量直接决定着改良土路基的压实质量和强度,因此要选用撒布机时要求其精密且能自动控制石灰撒布量,选用路拌机时要求其翻拌深度充足、拌合效果良好。
根据临渭项目中通过试验段的铺筑,取得较好效果的经验,推荐采用撒布机均匀撒布石灰后采用稳定土路拌机翻拌法配合压路机压实的路基施工方法。
②具体撒布量依照现场松铺厚度和掺灰设计值进行计算。
③第一遍不宜翻拌到底,应留2~3cm,以防止石灰下沉集中在底部翻拌不上来,形成灰夹层。
拌合过程中应按工艺试验的配合比配料拌和均匀,色泽一致,没有灰条、灰团和花面,拌和物中不得含有土块、生石灰块。
④第二~三遍拌和:第二遍翻拌时,一定要翻拌到底,并对下层略有破坏,宜1cm左右。
这样既能消除夹层素土,又能使上下两层结合更好。
翻拌过程中,应跟人随拌和机随时检查翻拌深度是否满足要求。
⑤翻拌两遍后,应检查含水量,如果含水量满足要求,混合料色泽均匀一致,没有灰条、灰团和花面,没有粗细颗粒“窝或带”就算拌和合格,否则应以旋耕犁或铧犁配合作业,或者补灰、或者补水后再用拌和机翻拌至满足要求为止。
第1篇一、石灰土路基施工工艺流程1. 施工准备(1)场地平整:将施工场地平整,确保路基基底坚实、平整。
(2)材料准备:准备好石灰、土、砂等原材料,确保材料质量符合规范要求。
(3)设备准备:调试施工设备,确保设备性能良好。
2. 施工过程(1)土源选择:选择适宜的土源,保证土质符合要求。
(2)石灰消解:将石灰进行消解,消解程度达到80%以上。
(3)土与石灰混合:将消解后的石灰与土按一定比例混合均匀。
(4)分层摊铺:按照设计要求,将石灰土分层摊铺,每层厚度应控制在15cm左右。
(5)碾压:采用碾压机对石灰土进行碾压,确保压实度达到要求。
(6)养护:碾压完成后,进行洒水养护,保持石灰土湿润,促进石灰土稳定。
3. 施工质量检查(1)压实度检查:采用环刀法或灌砂法检查压实度,确保压实度达到设计要求。
(2)平整度检查:采用水平尺检查石灰土的平整度,确保平整度达到要求。
(3)强度检查:采用CBR试验或无侧限抗压强度试验检查石灰土的强度,确保强度达到设计要求。
二、石灰土路基施工注意事项1. 石灰消解:石灰消解是石灰土路基施工的关键环节,消解程度直接影响石灰土的质量。
应严格控制消解时间,确保石灰消解充分。
2. 土与石灰混合:土与石灰的混合比例应根据设计要求进行调整,确保石灰土的质量。
3. 分层摊铺:分层摊铺时,应注意每层厚度均匀,避免出现厚薄不均现象。
4. 碾压:碾压过程中,应注意碾压遍数和碾压速度,确保压实度达到要求。
5. 养护:石灰土路基施工完成后,应进行洒水养护,保持石灰土湿润,促进石灰土稳定。
6. 质量控制:施工过程中,应严格执行质量控制措施,确保石灰土路基施工质量。
总之,路基工程石灰土施工是一项复杂的工程,施工过程中应严格按照工艺流程进行操作,注意施工细节,确保石灰土路基施工质量。
第2篇在公路、铁路等基础设施建设中,路基工程是至关重要的基础部分。
石灰土作为一种常用的路基填筑材料,因其具有良好的力学性能、稳定性和耐久性,被广泛应用于路基施工中。
水泥稳定碎石、石灰土配合比水泥稳定碎石基层配合比设计某高速公路路面基层施工采用5%剂量的水泥稳定碎石铺筑,由试验确定原材料由水泥、集料、水组成,其中集料由1#料碎石(9.5,31.5)mm、2#料碎石(4.75,9.5)mm、3#细集料(0.075,4.75)mm混合组成。
一、设计依据《公路路面基层施工技术规范》 JTJ034-2000《公路工程集料试验规程》 JTG E42-2005 《无机结合料试验规程》 JTJ057-94《公路土工试验规程》 JTJ051-93《路基路面现场测试规程》 JTJ059-95二、设计要求以7d无侧限抗压强度?5.0MPa为设计标准。
三、试验内容本次试验为水泥稳定碎石基层的施工做准备,以确定混合料各组分的具体配合比。
试验项目主要有以下内容:1、原材料试验2、配合比设计3、水泥稳定碎石重型标准击实试验4、水泥稳定碎石无侧限抗压强度试验5、水泥稳定碎水泥剂量标准曲线试验四、原材料试验选用的原材料和各项性能指标如下:1、1#碎石:产地浙江余杭,材料粒径(9.5,31.5)mm,压碎值平均为15.8%。
2、2#碎石:产地浙江余杭,材料粒径(4.75,9.5)mm,小于0.075 mm颗粒含量为0.2%。
3、细集料:产地浙江余杭,材料粒径(0.075,4.75)mm,小于0.075 mm颗粒含量为6.3%。
4、水泥:普通硅酸盐水泥P.O32.5,产于上海海螺水泥有限公司,水泥物理力学性能试验。
5、水:饮用水。
五、配合比设计1、水泥稳定碎石集料级配应符合以下要求:根据《公路路面基层施工技术规范》的基层原材料要求,分别对12料、3料进行水洗筛分试验,其各项指标均符合规范及设计要求,通过筛分计算确定集料比例为123料=28:29:43。
2、确定配合比根据设计要求,在满足设计强度的基础上限制水泥用量,水泥采用外掺法,故我们试定以下三组配合比:六、水泥稳定碎石重型击实试验本试验采用重型击实法,击实筒的规格为φ152×120mm,击实层数3层,锤击次数为98次/层。