有机无机杂化涂料
- 格式:pdf
- 大小:82.76 KB
- 文档页数:1
义齿树脂基托表面有机-无机杂化膜的制备与研究左伟文;黄华莉;石磊;杨杨;武燃;朱松【摘要】本研究设计合成应用于义齿树脂基托表面的有机-无机杂化膜.由缩水甘油醚基丙基三甲氧基硅烷(KH560)和正硅酸乙酯(TEOS)共水解缩合制得杂化硅溶胶;由甲基丙烯酸缩水甘油酯(GMA)、丙烯酸(AA)和甲基丙烯酸甲酯(MMA)三种单体共聚制得聚合物.两者利用KH560和GMA中的环氧基团进行交联,形成具有互穿网络结构的杂化膜.对膜层的硬度、附着性及抗破裂性等进行表征,并对覆膜后的基托树脂的光泽度、吸水性及溶解性进行测试.实验结果表明,杂化膜不仅具有良好的力学性能,而且提高了基托树脂的光泽度,降低了基托树脂的吸水性和溶解性,最终会提高基托综合性能.【期刊名称】《材料工程》【年(卷),期】2013(000)010【总页数】5页(P71-75)【关键词】杂化膜;义齿树脂基托;吸水性;溶解性;光泽度【作者】左伟文;黄华莉;石磊;杨杨;武燃;朱松【作者单位】吉林大学口腔医学院,长春130021;吉林大学口腔医学院,长春130021;吉林大学口腔医学院,长春130021;吉林大学口腔医学院,长春130021;吉林大学口腔医学院,长春130021;吉林大学口腔医学院,长春130021【正文语种】中文【中图分类】R783.4目前,中国已步入老龄化社会,可摘局部义齿和全口义齿的应用日益增多,但义齿材料的综合性能还有待进一步提高,研究证实义齿基托树脂的吸水性和溶解性较高则对义齿基托产生的影响较大,包括:影响基托尺寸和颜色稳定性;降低基托力学性能,导致义齿断裂,影响使用寿命[1];改变基托生物学和化学性能,利于基托中残余单体的释放,进而导致一系列的不良反应,影响患者健康[2]。
国内外研究者试图通过调整基托固化过程[3]及基托材料单体成分[4],改变抛光方式[5],添加玻璃纤维[6]、交联剂[7]或纳米填料[8]等方法降低基托树脂吸水性和溶解性,但有的效果不确切,有的会降低基托的其他性能。
新型防雾涂料的研究进展孙雪娇,夏正斌,牛林,李伟( 华南理工大学化学与化工学院,广州510640)透明基材( 如玻璃、塑料等) 是人们日常生活、工作和生产中不可或缺的材料,但在其使用过程中常常会产生结雾现象,造成基质的透光率、反射率降低,影响视线,给人们的生活带来不便,甚至会发生危险。
防雾方法目前主要有电热法和使用防雾涂料,前者效果好但造价高,且应用局限性大,而防雾涂料因制备工艺简单、设备投资低、成本低而更具有生产实用价值。
防雾涂料是一种功能型涂料,用以减缓或防止雾化现象的产生。
防雾涂料有疏水型和亲水型2 种[1 -2],目前人们对亲水型防雾涂料的研究比较多。
通过疏水/亲水性能的提高还可以获得其他特殊功能,如耐腐蚀性能提高,还可使其具有自清洁功能[3],这不仅能大大方便人们的日常生活,而且能创造较大的经济效益。
目前对于防雾涂料及其制备工艺已有不少研究报道,却鲜有推广应用,原因主要在于防雾涂料的一些关键问题尚未完全解决,如防雾性能不理想、防雾膜强度低和耐久性差等[4 -5]。
如果能用现代涂料技术解决防雾涂料应用中出现的各种问题,将带来巨大的经济效益和社会效益。
1 防雾机理与方法空气中总是有相当量的水蒸汽存在,一旦具有一定分压的水蒸汽冷却到其露点时,水蒸汽便达到饱和并冷凝析出小水珠,小水珠粘附在透明基材表面就会出现雾化现象( 结雾) 。
这是由于小水珠的曲率半径不同,对光产生的漫反射不同。
在不透明基材表面看不到明显的雾化现象,但可以看到露珠般的大水珠,称为结露。
从雾化现象产生的原因来看,其雾化产生的条件可以简单地分为2 个方面: ①水汽和温差的存在。
只有当基材表面的温度低于一定湿度的水汽的露点时,空气中的水汽才能冷凝成水滴; ②基材表面的润湿性质。
从力学角度分析,雾化产生与否,取决于气液固三相之间的表面张力。
通过分析固液间的接触角可以判断基材表面的润湿性质。
为了防止基材表面的结雾,通常有两类方法: ①消除水汽或温差。
无机涂料介绍
什么是无机涂料?
