2.2探索直线平行的条件(2)
- 格式:docx
- 大小:13.90 KB
- 文档页数:4
北师大版七下数学《2.2探索直线平行的条件(2)》教案一. 教材分析本节课是北师大版七下数学《2.2探索直线平行的条件(2)》的内容。
在前一节课中,学生已经学习了探索直线平行的条件,了解到两条直线平行需要满足的条件。
本节课将进一步引导学生探究直线平行的性质,并通过实例来加深学生对直线平行性质的理解和应用。
二. 学情分析学生在六年级时已经学习了直线、射线、线段等基本概念,对直线有一定的认识。
但在实际操作中,部分学生可能对直线的性质和判定 still有些混淆。
此外,学生在之前的学习中已经接触过一些几何图形的性质和判定,因此具备一定的几何思维能力。
三. 教学目标1.让学生理解直线平行的性质,并能运用性质判断两条直线是否平行。
2.培养学生运用几何语言描述直线平行的性质,提高学生的几何思维能力。
3.通过实例分析,让学生学会将直线平行的性质应用于实际问题,提高学生的解决问题的能力。
四. 教学重难点1.教学重点:直线平行的性质及其应用。
2.教学难点:如何引导学生理解并证明直线平行的性质。
五. 教学方法1.采用问题驱动法,引导学生主动探究直线平行的性质。
2.利用几何画板软件,动态展示直线平行的性质,帮助学生直观理解。
3.通过实例分析,让学生将理论知识应用于实际问题,提高解决问题的能力。
4.采用小组合作学习,培养学生的团队合作精神。
六. 教学准备1.准备几何画板软件,用于动态展示直线平行的性质。
2.准备相关实例,用于引导学生将理论知识应用于实际问题。
3.准备小组合作学习任务单,指导学生进行合作学习。
七. 教学过程1.导入(5分钟)利用几何画板软件,动态展示两条直线平行的条件,引导学生回顾所学知识。
然后提出本节课的问题:直线平行还有哪些性质?2.呈现(10分钟)呈现直线平行的性质,引导学生用几何语言描述。
例如,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。
同时,解释性质的含义和应用。
3.操练(10分钟)学生分组讨论,利用几何画板软件,尝试证明直线平行的性质。
《探索直线平行的条件》优秀教案第一章:引言1.1 教学目标:让学生了解直线平行的概念及实际应用。
激发学生对探索直线平行条件的兴趣。
1.2 教学内容:直线平行的定义及实例。
直线平行的实际应用场景。
1.3 教学方法:通过图片、实例等方式引入直线平行的概念。
引导学生思考直线平行的实际应用场景。
1.4 教学步骤:1. 引入直线平行的概念,引导学生理解直线平行的定义。
2. 展示直线平行的实例,让学生通过观察和分析来理解和记忆直线平行的特征。
3. 引导学生思考直线平行的实际应用场景,如交通运输、建筑设计等,激发学生对直线平行的兴趣。
第二章:直线平行的判定2.1 教学目标:让学生掌握直线平行的判定方法。
培养学生运用判定方法解决实际问题的能力。
2.2 教学内容:直线平行的判定方法。
判定方法的证明和解释。
2.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的判定方法。
通过证明和解释来说明判定方法的合理性。
2.4 教学步骤:1. 引导学生回顾直线平行的定义,复习相关知识。
2. 引入直线平行的判定方法,让学生通过观察和分析几何图形来理解和记忆判定方法。
3. 通过证明和解释来说明判定方法的合理性,帮助学生深入理解判定方法。
第三章:直线平行的性质3.1 教学目标:让学生掌握直线平行的性质。
培养学生运用性质解决实际问题的能力。
3.2 教学内容:直线平行的性质。
性质的证明和解释。
3.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的性质。
通过证明和解释来说明性质的合理性。
3.4 教学步骤:1. 引导学生回顾直线平行的判定方法,复习相关知识。
2. 引入直线平行的性质,让学生通过观察和分析几何图形来理解和记忆性质。
3. 通过证明和解释来说明性质的合理性,帮助学生深入理解性质。
