六年分数计算裂项法培训资料
- 格式:doc
- 大小:57.50 KB
- 文档页数:4
小学六年级奥数裂项第一讲一、教学目标:1. 掌握分数裂项的基本原理。
2.掌握裂差和裂和的联系与区别二、重点难点:裂项的技巧去分数运算三、教学内容:知识梳理1、常见的裂项一般是将一项拆分成两项或多项的和或差,使拆分后的项可前后抵消或凑整,这种题目看似结构复杂,但一般无需进行复杂的计算。
一般裂项分为分数裂项和整数裂项,其中分数裂项是重要考点。
2、分数裂项的技巧分数裂项实质是异分母分数加减法的逆运算,关键是找分母上的数和分子上的数的和差倍关系。
第一类:“裂差”型运算。
当分母是两数相乘的形式,分子表示为分母上两数的差(基本型),则可以进行裂差。
两项的裂差非常重要,一定要掌握。
第二类:“裂和”型运算。
当分母是两数相乘形式,分子可表示分母上两数的和(基本型),则可以进行裂项和。
四、归纳总结1、裂差型基本形式:2、裂项和基本形式:3、裂项的实质和意义裂项的实质:实质是异分母分数的逆运算,关键是要找到分母上几个乘数和分子上数的和差倍关系;裂项的意义:裂差与裂和都是为了简便运算,摆脱繁琐的计算。
五、课堂检测~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~例1仿照例题的步骤,计算下列各题,你发现了什么规律?分析:先通分(把分母都变成各分母之积),分母相同后,再相加或者相减,把两项整理成一项,注意步骤的完整例2 仿照例题的步骤,计算下列各题,你发现了什么规律?在此处键入公式。
在此处键入公式。
分母拆分为两个数字的乘积,分子拆分为两个数字的差或和,分子上的两个数字要和分母上的两个数字相同。
把一个分数拆分成两个分数的和或差,最后再把这两各数分别约分化简。
例3 阅读下列巧算方法,解决问题:分析:分析拆分为两个数字的乘积,分子拆分为这两个数字的差(如果分子不是这两个数的差,那么就先变成差,相应的也要让此分数再乘上一个数使得结果和原分数相等),分子上的两个数字要和分母上的两个数字相同。
六年级+分数裂项————————————————————————————————作者:————————————————————————————————日期:本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b形式的,这里我们把较小分数裂项计算教学目标知识点拨的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:知识点拨教学目标分数裂项计算(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a+=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
思维训练分类为:浓度问题、分数比大小问题、行程问题、分数巧算、逻辑推理、工程问题、牛顿问题、数字的巧算问题。
分数裂项求和方法总结(一)用裂项法求型分数求和分析:因为=(n为自然数)所以有裂项公式:【例1】求的和。
(二)用裂项法求型分数求和:分析:型。
(n,k均为自然数)因为所以【例2】计算(三)用裂项法求型分数求和:分析:型(n,k均为自然数)==所以=【例3】求的和(四)用裂项法求型分数求和:分析:(n,k均为自然数)【例4】计算:(五)用裂项法求型分数求和分析:(n,k均为自然数)【例5】计算:(六)用裂项法求型分数求和:分析:(n,k均为自然数)【例6】计算:【例7】计算:++++++++【分析与解】解答此题时,我们应将分数分成两类来看,一类是把、、、这四个分数,可以拆成是两个分数的和。
另一类是把、、这三个分数,可以拆成是两个分数的差,然后再根据题目中的相关分数合并。
原式=++(-)+(+)+(+)+(+)+(+)+(-)+(-)=++-+++++++++-+-=(++++)+(+++)+(++)+(-)-(+)=1+1++-=【例8】计算:(1+++…+)+(++…+++…+)+…+(+)+【分析与解】先将题目中分母相同的分数结合在一起相加,再利用乘法分配律进行简便计算。
原式=1++(+)+(+++++)+(+…+)+…+(+++…++)=1++×+×+×+……+×=1+++++……+=1+×(1+2+3+4+ (59)=1+×=1+15×59=886【巩固练习】1、+++……+2、+++3、+++++4、1-+++5、++……+6、+++……+7、++++8、-+-+-9.+++++10.69316.931÷69.31=11、(11-×15)+(13-×13)÷(15-×11)19.4×5×6×7×……×355×356的末尾有( )个零。