无机涂料,顾名思义,指的是不含有机成分的涂料,主要由无机物质和配合剂
组成。
相较于传统的有机涂料,无机涂料具有许多优点,例如高温耐受性、耐腐蚀、防火等。
因此,它在工业领域的应用越来越广泛。
无机涂料的种类
在工业领域内,常见的无机涂料主要有三种,分别是玻璃涂料、瓷固化涂料和
钢结构防火涂料。
玻璃涂料
玻璃涂料主要由无机物质、水玻璃和膨润土构成,具有劣化稳定性好、耐热性强、耐化学腐蚀和良好的气密性等特点。
玻璃涂料被广泛应用在化工、巨型机械设备、建筑物防潮等领域。
瓷固化涂料
瓷固化涂料由矿物质、助剂、溶剂等多种无机物质混合而成,常用于防锈、防腐、高压电气设备的绝缘等方面。
瓷固化涂料可以在高温环境下使用,且保护力度强,高压设备能够更加长久地使用。
钢结构防火涂料
钢结构防火涂料主要由水玻璃、膨润土、火车头以及钛白粉等无机物质构成。
其具有优异的防火性能,在火灾发生时可以帮助钢结构避免形变、失稳和塌落等情况。
此类涂料应用广泛于公共建筑、高层建筑、桥梁隧道等大场合中。
无机涂料的优缺点
相较于传统的有机涂料,无机涂料具有诸多优点,例如长期稳定、优异的防火
性能以及耐高温、抗化学气体腐蚀等。
然而,它也有一些缺点,如施工难度较高、成本高、装修效果不如有机涂料等。
总结
无机涂料在防火、耐高温、耐腐蚀等方面表现优异,应用广泛。
然而,诸如施
工难度较高、成本较高等问题也已逐渐得到解决。
相信随着科学技术的不断进步,无机涂料的应用研究也将不断深入,未来稳定的高端工业应用将是一个大趋势。
【关键词】 多壁碳纳米管;功能化;有机/无机杂化膜;界面聚合;超滤;反渗透;渗 透汽化;有机-无机杂化膜的研究进展1. 简介传统的有机膜具有柔韧性良好、透气性高、密度低的优点,但是它们的耐溶 剂性、耐腐蚀、耐温度性都较差,而单纯的无机膜虽然强度高、耐腐蚀、耐溶剂、 耐高温,但比较脆,不易加工,因而制备一种兼具有两者优点的膜是目前研究的 热点。
有机-无机杂化膜在有机网络中引入无机质点,改善网络结构,增强了膜 的机械性能,提高了热稳定性,改善和修饰膜的孔结构和分布, 提高膜的渗透性 和分离选择性。
2. 有机-无机杂化膜的结构有机-无机杂化膜按结构可分为3大类:(1)有机相和无机相间以共价键结 合的杂化膜,图1; (2)有机相和无机相间以范德华力或氢键结合的杂化膜,图 2,膜从结构上可以分为在有机基质内分散着无机纳米微粒和在无机基质中添加 纳米高分子微粒;(3)有机改性的陶瓷膜,图3Orgaric monomers图1有机相和无机相以共价键结合的杂化膜or ol ig )mersao^Dolymerizdtion or aandsTE^ion Irorgaric mderiaicur s )rs图2冇机郴和无机相以范德华力或氢键结合的朵化服图3有机改性的陶浇膜谈纳米管自问世以来因其卓越的性能而备受关注。
将碳纳米管与聚合物复合从而提高聚合物3. 有机-无机杂化膜的制备方法制备有机-无机杂化膜的方法包括:溶液-凝胶法、纳米微粒与高分子直接共 混法、原位聚合法等。
这里重点介绍前两种方法。
(1) 溶胶-凝胶法(sol-gel )溶胶-凝胶法是将无机前驱体溶于水或有机溶剂中形成均匀的溶液,通过水 解、缩合反应生成粒子粒径为纳米级的溶胶,再经干燥转变为凝胶。
用溶胶-凝胶法制备的杂化膜内部有机和无机相易发生分离,不易得到均质 膜。
当无机组分均匀的分散在有机网络中, 且两者间存在一定的相互作用时,易 得到透明均质膜。
涂漆防锈的原理涂漆防锈的原理涂漆防锈是通过涂覆特定的防锈涂料,形成一层保护膜,保护钢铁材料不被氧化。
涂漆防锈的原理是通过这层保护膜来防止水、氧气、二氧化碳等大气中的化合物对钢铁材料的侵蚀,从而达到抵御氧化锈蚀的目的。
涂漆防锈的防腐层可以提高钢铁材料的耐腐蚀性,增加材料的稳定性和使用寿命,减少维护保养的成本和频率。