第四章:直线平行的应用4.1 教学目标:让学生学会运用直线平行的条件解决实际问题。
培养学生的实际问题解决能力。
4.2 教学内容:直线平行的条件在实际问题中的应用。
2.2。
2 探索直线平行的条件教学目标1.理解并掌握内错角和同旁内角的概念,能够识别内错角和同旁内角;2.能够运用内错角、同旁内角判定两条直线平行.教学重、难点重点:能够运用内错角、同旁内角判定两条直线平行.难点:能够运用内错角、同旁内角判定两条直线平行.导学方法启发式教学、小组合作学习导学步骤导学行为(师生活动)设计意图回顾旧知,引出新课观察下列图形:猜想其中任意两条直线的位置关系,想想如何证明你的猜想.从学生已有的知识入手,引入课题探究点一:内错角与同旁内角【类型一】判断内错角、同旁内角如图,下列说法错误的是()新知探索例题A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角解析:根据同位角、内错角、同旁内角的基本模型判断.A中∠A与∠B形成“U"型,是同旁内角;B中∠3与∠1形成“U”型,是同旁内角;C中∠2与∠3形成“Z”型,是内错角;D中∠1与∠2是邻补角,该选项说法错误.故选D.方法总结:在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F"型,内错角的边构成“Z”型,同旁内角的边构成“U”型.【类型二】一个角的内错角、同旁内角不唯一的图形问题如图所示,直线DE与∠O的两边相交,则∠O的内错角是________,∠8的同旁内角是________.引出研究本节课要学习知识的必要性,清楚新知识的引出是由于实际生活的需要学生积极参与学习活动,为学生动脑思考提供机会,发挥学生的想象力和创造性体现教师的主导作用学以致用,举一反三精讲解析:直线DE与∠O的两边相交,则∠O的内错角是∠4和∠7,∠8的同旁内角是∠1和∠O.故答案为∠4和∠7,∠1和∠O.易错点拨:找某角的内错角、同旁内角时,应从各个方位观察,避免漏数.探究点二:利用内错角、同旁内角判定两条直线平行【类型一】内错角相等,两直线平行如图所示,若∠ACE=∠BDF,那么CE∥DF吗?解析:要判定CE∥DF,需满足∠ECB=∠FDA,利用“内错角相等,两直线平行”即可判定.解:CE∥DF.理由如下:因为∠ACE=∠BDF,又因为∠ACE+∠ECB=180°,∠BDF+∠FDA=180°,所以∠ECB=∠FDA(等角的补角相等),所以CE∥DF(内错角相等,两直线平行).方法总结:综合运用补角的性质及等量代换,将已知条件转换为内错角相等来判定两条直线平行,充分运用转化思想.教师给出准确概念,同时给学生消化、吸收时间,当堂掌握例2由学生口答,教师板书,【类型二】同旁内角互补,两直线平行如图,已知点E在AB上,且CE平分∠BCD,DE平分∠ADC,且∠DEC=90°,试判断AD与BC的位置关系,并说明理由.解析:先根据三角形内角和定理得出∠EDC+∠ECD +∠DEC=180°。
预习提纲:
问题1:在同一平面内两条直线的位置关系有几种?分别是什么?
问题2:如图,两条直线相交所构成的四个角中分别有何关系?
问题3:什么叫两条直线平行?
问题4:如课本彩图,装修工人正在向墙上钉木条。
如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角是多少度时,才能使木条a 与木条b 平行?
问题:实际问题中在判断两根木条平行时,借助了墙壁作为参照,你能将上述问题抽象为数学问题吗?试着画出图形,并结合图形说明。
问题5:1、图中的直线b 与直线c 不垂直,直线a 应满足什么条件才能与直线b 平行呢?请你利用教具亲自动手操作。
做一做:利用纸条和图钉自己制作学具,如图,三根纸条相交成∠1,∠2, 固定纸条b,c,转动纸条a, 在操作的过程中让学生观察∠2的变化以及它
与∠1的关系,你发现纸条a 与纸条b 的位置关系发生了什么变化?纸条a 何时与纸条b 平行?改变图中∠1的大小再试一试,与同学交流你的发现。
2.由∠1与∠2的位置关系引出对“三线八角”的认识和同位角的概念。
问题1:图中还有其他的同位角吗?
问题2:这些角相等也可以得出两直线平行吗?
