流体力学第二章参考答案
- 格式:doc
- 大小:371.00 KB
- 文档页数:6
第一章 流体的基本概念1-1 单位换算:1.海水的密度ρ=1028公斤/米3,以达因/厘米3,牛/米3为单位,表示此海水的重度γ值。
解:2.酒精在0℃时的比重为0.807,其密度ρ为若干公斤/米3 ? 若干克/厘米3 ? 其重度γ为若干达因/厘米3 ? 若干牛/米3 ? 解:l-2 粘度的换算:1.石油在50℃时的重度γ=900达因/厘米3,动力粘度μ=58.86×10-4牛.秒/米2。
求此石油的运动粘性系数ν。
解:2.某种液体的比重为1.046,动力粘性系数μ=1.85厘泊,其运动粘性系数为若干斯? 解:3.求在1大气压下,35℃时空气的动力粘性系数μ及运动粘性系3323333w /8.790/7908/8.9/807 0.807g/cm 807kg/m 1000kg/m cm dy m N s m m kg ==⨯===⨯γ酒精√sm s cm cmdy s cm cm s dy g /104.6/1064 /900/)/980101086.58( 26233224--⨯=⨯=⨯⋅⨯==∴γμν)(/017686.0 /1046.1/1085.1 232w 斯比重s cm cmg cm s g =⨯⋅⨯=⨯=∴-ρμν33235/44.1007/4.10074/8.9/1028 101 ; cm dy m N s m m kg dyN g ==⨯=∴==γργ数ν之值。
解:1-3 相距10毫米的两块相互平行的板子,水平放置,板间充满20℃的蓖麻油(动力粘度μ=9.72泊)。
下板固定不动,上板以1.5米/秒的速度移动,问在油中的切应力τ是多少牛/米2? 解:1-4 直径为150毫米的圆柱,固定不动。
内径为151.24毫米的圆筒,同心地套在圆柱之外。
二者的长度均为250毫米。
柱面与筒内壁之间的空隙充以甘油。
转动外筒,每分钟100转,测得转矩为9.091牛米。
假设空隙中甘油的速度按线性分布,也不考虑末端效应。
第二章 流体静力学2-1 密闭容器测压管液面高于容器内液面h=1.8m,液体密度为850kg/m3, 求液面压强。
解:08509.8 1.814994Pa p gh ρ==⨯⨯=2-2 密闭水箱,压力表测得压强为4900Pa,压力表中心比A 点高0.4米,A 点在液面下1.5m ,液面压强。
解:0()490010009.8(0.4 1.5) 49009800 1.15880PaM B A p p g h h ρ=+-=+⨯⨯-=-⨯=-2-3 水箱形状如图,底部有4个支座。
试求底面上的总压力和四个支座的支座反力,并讨论总压力和支座反力不相等的原因。
解:底面上总压力(内力,与容器内的反作用力平衡)()10009.81333352.8KN P ghA ρ==⨯⨯+⨯⨯=支座反力支座反力(合外力)3312()10009.8(31)274.4KN G g V V ρ=+=⨯⨯+=2-4盛满水的容器顶口装有活塞A ,直径d=0.4m ,容器底直径D=1.0m ,高h=1.8m 。
如活塞上加力为2520N(包括活塞自重)。
求容器底的压强和总压力。
解:压强2252010009.8 1.837.7kPa (0.4)/4G p gh A ρπ=+=+⨯⨯= 总压力 237.71/429.6KN P p A π=⋅=⨯⋅=2-5多管水银测压计用来测水箱中的表面压强。
图中高程单位为m ,试求水面的绝对压强。
解:对1-1等压面02(3.0 1.4)(2.5 1.4)p g p g ρρ+-=+-汞对3-3等压面 2(2.5 1.2)(2.3 1.2)a p g p g ρρ+-=+-汞将两式相加后整理0(2.3 1.2)(2.5 1.4)(2.5 1.2)(3.0 1.4)264.8kPap g g g g ρρρρ=-+-----=汞汞绝对压强 0.0264.8+98=362.8kPa abs a p p p =+=2-6水管A 、B 两点高差h 1=0.2m ,U 形管压差计中水银液面高差h 2=0.2m 。