从根本上,涂漆防锈也是为了让钢铁材料在环境中更好地发挥作用,降低安全隐患,并提高经济效益。
涂漆防锈的涂料涂漆防锈的涂料常用于建筑、桥梁、交通运输、海洋工程、石化工业等领域的钢结构防护和防腐保护,不同领域的涂料也有所区别。
电力工业:常用的电力工业涂料有如下四种:氯化橡胶涂料、二硫化物涂料、硅酮涂料和环氧涂料。
其中硅酮涂料被广泛用于防火涂料、耐高温涂料和电缆绝缘涂料。
市政道路:市政道路涂料主要是道路标记涂料,常用的道路标记涂料有热熔涂料、乳液涂料、沥青基涂料、丙烯酸树脂涂料、水性二氧化硅涂料等。
石化工业:石化工业防腐涂料分为有机涂料、无机涂料和无机有机杂化涂料。
常见的无机涂料有硅钾玻璃微珠涂料、氧化铝涂料和硅氨酮涂料等;有机涂料则有环氧树脂涂料、丙烯酸树脂涂料和聚氨酯涂料等;有机无机杂化涂料有聚硅酸酯涂料等。
海洋工程:海洋工程中常涉及到海水防护涂料。
这些涂料要求有很好的抗水、抗海水侵蚀、耐腐蚀等性能。
常见的海水防护涂料有混采蜡基高温防腐涂料、混氟树脂涂料等。
涂漆防锈的原理涂漆防锈的原理有三种:化学反应、电化学反应和物理隔离。
化学反应:通常,钢结构的涂漆防腐层是通过反应生成的化合物来达到防锈的目的。
氧化性涂料可以与被涂物表面的氧化铁发生化学反应,生成一种稳定的防腐层。
电化学反应:涂漆防锈层可以在钢结构表面形成一种微小电池,从而实现通过电化学反应抵御锈蚀的目的。
涂料中的金属离子可以作为阳极,与钢结构表面的金属元素形成电池,从而达到抵抗氧化锈蚀的效果。
物理隔离:防锈涂料的一大特点是防水性能,涂料密封性、附着性好,可以在钢结构表面形成一层物理隔离层,从而防止水分、氧分子、二氧化碳等大气中化合物或者小颗粒物质侵蚀钢铁。
有机-无机杂化环氧涂层的合成与性能研究金鹿江;杭建忠;孙小英;王小芬;施利毅【摘要】以正硅酸乙酯(TEOS)和甲基三甲氧基硅烷(MTMS)为水解前驱体,y-缩水甘油醚基丙基三甲氧基硅烷(GPTMS)为偶联剂.采用溶胶-凝胶法合成了有机-无机杂化环氧树脂.研究了水解单体和用水量对涂层性能的影响.结果表明:当水与水解单体物质的量比为4∶1时,杂化涂层附着力为1级,硬度为4H,耐盐雾时间达到360 h.电化学测试表明,在低频区杂化涂层阻抗值可达105 Ω·cm2,比铝合金裸板阻抗值高出2个数量级.表现出良好的防腐蚀性.热重分析显示,杂化树脂具有优异的热稳定性能.利用红外光谱与核磁共振分析了杂化涂层的组成和结构;同时,探讨了溶胶-凝胶杂化涂层的反应机理.【期刊名称】《涂料工业》【年(卷),期】2014(044)005【总页数】7页(P18-24)【关键词】溶胶-凝胶;杂化涂层;耐盐雾;电化学;反应机理【作者】金鹿江;杭建忠;孙小英;王小芬;施利毅【作者单位】上海大学纳米科学与技术研究中心,上海200444;上海大学纳米科学与技术研究中心,上海200444;上海大学纳米科学与技术研究中心,上海200444;上海大学纳米科学与技术研究中心,上海200444;上海大学纳米科学与技术研究中心,上海200444【正文语种】中文【中图分类】TQ635.2基于溶胶-凝胶(sol-gel)技术的有机-无机杂化涂层是一种新兴的功能材料,近年来引起研究者的广泛关注[1-4]。
该材料通常以有机硅氧烷为前驱体,在低温条件下经水解缩合反应制备,杂化材料中有机相与无机相通过化学键相结合,形成高度交联的网状结构,它兼具高分子聚合物和无机材料特点,具有良好的力学性能。
研究表明,有机-无机杂化涂层可与铝合金界面形成Si—O—Al化学键,能有效增强涂层附着力和耐腐蚀能力,杂化涂层材料制备工艺及应用对环境友好,是理想的可有效替代铬酸盐氧化膜的环保材料。
有机-无机杂化膜的研究进展1.简介传统的有机膜具有柔韧性良好、透气性高、密度低的优点,但是它们的耐溶剂性、耐腐蚀、耐温度性都较差,而单纯的无机膜虽然强度高、耐腐蚀、耐溶剂、耐高温,但比较脆,不易加工,因而制备一种兼具有两者优点的膜是目前研究的热点。