六年级分数-裂项法1.2分数计算(裂项法)知识要点和基本方法分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。
分数计算同整数计算一样既有知识要求又有能力要求。
法则、定律、性质是进行计算的依据,要使计算快速、准确,关键是掌握运算技巧。
对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力,都有很大的帮助。
公式:(1)平方差公式:)()(22b a b a b a -⨯+=- (2)等差数列求和公式:()n a a a aa a a n n n +=++⋅⋅⋅⋅⋅⋅+++-1132121(3)分数的拆分公式:①)1(1+n n =n 1-11+n ②)(1d n n +=d 1×(n 1-dn +1)例1. 计算:211⨯+321⨯+431⨯+ (100991)例2. 计算:110×11+111×12 +……+159×60例3. 计算:12 +16 +112+120 +130 +142例4. 计算:110×11+111×12 +……+119×20 例5. 计算12×3 +13×4+……+16×7 +17×8例6. 计算:1+12 +16 +112+120例7. 计算:16 +112 +120+130 +142 +156 +172例8. 计算:31+151+351+631+991+1431例9. 计算:11111144771*********++++⨯⨯⨯⨯⨯例10. 计算:22222315356399++++例11. 计算:1111118244880120168+++++例12. 计算:11+21+22+21+31+32+33+32+31+……+1001+1002+……+100100+10099+……+1001例13. 计算:1+211++3211+++43211++++……+20053211+⋅⋅⋅⋅⋅⋅⋅+++例14.计算:2×(1-220051)×(1-220041)×(1-220031)×……×(1-221)例1. 计算:20042003200312005⨯例2. 计算:(751×911×116)÷(113×76×95)例3. 计算:989+9899+98999+……+43421K K 99989999个例4. 计算:(1+21)×(1+41)×(1+61)×(1+81)×(1-31)×(1-51)×(1-71)×(1-91)例5. 计算:200421-131+200221-331+200021-531+……+421-200131+221-200331例6. 计算:(971+97971+9797971+979797971)÷(861+86861+8686861+868686861) 例7. 计算:⎪⎭⎫⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211=.例8. 计算:222345567566345567+⨯⨯+= .例9. 计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= .例10. 计算:4513612812111511016131+++++++= .例11. 计算:()()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= .例12. 计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++⎪⎭⎫⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211=能力训练:1、计算:1) 5132÷132+7143÷143+9154÷1542) 156 +172 +190 +11103) 18 +124 +148 +180 +1120 4) 212005⨯+322005⨯+432005⨯+……+200520042005⨯5) 212+772+1652+……+16772+202126) 21+65+1211+2019+……+1101097) 1+216 +3112 +4120 +5130 +6142 +7156 +8172 +91908) 21+43+87+1615+3231+6463+128127+256255+5125119) 5431⨯⨯+6541⨯⨯+7651⨯⨯+8761⨯⨯+9871⨯⨯+10981⨯⨯。
分数裂项计算教课目的本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,能够分为察看、改造、运用公式等过程。
好多时候裂项的方式不易找到,需要进行适合的变形,或许先进行一部分运算,使其变得更为简单了然。