《流体力学》徐正坦主编课后答案第二章本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章习题简答2-1 题2-1图示中的A 、B 点的相对压强各为多少(单位分别用N/m 2和mH 2O 表示)题2-1图解:()OmH Pa gh P OmH Pa gh p B B A A 2232940038.910005.0490035.38.91000==⨯⨯==-=-=-⨯⨯==ρρ2-2 已知题2-2图中z = 1m , h = 2m ,试求A 点的相对压强。
解:取等压面1-1,则Pagh gz P ghgz P A A 3108.9)21(8.91000⨯-=-⨯⨯=-=-=-ρρρρ2-3 已知水箱真空表M 的读数为,水箱与油箱的液面差H =1.5m ,水银柱差m 2.02=h ,3m /kg 800=油ρ,求1h 为多少米解:取等压面1-1,则()()()()()mghHgPghhghghPhhHgPPHgHgaa6.58.980010002.05.198009802.01332802212121=⨯-+⨯-+⨯=-+-+=++=+++-油油ρρρρρρρ2-4为了精确测定密度为ρ的液体中A、B两点的微小压差,特设计图示微压计。
测定时的各液面差如图示。
试求ρ与ρ'的关系及同一高程上A、B两点的压差。
解:如图取等压面1-1,以3-3为基准面,则()abggb-=ρρ'(对于a段空气产生的压力忽略不计)得()⎪⎭⎫⎝⎛-=-=babab1'ρρρ取等压面2-2,则gHbagHgHpppgHpgHpBABAρρρρρ=-=-=∆-=-''2-5 图示密闭容器,压力表的示值为4900N/m2,压力表中心比A点高0.4m,A点在水面下1.5m,求水面压强。
解:PagHghPPghPgHP5880)5.14.0(98004900-=-⨯+=-+=+=+ρρρρ2-6 图为倾斜水管上测定压差的装置,已知cm20=z,压差计液面之差cm12=h,求当(1)31kg/m920=ρ的油时;(2)1ρ为空气时;A、B两点的压差分别为多少解:(1)取等压面1-1OmH Pa ghgZ gh P P ghgZ P gh P A B B A 21119.092.1865)12.02.0(980012.08.9920==-⨯+⨯⨯=-+=---=-ρρρρρρ(2)同题(1)可得OmH Pa ghgZ P P gZP gh P A B B A 208.0784)12.02.0(9800==-⨯=-=--=-ρρρρ2-7 已知倾斜微压计的倾角︒=30α,测得0.5m =l ,容器中液面至测压管口高度m 1.0=h ,求压力p 。
第二章 流体静力学2-1 密闭容器测压管液面高于容器内液面h=1.8m,液体密度为850kg/m3, 求液面压强。
解:08509.8 1.814994Pa p gh ρ==⨯⨯=2-2 密闭水箱,压力表测得压强为4900Pa,压力表中心比A 点高0.4米,A 点在液面下1.5m ,液面压强。
解:0()490010009.8(0.4 1.5) 49009800 1.15880PaM B A p p g h h ρ=+-=+⨯⨯-=-⨯=-2-3 水箱形状如图,底部有4个支座。
试求底面上的总压力和四个支座的支座反力,并讨论总压力和支座反力不相等的原因。
解:底面上总压力(内力,与容器内的反作用力平衡)()10009.81333352.8KN P ghA ρ==⨯⨯+⨯⨯=支座反力支座反力(合外力)3312()10009.8(31)274.4KN G g V V ρ=+=⨯⨯+=2-4盛满水的容器顶口装有活塞A ,直径d=0.4m ,容器底直径D=1.0m ,高h=1.8m 。
如活塞上加力为2520N(包括活塞自重)。
求容器底的压强和总压力。