有机-无机杂化膜在有机网络中引入无机质点,改善网络结构,增强了膜的机械性能,提高了热稳定性,改善和修饰膜的孔结构和分布,提高膜的渗透性和分离选择性。
2.有机-无机杂化膜的结构有机-无机杂化膜按结构可分为3大类:(1)有机相和无机相间以共价键结合的杂化膜,图1;(2)有机相和无机相间以范德华力或氢键结合的杂化膜,图2,膜从结构上可以分为在有机基质内分散着无机纳米微粒和在无机基质中添加纳米高分子微粒;(3)有机改性的陶瓷膜,图3。
3.有机-无机杂化膜的制备方法制备有机-无机杂化膜的方法包括:溶液-凝胶法、纳米微粒与高分子直接共混法、原位聚合法等。
这里重点介绍前两种方法。
(1)溶胶-凝胶法(sol-gel)溶胶-凝胶法是将无机前驱体溶于水或有机溶剂中形成均匀的溶液,通过水解、缩合反应生成粒子粒径为纳米级的溶胶,再经干燥转变为凝胶。
用溶胶-凝胶法制备的杂化膜内部有机和无机相易发生分离,不易得到均质膜。
当无机组分均匀的分散在有机网络中,且两者间存在一定的相互作用时,易得到透明均质膜。
这种相互作用可以是氢键也可以是化学键,组分间的化学键可以是M-C、M-O-Si-C或M-L(L为有机配体如多羟基配体,有机羧酸等)。
引入化学键有两者方法:一是选用包含有功能性基团的烷氧基硅氧烷单体作为无机前驱体;二是加入偶联剂对有机高聚物进行改性,选用三官能团的硅氧烷,更易得到均质膜。
(2)共混法该方法是高分子可以以溶液形式、乳业形式、熔融形式等与纳米无机微粒共混。
共混法操作方便、工艺简单。
用此方法得到的杂化膜中,纳米微粒空间分布参数难以确定,纳米微粒分布不均匀,易团聚,通过对纳米微粒做表面改性或加入增溶剂进行改性。
钙钛矿结构的有机-无机杂化功能材料:(p-CphAH)2PbCl4刘陟;陶绪堂;于文涛;杨家祥;孙建亮;王蕾;蒋民华【期刊名称】《功能材料》【年(卷),期】2004(035)0z1【摘要】利用溶液降温的方法从盐酸溶液中生长出一种新的有机-无机层状钙钛矿结构的单晶(p-CphAH)2PbC14(p-CphAH为对氯苯铵离子).借助于元素分析值、核磁谱、X射线衍射方法、紫外及荧光光谱,系统研究化合物的结构和光学性能.标题化合物晶体为浅黄色长棱柱体,单斜晶系,C2/m空间群;a=2.2149(5)nm,b=0.7737(3)nm,c=1.7083(5)nm,β=104.784(5)°,V=2.8310( 2)nm3.【总页数】3页(P163-165)【作者】刘陟;陶绪堂;于文涛;杨家祥;孙建亮;王蕾;蒋民华【作者单位】山东大学,晶体材料国家重点实验室,山东,济南,250100;山东大学,晶体材料国家重点实验室,山东,济南,250100;山东大学,晶体材料国家重点实验室,山东,济南,250100;山东大学,晶体材料国家重点实验室,山东,济南,250100;山东大学,晶体材料国家重点实验室,山东,济南,250100;山东大学,晶体材料国家重点实验室,山东,济南,250100;山东大学,晶体材料国家重点实验室,山东,济南,250100【正文语种】中文【中图分类】O626【相关文献】1.溶胶—凝胶法制备无机—有机杂化材料:Ⅰ.无机—有机杂化材料的?… [J], 陈运法;金联明2.硫酸镉无机层和原位反应生成的吡啶基四氮唑有机配体构筑的两个层-柱状三维无机-有机杂化材料:合成和表征 [J], 钟地长;卢文贯3.有机无机杂化涂料:有机/无机路易斯酸复合材料 [J],4.溶胶-凝胶法合成有机/无机杂化材料进展——1.组分间以化学键作用的有机/无机杂化材料 [J], 王家芳;章文贡5.溶胶-凝胶法合成有机无机杂化材料进展——2组分间以次价力作用的有机无机杂化材料 [J], 王家芳;章文贡因版权原因,仅展示原文概要,查看原文内容请购买。