本讲是整个奥数知识系统中的一个精髓部分, 列项与通项概括是密不行分的,因此先找通项是裂项的前提,是能力的表现,对学生要求较高。
知识点拨分数裂项一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这类拆项计算称为裂项法. 裂项分为分数裂项和整数裂项,常有的裂项方法是将数字分拆成两个或多个数字单位的和或差。
碰到裂项的计算题时,要认真的 察看每项的分子和分母,找出每项分子分母之间拥有的同样的关系,找出共有部分,裂项的题目无需复杂 的计算,一般都是中间部分消去的过程,这样的话, 找到相邻两项的相像部分,让它们消去才是最根本的。
(1) 关于分母能够写作两个因数乘积的分数,即 1 形式的, 这里我们把较小的数写在前方, 即 a b ,a b那么有1 1 1 1a b b a ()a b(2) 关于分母上为 3 个或 4 个连续自然数乘积形式的分数,即:1,1形式的,我们有:n ( n1) (n2)( n 1)( n 2)( n n 3)n ( n 1(n 2)1 [ 1 1) (n1 ] 1)2 n (n 1)(n 2) 11 [ 1 1n ( n 1) (n2) (n3) 3 (n 1) (n ]n 2) (n 1) (n 2) (n 3)裂差型裂项的三大重点特点:( 1)分子所有同样,最简单形式为都是 1 的,复杂形式可为都是 x(x 为随意自然数 ) 的,可是只需将 x提拿出来即可转变为分子都是1 的运算。
( 2)分母上均为几个自然数的乘积形式,而且知足相邻 2 个分母上的因数“首尾相接”( 3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:( 1)a 2 2 2 2b ab1 1 ( 2)a ba bab a b a b a b b a a b a b a b b a裂和型运算与裂差型运算的比:裂差型运算的中心是“两两抵消达到化的目的” ,裂和型运算的目不有“两两抵消”型的,同有化“分数凑整”型的,以达到化目的。
小学数学六年级数学分数计算技巧1目录1.分数的计算技巧--裂项法1.11n n +1=1n -1n +1分母是两个数乘积,分子为这两个数的差 1.2d n (n +d )=1n -1n +d 分母是两个数的乘积,分子=这两个数的差 1.31n n +d=1d 1n -1n +d 分母是两个数的乘积,分子=1 1.41n n +1 n +2 =121n n +1 -1n +1 n +2分子为1,分母是三个连续自然数乘积 1.51n n +1 n +2 (n +3)=13⋅[1n n +1 n +2 -1n +1 n +2 n +31.6a +b a ×b =a a ×b +b a ×b =1b +1a =1a +1b 例题1.12+16+112+⋅⋅⋅+19900分母是两个数乘积,分子为这两个数的差 =1-12 +12-13 +13-14 +⋅⋅⋅+199-1100=1-12 +12-13 +13-14 +⋅⋅⋅+198-199 +199-1100(通过裂项,除了首位中间的所有项都消去了)=1-1100=99100例题2.31×4+34×7+37×10+⋅⋅⋅+397×100分母是两个数的乘积,分子=这两个数的差 =1-14 +(14-17)+(17-110)+∙∙∙+(194-197)+(197-1100)=1-14 +(14-17)+(17-110)+∙∙∙+(194-197)+(197-1100)=1-1100=99100例题3.215+235+263+⋅⋅⋅+2143有些时候分母不会直接给出两个数相乘,需要你去仔细观察 =23×5+25×7+27×9+⋅⋅⋅+211×13=13-15 +15-17 +17-19 +⋅⋅⋅+19-111 +111-113 =13-15 +15-17 +17-19 +⋅⋅⋅+19-111 +111-113=13-113=13-339=1039例题4.11×2+12×3+23×5+25×7+37×10+310×13这题看上去分子不怎么统一,但每个分数完全符合分子=分母两数的差 过程同学自己动手操作,最后结果为1-113=1213例题5.32×3+33×4+34×5+⋅⋅⋅+349×50提示:把分子3提到前面来就跟我们之前的题目一样的操作了。
思维训练分类为:浓度问题、分数比大小问题、行程问题、分数巧算、逻辑推理、工程问题、牛顿问题、数字的巧算问题。
分数裂项求和方法总结(一)用裂项法求1一型分数求和分析:因为n(n 1)1 n(n 1) n(n 1)(n为自然数)所以有裂项公式: n(n 1)【例1】求丄10 1111 121的和。