解:压强2252010009.8 1.837.7kPa (0.4)/4G p gh A ρπ=+=+⨯⨯= 总压力 237.71/429.6KN P p A π=⋅=⨯⋅=2-5多管水银测压计用来测水箱中的表面压强。
图中高程单位为m ,试求水面的绝对压强。
解:对1-1等压面02(3.0 1.4)(2.5 1.4)p g p g ρρ+-=+-汞对3-3等压面 2(2.5 1.2)(2.3 1.2)a p g p g ρρ+-=+-汞将两式相加后整理0(2.3 1.2)(2.5 1.4)(2.5 1.2)(3.0 1.4)264.8kPap g g g g ρρρρ=-+-----=汞汞绝对压强 0.0264.8+98=362.8kPa abs a p p p =+=2-6水管A 、B 两点高差h 1=0.2m ,U 形管压差计中水银液面高差h 2=0.2m 。
第2章 流体静力学2-1 是非题(正确的划“√”,错误的划“⨯”) 1. 水深相同的静止水面一定是等压面。
(√)2. 在平衡条件下的流体不能承受拉力和剪切力,只能承受压力,其沿内法线方向作用于作用面。
(√)3. 平衡流体中,某点上流体静压强的数值与作用面在空间的方位无关。
(√)4. 平衡流体中,某点上流体静压强的数值与作用面在空间的位置无关。
(⨯)5. 平衡流体上的表面力有法向压力与切向压力。
(⨯)6. 势流的流态分为层流和紊流。
(⨯)7. 直立平板静水总压力的作用点就是平板的形心。
(⨯) 8. 静止液体中同一点各方向的静水压强数值相等。
(√) 9. 只有在有势质量力的作用下流体才能平衡。
(√)10. 作用于平衡流体中任意一点的质量力矢量垂直于通过该点的等压面。
(√) ------------------------------------------------------------------------------------------------- 2-4 如题图2-4所示的压强计。
已知:25.4a cm =,61b cm =,45.5c cm =,30.4d cm =,30α=︒,31A g cm γ=,3 1.2B g cm γ=,3 2.4g g cm γ=。
求压强差?B A p p -=abcdα γAγBγCP AP B题图2-4解:因流体平衡。
有()2sin 30sin 3025.4161 2.445.5 1.20.530.4 2.40.51.06A A g B B g B A B A P a b P c d P P g P P N cm γγγγ+⋅+⋅=+⋅⋅︒+⋅⋅︒∴-=⨯+⨯-⨯⨯-⨯⨯⨯-=2-5 如图2-5所示,已知10a cm =,7.5b cm =,5c cm =,10d cm =,30e cm =,60θ=︒,213.6HgH O ρρ=。
求压强?A p =解:()()2cos60gage A Hg H O Hg P a c b e d γγγ=+⋅-⋅+︒-()3241513.67.51513.6102.6 2.610g N cm Pa-=⨯-⨯+⨯⨯⨯==⨯答:42.610gage A P Pa =⨯2-8 .如图2-8所示,船闸宽B =25m -,上游水位H 1=63m ,下游水位H 2=48m ,船闸用两扇矩形门开闭。
2.3 如图,用U 型水银测压计测量水容器中某点压强,已知H 1=6cm ,H 2=4cm ,求A 点的压强。
解:选择水和水银的分界面作为等压面得11222()γγ++=+a A p H H p H故A 点压强为:511212() 1.1410Pa γγγ=++-=⨯A a p p H H2.5 水压机是由两个尺寸不同而彼此连通的,以及置于缸筒内的一对活塞组成,缸内充满水或油,如图示:已知大小活塞的面积分别为A 2,A 1,若忽略两活塞的质量及其与圆筒摩阻的影响,当小活塞加力F 1时,求大活塞所产生的力F 2。
帕斯卡定律:加在密闭液体上的压强,能够大小不变地由液体向各个方向传递。
根据静压力基本方程(p=p 0+ρgh),盛放在密闭容器内的液体,其外加压强p 0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。
这就是说,在密闭容器内,施加于静止液体上的压强将以等值同时传到各点。
这就是帕斯卡原理,或称静压传递原理。
解:由111F p A =,222Fp A =,根据静压传递原理:12p p =1221F A F A ⇒=2.6如图示高H =1m 的容器中,上半装油下半装水,油上部真空表读数p 1=4500Pa ,水下部压力表读数p 2=4500Pa ,试求油的密度ρ。
解:由题意可得abs1a 1p p p =-,abs2a 2p p p =+abs1abs222H H p gp ργ++= 解得abs2abs1213()()22836.7kg/m 22a a H Hp p p p p p gH gH γγρ--+---===2.7 用两个水银测压计连接到水管中心线上,左边测压计中交界面在中心A 点之下的距离为Z ,其水银柱高度为h 。
右边测压计中交界面在中心A 点之下的距离为Z+∆Z ,其水银柱高为h+∆h 。
(1)试求∆h 与∆Z 的关系。
(2)如果令水银的相对密度为13.6,∆Z=136cm 时,求∆h 是多少?解:(1)分别取测压计中交界面为等压面得,a 12AA 2a 1()()p h z p p z z p h h γγγγ+=+⎧⎨++∆=++∆⎩ 解得∆h 与∆Z 的关系为:h z ∆=∆12γγ (2)当∆Z=136cm 时,cm 1012=∆=∆γγzh 2.9 如图示一铅直矩形平板AB 如图2所示,板宽为1.5米,板高h =2.0米,板顶水深h 1=1米,求板所受的总压力的大小及力的作用点。
吴望一《流体力学》第二章部份习题参考答案一、基本概念1.连续介质假设适用条件:在研究流体的宏观运动时,如果所研究问题的空间尺度远远大于分子平均间距,例如研究河流、空气流动等;或者在研究流体与其他物体(固体)的相互作用时,物体的尺度要远远大于分子平均间距,例如水绕流桥墩、飞机在空中的飞行(空气绕流飞机)。
若不满足上述要求,连续介质假设不再适用。
如在分析空间飞行器和高层稀薄大气的相互作用时,飞行器尺度与空气分子平均自由程尺度相当。
此时单个分子运动的微观行为对宏观运动有直接的影响,分子运动论才是解决问题的正确方法。
2.(1)不可;(2)可以,因为地球直径远大于稀薄空气分子平均间距,同时与地球发生相互作用的是大量空气分子。
3.流体密度在压强和温度变化时会发生改变,这个性质被称作流体的可压缩性。
流体力学中谈到流体可压缩还是不可压缩一般要结合具体流动。
如果流动过程中,压力和温度变化较小,流体密度的变化可以忽略,就可以认为流体不可压缩。
随高度的增加而减少只能说明密度的空间分布非均匀。
判断流体是否不可压缩要看速度场的散度V ∇⋅ 。
空气上升运动属可压缩流动,小区域内的水平运动一般是不可压缩运动。
4.没有, 没有, 不是。
5 三个式子的物理意义分别是:流体加速度为零;流动是定常的;流动是均匀的。
6 欧拉观点:(),0d r t dt ρ= ,拉格朗日观点:(),,,0a b c t tρ∂=∂ 7 1)0=∇ρ,2)const =ρ,3) 0=∂∂tρ 8 不能。
要想由()t r a , 唯一确定()t r v ,还需要速度场的边界条件和初始条件。
9 物理意义分别为:初始坐标为(,)a b 的质点在任意时刻的速度;任意时刻场内任意点(,)x y 处的速度。
10 1)V s ∂∂ ,3)V V V⋅∇ 11 见讲义。
12 分别是迹线和脉线。
13 两者皆不是。
该曲线可视为从某点流出的质点在某一时刻的位置连线,即脉线。
2.3 如图,用U 型水银测压计测量水容器中某点压强,已知H 1=6cm ,H 2=4cm ,求A 点的压强。