59 60【例2】咕右)'111 110 60112用裂项法求1 1k(n计算n(n k)1 1 -[2 5115n(n 1)59 60)型分数求和:k)nn(n k)]分析:n(nk)型。
(n,k均为自然数)因为n(n k) 所以n(n k)k(; n k9 11 11 13 13 157)11)丄(12 71(19) 1(1 却2、111 1 1 11 , 1 1、1(丄丄2(13 15113)1用裂项法求9 11 11 13型分数求和:n(n k)n n k n(n k) n(n k) n(n k)13分析:型(n,k均为自然数)n(n k)k所以一-n(n k) n n k(11 3 97 99 32009603自然数)n(n k)( n 2k)( n 3k)3k (n(n k^(n 2k)1139 20520I(n k)(n 2k)(n 3k)【例3】的和97 9998 99(四)13) (351 1 )(5 1 7)1 11 99 用裂项法求 型分数求和:n (n k )(n 2k )分析:2k n(n k)(n 2k)【例4】计算:44 441 3 53 5 793 959795 97 99(1I II 315) (315 517)…(11)(1 1)3 93 95 95 9/ V 95 9797 99,11(n,k 均为自然数)【例5】 1 1计算:1 2 3 4 2 3 4 51 17 18 19 203[(1 1 1 3[1 2 3 (丘18 19 20]1 17 18 191 18 19 20)]2k n(n k)(n 2k)1 1n(n k) (n k)( n 2k)(五) 用裂项法求型分数求和分析:n(n k)(n 2k)(n 3k)(n,k 均为n(n k)(n 2k)(n 3k)(六)用裂项法求3kn(n k)(n 2k)(n 3k)型分数求和:分析:3kn(n k)(n 2k)( n 3k)(n,k均为自然数)3k 1 1n(n k)(n 2k)( n 3k) n(n k)( n 2k) (n k)( n 2k)(n 3k)【例6】计算: 3 3 31 2 3 4 2 3 4 5 17 18 19 20“ 1 1 1 1 、“ 1 1 、(- ) (—)... ...(- )1 2 3 2 3 4 2 3 4 3 4 5 17 18 19 18 19 201 11 2 3 18 19 2011396840【例7】计算:1 + 3 + 上 + 29 + 37 + 竺 + 兰 + 里 + 27 8 36 56 63 72 77 84 88【分析与解】解答此题时,我们应将分数分成两类来看,一类是把295637634j72这四个分77/ 58 58 59 + — ) + —596060【分析与解】先将题目中分母相同的分数结合在一起相加,再利用乘法分配律进行简便计算。
第二讲分数 1.2NT1.2 分数计算(裂项法)知要点和基本方法分数算是小学数学的重要内容,也是数学的重要内容之一。
分数算同整数算一既有知要求又有能力要求。
法、定律、性是行算的依据,要使算快速、准确,关是掌握运算技巧。
算式真察,剖析算是的特点及个数之的关系,巧妙、灵活的运用运算定律,合理改运算序,使算便易行,启迪思,培养合分析、推理能力和灵活的运算能力,都有很大的帮助。
公式:( 1)平方差公式:a2 b2 ( a b) ( a b)( 2)等差数列求和公式:a1 a2 a3 an 1 a n1a1 a n n2( 3)分数的拆分公式:① 11) =1- 1n(n n n 1② 1d) =1×(1- 1 )n(n d n n d 裂项法:例1. 算: 1 + 1 + 1 +⋯⋯+99 11 2 2 3 3 4 10011 1例4.算:++⋯⋯+10×1111×1219× 20例2.1 1 1算:10× 11+11×12+⋯⋯+59× 60例5.1 1 1 1算2×3+3×4 +⋯⋯+6× 7+7× 8例3.算:21+16+121+201+301+421六年级第一学期NT例6. 算: 1+1+1+1+126 12 20例 10. 算:22 2 2 23 15 35 63 99例7. 算:1 1 1 1 1 1 16+12+20+30+42+56+72例 11. 算:11 1 1 1 18 24 48 80 120 168例 8.算:1+1+1+1+1+1 315 3563 99 143例 9. 算:14 1711011311 4 7 10 13 16例 12. 算:1+1+2+1+1+2+3+2+1+⋯⋯+ 1 +2+⋯⋯+100 +99+⋯⋯+ 1 1 2 2 2 3 3 3 3 3 100 100 100 100 100例 13. 算: 1+ 1 +1 1 +113+⋯⋯+1 2 311 2 2 3 2 4 2005例 14.