解:选择水和水银的分界面作为等压面得11222()γγ++=+a A p H H p H故A 点压强为:511212() 1.1410Pa γγγ=++-=⨯A a p p H H2.5 水压机是由两个尺寸不同而彼此连通的,以及置于缸筒内的一对活塞组成,缸内充满水或油,如图示:已知大小活塞的面积分别为A 2,A 1,若忽略两活塞的质量及其与圆筒摩阻的影响,当小活塞加力F 1时,求大活塞所产生的力F 2。
帕斯卡定律:加在密闭液体上的压强,能够大小不变地由液体向各个方向传递。
根据静压力基本方程(p=p 0+ρgh),盛放在密闭容器内的液体,其外加压强p 0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。
这就是说,在密闭容器内,施加于静止液体上的压强将以等值同时传到各点。
这就是帕斯卡原理,或称静压传递原理。
解:由111F p A =,222Fp A =,根据静压传递原理:12p p =1221F A F A ⇒=2.6如图示高H =1m 的容器中,上半装油下半装水,油上部真空表读数p 1=4500Pa ,水下部压力表读数p 2=4500Pa ,试求油的密度ρ。
解:由题意可得abs1a 1p p p =-,abs2a 2p p p =+abs1abs222H H p gp ργ++= 解得abs2abs1213()()22836.7kg/m 22a a H Hp p p p p p gH gH γγρ--+---===2.7 用两个水银测压计连接到水管中心线上,左边测压计中交界面在中心A 点之下的距离为Z ,其水银柱高度为h 。
右边测压计中交界面在中心A 点之下的距离为Z+∆Z ,其水银柱高为h+∆h 。
(1)试求∆h 与∆Z 的关系。
(2)如果令水银的相对密度为13.6,∆Z=136cm 时,求∆h 是多少?解:(1)分别取测压计中交界面为等压面得,a 12AA 2a 1()()p h z p p z z p h h γγγγ+=+⎧⎨++∆=++∆⎩ 解得∆h 与∆Z 的关系为:h z ∆=∆12γγ (2)当∆Z=136cm 时,cm 1012=∆=∆γγzh 2.9 如图示一铅直矩形平板AB 如图2所示,板宽为1.5米,板高h =2.0米,板顶水深h 1=1米,求板所受的总压力的大小及力的作用点。
第二章习题简答2-1 题2-1图示中的A 、B 点的相对压强各为多少?(单位分别用N/m 2和mH 2O 表示)题2-1图解:()OmH Pa gh P O mH Pa gh p B B A A 2232940038.910005.0490035.38.91000==⨯⨯==-=-=-⨯⨯==ρρ2-2 已知题2-2图中z = 1m , h = 2m ,试求A 点的相对压强。
解:取等压面1-1,则Pagh gz P ghgz P A A 3108.9)21(8.91000⨯-=-⨯⨯=-=-=-ρρρρ2-3 已知水箱真空表M 的读数为0.98kPa ,水箱与油箱的液面差H =1.5m ,水银柱差m 2.02=h ,3m /kg 800=油ρ,求1h 为多少米?解:取等压面1-1,则()()()()()mgh H g P gh h gh gh P h h H g P P Hg Hg a a 6.58.980010002.05.198009802.01332802212121=⨯-+⨯-+⨯=-+-+=++=+++-油油ρρρρρρρ2-4 为了精确测定密度为ρ的液体中A 、B 两点的微小压差,特设计图示微压计。
测定时的各液面差如图示。
试求ρ与ρ'的关系及同一高程上A 、B 两点的压差。
解:如图取等压面1-1,以3-3为基准面,则()a b g gb -=ρρ' (对于a 段空气产生的压力忽略不计)得()⎪⎭⎫ ⎝⎛-=-=b a ba b 1'ρρρ取等压面2-2,则gHbagH gH p p p gHp gH p B A B A ρρρρρ=-=-=∆-=-''2-5 图示密闭容器,压力表的示值为4900N/m 2,压力表中心比A 点高0.4m ,A 点在水面下1.5m,求水面压强。