算: 2×( 1- 1 2)×( 1- 1 2)×( 1-12)×⋯⋯×(1-12)2005 2004 2003 2第二讲分数 1.2NT六年级 第一学期NT综合计算例 1.计算 : 2005120032003 2004例 2. 计算 : ( 1 5 × 1 1 × 6 )÷( 3 × 6 × 5)7 9 11 11 7 9例 3.计算 : 98+ 99 8 + 999 8+⋯⋯+ 9999899999个 9例 4.计算 : ( 1+1)×( 1+1)×( 1+1)×( 1+1)×( 1-1)×( 1- 1 )×( 1-1)×( 1- 1)2468357 9例 5. 计算 : 2004 1 - 1 1 +2002 1 -3 1 +2000 1 -5 1 +⋯⋯+ 4 1 -2001 1 +2 1 - 200312 3 2 3 2 3 2 3 2 3例 6.计算 : ( 1+ 1 +1 + 1 )÷( 1 + 1 + 1 + 1 )979797979797 97979797868686868686 86868686第二讲 分数 1.2NT例 7.计算 : 11 1 11 111 111 11 1=.2 4 610359例 8.计算 :567345 566 =.567 345 222例 9.计算 : 7116 61 1 5 511 4 41 1 3 31 12 = .6 7 5 6 4 5 3 4 2 3例 10. 计算 :11 1 1 1 1 1 1 = .3 6 10 15 21 28 36 451 29 1 29 1 291 29 1 29例 11. 计算 :2 3 30 31 = .1 31 1 31 1 311 31 1 312 328 29计算 :12 3 4 5 6 21 2 3 4 5 6 1例 12.2 3 4 5 6 72 3 4 5 6 7211 2 3 4 5 6 2 3 4 5 62 345 673 456 =7六年级第一学期NT能力训练:1、分数化成最分数:12 =18 = 4 =13 =8 = 2 =18 27 20 65 32 82、小数化成最分数:0.75= 4.8= 1.25=0.36= 3.2= 5.4=3、算:1) 51 2 ÷1 2 + 71 3÷1 3 + 914÷1 4 2005 2005 2005 20053 34 45 51 2 + 2 3 + 3 4 +⋯⋯+ 2004 20054)2)1 1 1 156 +72 +90+1102222 25)21 + 77 + 165 +⋯⋯+ 1677 + 20213) 1 1 1 1 18+24+48+80+120 1 5 11 19 1096) 2 + 6 + 12 + 20 +⋯⋯+ 1101111111 17)1+ 26+ 312+ 420+ 530+ 642+ 756+ 872+ 990第二讲分数 1.2NT137 1531 631272555118) 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 5121 1 1 1 1 19) 3 45 + 4 56 + 5 67 + 6 78 + 7 89 + 8 9 10。
六年分数计算裂项法
收集于网络,如有侵权请联系管理员删除
分数计算——裂项法
【知识要点】
正确、迅速、灵活、合理地进行整数、小数、分数四则混合运算,是小学生须掌握的技能、技巧之一,计算时必须做到:
1、拿到一题,首先要全面审题,确定运算顺序,这是运算的根本。
2、然后要全面观察题目的结构、特征,分析题中数与数的关系,灵活运算各
种定律、性质使计算简便,这是运算的灵魂。
3、计算时要做到一步一回头,也就是及时检验,这是使你终生受益的习惯。
【自主练习】
111111233445566778+++++⨯⨯⨯⨯⨯⨯ 111223++⨯⨯ (14950)
+⨯
111995199619961997++⨯⨯ (11200720082008)
++⨯
111111112203042567290
++++++
收集于网络,如有侵权请联系管理员删除
713213143577391612203042567290
+++++++
1111447710+++⨯⨯⨯ (197100)
+⨯
11111135577991111131315
+++++⨯⨯⨯⨯⨯⨯
1111113579315356399++++ 2222177165+++ (21677)
+
179111315131220304256-+-+- 191113151420304256
-+-+
小结:求若干个分数之和的计算题,一般可以用通分的办法,但有些计算题,可以采用裂项的办法,即运用以下这些公式巧妙求出整个算式的和,称为裂项法。
收集于网络,如有侵权请联系管理员删除。