解:PagH gh P P ghP gH P 5880)5.14.0(9800490000-=-⨯+=-+=+=+ρρρρ2-6 图为倾斜水管上测定压差的装置,已知cm 20=z ,压差计液面之差cm 12=h ,求当(1)31kg/m 920=ρ的油时;(2)1ρ为空气时;A 、B 两点的压差分别为多少?解:(1)取等压面1-1OmH Pa ghgZ gh P P gh gZ P gh P A B B A 21119.092.1865)12.02.0(980012.08.9920==-⨯+⨯⨯=-+=---=-ρρρρρρ(2)同题(1)可得OmH Pa ghgZ P P gZ P gh P A B B A 208.0784)12.02.0(9800==-⨯=-=--=-ρρρρ2-7 已知倾斜微压计的倾角︒=30α,测得0.5m =l ,容器中液面至测压管口高度m 1.0=h ,求压力p 。
第一章 流体的基本概念1-1 单位换算:1.海水的密度ρ=1028公斤/米3,以达因/厘米3,牛/米3为单位,表示此海水的重度γ值。
解:2.酒精在0℃时的比重为0.807,其密度ρ为若干公斤/米3 ? 若干克/厘米3 ? 其重度γ为若干达因/厘米3 ? 若干牛/米3 ? 解:l-2 粘度的换算:1.石油在50℃时的重度γ=900达因/厘米3,动力粘度μ=58.86×10-4牛.秒/米2。
求此石油的运动粘性系数ν。
解:2.某种液体的比重为1.046,动力粘性系数μ=1.85厘泊,其运动粘性系数为若干斯? 解:3.求在1大气压下,35℃时空气的动力粘性系数μ及运动粘性系3323333w /8.790/7908/8.9/807 0.807g/cm 807kg/m 1000kg/m cm dy m N s m m kg ==⨯===⨯γ酒精√sm s cm cmdy s cm cm s dy g /104.6/1064 /900/)/980101086.58( 26233224--⨯=⨯=⨯⋅⨯==∴γμν)(/017686.0 /1046.1/1085.1 232w 斯比重s cm cmg cm s g =⨯⋅⨯=⨯=∴-ρμν33235/44.1007/4.10074/8.9/1028 101 ; cm dy m N s m m kg dyN g ==⨯=∴==γργ数ν之值。
解:1-3 相距10毫米的两块相互平行的板子,水平放置,板间充满20℃的蓖麻油(动力粘度μ=9.72泊)。
下板固定不动,上板以1.5米/秒的速度移动,问在油中的切应力τ是多少牛/米2? 解:1-4 直径为150毫米的圆柱,固定不动。
内径为151.24毫米的圆筒,同心地套在圆柱之外。
二者的长度均为250毫米。
柱面与筒内壁之间的空隙充以甘油。
转动外筒,每分钟100转,测得转矩为9.091牛米。
假设空隙中甘油的速度按线性分布,也不考虑末端效应。
第二章 流体静力学
2-1 将盛有液体的U 形小玻璃管装在作水平加速运动的汽车上(如图示),已知L =30 cm ,h =5cm ,试求汽车的加速度a 。
解:将坐标原点放在U 形玻璃管底部的中心。
Z 轴垂直向上,x 轴与加速度的方向一致,则玻璃管装在作水平运动的汽车上时,单位质量液体的质量力和液体的加速度分量分别为
0,0,,0,0x y z x y z g g g g
a a a a ===-===
代入压力全微分公式得d (d d )p a x g z ρ=-+
因为自由液面是等压面,即d 0p =,所以自由液面的微分式为d d a x g z =- 积分的:a z x c g
=-+,斜率为a g -,即a g h L = 解得21.63m/s 6g a g h L ==
=
2-2 一封闭水箱如图示,金属测压计测得的压强值为p =4.9kPa(相对压强),测压计中心比A 点高z =0.5m ,而A 点在液面以下h =1.5m 。
求液面的绝对压强和相对压强。
解:由0p gh p gz ρρ+=+得相对压强为
30() 4.91010009.81 4.9kPa p p g z h ρ=+-=⨯-⨯⨯=-
绝对压强0( 4.998)kPa=93.1kPa abs a p p p =+=-+
2-3 在装满水的锥台形容器盖上,加一力F =4kN 。
容器的尺寸如图示,D =2m ,d =l m ,h =2m 。
试求(1)A 、B 、A ’、B ’各点的相对压强;(2)容器底面上的总压力。
解:(1)02 5.06kPa 4
F F p D A π===,由0p p gh ρ=+得:
0 5.06kPa A B p p p ===
''0 5.06kPa+10009.82Pa 24.7kPa A B p p p gh ρ==+=⨯⨯=
(2) 容器底面上的总压力为2
'24.7kPa 77.6kN 4
A D P p A π==⨯= 2-4 一封闭容器水面的绝对压强p 0=85kPa ,中间玻璃管两端开口,当既无空气通过玻璃管进入容器、又无水进人玻璃管时,试求玻璃管应该伸入水面下的深度h 。
解:取玻璃管的下口端面为等压面,则0a p gh p ρ+=
3
0(9885)10 1.33m 10009.8
a p p h g ρ--⨯===⨯ 2-5 量测容器中A 点压强的真空计如2.3.3节图2-9所示,已知z =l m ,h =2m ,当地大气压强p a =98kPa(绝对压强),求A 点的绝对压强、相对压强及真空度。
解:根据液体静力学基本方程0p p gh ρ=+,由abs a p gz p ρ+=得到绝对压强
abs (980009.810001)Pa 88200Pa=88.2kPa a p p gz ρ=-=-⨯⨯=
相对压强abs (8820098000)Pa 9800Pa=9.8kPa a p p p =-=-=-- 真空度8820098000m 1m 9.81000
a abs V p p h g ρ--===⨯ 2-6 如图所示密闭容器,上层为空气,中层为密度为30834kg/m ρ=的原油,下层为密度为31250kg/m G ρ=的甘油,测压管中的甘油表面高程为9.14m ,求压力表G 的读数。
解:取原油与甘油的接触面为等压面,则012G G p gh gh ρρ+=
即:8349.8(7.62 3.66)12509.8(9.14 3.66)G p +⨯⨯-=⨯⨯-
解得:34.76kPa G p =
2-7 给出图中所示AB 面上的压强分布图。
2-8 输水管道试压时,压力表M 读数为10at ,管道直径d =lm 。
求作用在图示管端法兰堵头上的静水总压力。
解:
25C 3.141()(10009.80.51098000)7.7010N 244
M d d P gh A g p πρρ⨯==+⨯=⨯⨯+⨯⨯=⨯
2-9 图示矩形闸门,高a =3m ,宽b =2m ,闸门顶在水下的淹没深度h =1m 。
试求(1)作用在闸门上的静水总压力;(2)静水总压力的作用位置。
解:(1)闸门的面积A =ab =3×2m =6m 2, 闸门形心的淹没深度为
3(1)m=2.5m 22
C a h h =+=+ 由表2—2查得,惯性矩 33423 4.5m 1212
xC
ba I ⨯=== 于是,可算得总压力 9.81000 2.56N=147000N 147kN C C P p A g h A ρ===⨯⨯⨯=
(2)总压力的作用点D 的淹没深度
4.52.5m 2.8m 2.56xC xC D C C C C I I y y h y A h A ⎛⎫=+=+=+= ⎪⨯⎝⎭
2-10 图示一铅直矩形自动泄水闸门,门高h =3m 。
(1)要求水面超过闸门顶H =1m 时泄水闸门能自动打开。
试求闸门轴O —O 的位置放在距闸门底的距离。
(2)如果将闸门轴放在形心C 处,H 不断增大时,闸门是否能自动打开?
解:(1) 总压力的作用点D 的淹没深度
2
26(2)
xC D C C I h h y y H y A H h =+=+++ 总压力的作用点D 距闸门底的距离为
()()()223326(2)26(2)2223D h h h h l H h y H h H H h H h H ⎡⎤=+-=+-++=-=-⎢⎥+++⎣
⎦ 水面超过闸门顶H =1m 时泄水闸门能自动打开,即总压力的作用点D 位于闸门轴O —O 上,此时闸门轴O —O 的位置放在距闸门底的距离为
()
33 1.2m 2223l H =-=+
(2) 当H 增大时,l 随之增大,但始终有()33322232
l H =
-<+,所以将闸门轴放在形心C 处,H 不断增大时,闸门是不能自动打开。
2-11 图示一容器,上部为油,下部为水。
已知入h 1=1m ,h 2=2m ,油的密度
3800kg/m
ρ=。
求作用于容器侧壁AB 单位宽度上的作用力及其作用位置。
解:建立坐标系O-xy ,原点在O 点,Ox 垂直于闸门斜向下,Oy 沿闸门斜向下,AB 单位宽度上的作用力为:
()3
1sin sin 10sin d sin d [sin 1]d 1222sin sin sin 1228009.818009.8110009.8145264N 2sin 60sin 60sin 60o o w A o o w P g h A gy y g g y y
g
g g αααρραρραρρρααα
==++-=++=⨯⨯+⨯⨯+⨯⨯=⎰⎰⎰o o o 总作用力的作用位置为:
()31sin sin 210sin 222222221d 1sin d [sin 1]d 42641)3sin sin 3sin sin 18009.848009.82610009.8410009.8()452643sin 60sin 603sin 60sin 60106D A
o w o
o w w y yp A P gy y gy gy y y P g g g g P αααραρραρρρραααα
=⎛⎫=++- ⎪⎝⎭
=+++⨯⨯⨯⨯⨯⨯⨯=++-⨯⨯=⎰⎰⎰(o o o o
276 2.35m 45264
= 即合力作用点D 沿侧壁距离B 点:3/sin60 2.35 1.114(m)-=o
2-12 绘制图中AB 曲面上的水平方向压力棱柱及铅垂方向的压力体图。
2-13图示一圆柱,转轴O的摩擦力可忽略不计,其右半部在静水作用下受到浮力P Z 圆柱在该浮力作用下能否形成转动力矩?为什么?
解:
α=,半径r=4.24m,闸门所挡水深H=3m。
2-14一扇形闸门如图所示,圆心角45
求闸门每米宽所承受的静水压力及其方向。
2-15一圆柱形滚动闸门如图所示,直径D=1.2m,重量G=500 kN,宽B=16m,滚动斜面与水平面成70°角。
试求(1)圆柱形闸门上的静水总压力P及其作用方向;(2)闸门启动时,拉动闸门所需的拉力T。
2-16水泵吸水阀的圆球式底阀如图示,因球直径D=l 50mm,装于直径d=100mm的阀座上。
圆球材料的密度ρ0=8510 kg/m3,已知H l=4m,H2=2m,问吸水管内液面上的真空度应为多大才能将阀门吸起?
题2-15图题2-16图2-17设有一充满液体的铅垂圆管段长度为ΔL,内径为D,如图所示。
液体的密度为ρ0。
若已知压强水头p /g ρ比ΔL 大几百倍,则这段圆管所受的静水压强可认为是均匀分布。
设管壁材料的允许拉应力为σ,,试求管壁所需厚度δ。
2-18 液体比重计如2.6.2节图2—21所示。
试依据浮力原理椎证关系式(2—34)。
2-19 设直径为众的球体淹没在静水中,球体密度与水体密度相同,球体处子静止态。
若要将球体刚刚提出水面,所作的功为多少?提示:高度为H 的球缺的体积
2(23)
V H d H π=-。
2-20 长10 m 、半径1.5m 的木质半圆柱体浮于水面上,平面朗上,最低点的淹没深度为0.9 m 。
求半圆柱体木质材料的密度。
2-21 2.6.2节中图2—23所示混凝土沉箱。
(1)什高度由5 m 增加到6 m ,确定沉箱的稳定性;(2)若高度由5 m 增加到6 m ,但底部厚度增加到0.4 m ,试求吃水深度,且检验沉箱的稳定性。