3.综上探索,引导学生归纳出两直线平行的条件 A B D
C O。
北师大版七年级下册数学教学设计:2.2.2《探索直线平行的条件》一. 教材分析《探索直线平行的条件》这一节内容是北师大版七年级下册数学的重点章节,主要让学生掌握探索直线平行的条件,理解平行线的性质,并能够运用这些性质解决实际问题。
本节课的内容与学生的生活实际密切相关,有利于激发学生的学习兴趣,提高学生的数学素养。
二. 学情分析学生在进入七年级下册之前,已经学习了直线、射线、线段等基本概念,对几何图形有了一定的认识。
但是,对于探索直线平行的条件,学生可能还比较陌生,需要通过实例和操作活动来加深理解。
此外,学生可能对平行线的性质和判定定理还不够了解,需要在教学中逐步引导和培养。
三. 教学目标1.知识与技能:让学生掌握探索直线平行的条件,理解平行线的性质,并能够运用这些性质解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生几何思维能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和创新精神。
四. 教学重难点1.重点:探索直线平行的条件,理解平行线的性质。
2.难点:如何引导学生发现并证明直线平行的条件,以及如何应用平行线的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例和实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.操作教学法:通过动手操作和实践活动,让学生在实践中感知和理解直线平行的条件。
3.合作学习法:学生进行小组讨论和合作交流,培养学生的团队合作意识。
4.启发式教学法:教师引导学生思考问题,激发学生的思维,培养学生解决问题的能力。
六. 教学准备1.准备相关的教学素材,如PPT、图片、实物等。
2.准备教学工具,如直尺、三角板、量角器等。
3.设计好课堂练习题和家庭作业。
七. 教学过程1.导入(5分钟)利用生活实例或实际问题,引导学生思考直线平行的条件。
例如,展示两辆火车并行行驶的图片,让学生观察并描述这两辆火车的行驶轨迹。
2.2探索两直线平行的条件“三线八角”模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图.同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角..判定方法1:同位角相等,两直线平行.如图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)题型2:平行线的判定1(同位角相等)2.如图,直线a、b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠3+∠5=180°.(用“>”,“<”或“=”填空)平行线的画法(【变式3-1】如图.直线a.点B.点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【变式3-2】如图,在方格纸上∶(1)已有的四条线段中,哪些是互相平行的?(2)过点M画AB的平行线(3)过点N画GH的平行线平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.题型5:内错角、同旁内角的概念及识别5.如图,下列两个角是内错角的是()A.∠1与∠2B.∠1与∠3C.∠1与∠4D.∠2与∠4【变式5-1】如图,直线EF与直线AB,CD相交.图中所示的各个角中,能看作∠1的内错角的是()A.∠2B.∠3C.∠4D.∠5【变式5-2】如图,A点在直线DE上,在∠BAD,∠BAE,∠BAC,∠CAE,∠C中,∠B的同旁内角有()A.2个B.3个C.4个D.5个判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)6.补全下面的证明过程,并在括号内填上适当的理由.【变式6-1】如图,下列条件中能判断直线l1∥l2的是()A.∠1=∠2B.∠1=∠5C.∠2=∠4D.∠3=∠5判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)证明:∵“内错角”或“同旁内角”)【变式8-1】如图,(1)∠1和∠3是直线和被直线所截而成的角;(2)能用图中数字表示的∠3的同位角是;(3)图中与∠2是同旁内角的角有个.的位置关系,并说明理由.题型10:平行线的判定简单综合10.光线在不同介质的传播速度是不同的,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也平行.如图标注有∠1~∠8共8个角,其中已知∠1=64°,∠7=42°.(1)分别指出图中的两对同位角,一对内错角,一对同旁内角;(2)直接写出∠2,∠3,∠6,∠8的度数.试判断。
2.2 探索直线平行的条件(二)中宁二中万银华一、学生起点分析:学生的知识技能基础:在第一课时的学习中学生已经初步经历了探索直线平行条件的过程,并得到了“同位角相等,两直线平行”的结论,初步具有了利用角的大小关系来判断直线位置关系的意识,认识了三线八角的基本图形,为本节课的继续探究打下基础,因此本课的设计应充分利用学生已有的认知基础,使其成为上节课探究的延续,较好的完成本单元的学习。
学生的活动经验基础:在第一课时的学习中,为学生提供了大量生动有趣的现实情境,通过观察、画图、操作、折纸等活动,认识到了探索直线平行的必要性及基本方法,获得了初步的数学活动经验和体验。
同时在活动中也培养了学生良好的情感态度,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力。
二、教学任务分析:在第一课时已经得到同位角相等,两直线平行的基础上,本课时主要教学任务是认识内错角、同旁内角,并探索出利用内错角和同旁内角的大小关系来判断两直线平行的有关结论。
由于学生对于三线八角的认识还不够深入,对内错角、同旁内角的识别比同位角要略为复杂一些,所以本节课的难点之一就是让学生认识两种角,并能在不同的图形中正确识别。
另外,在第一课时中,对于同位角相等,两直线平行的结论只要求学生能正确应用即可,对说理要求不高,但是在本节课中就要有目的的引导学生从直观和推理两方面来探索,既要结合实际图形发现规律,又要尽可能的引导学生采用推理的形式加以说明,把内错角相等、同旁内角互补转化为同位角相等来得出结论,因此本节课的教学目标是:(一)教学目标1.知识与技能目标:掌握直线平行需满足的几个条件,进一步学习有条理的思考和表达;体会推理的必要性,理解推理的基本过程;并能解决一些问题.2.过程与方法目标:经历探索直线平行的条件的过程,体验数学学习的探究方法;经历观察、实验、猜想、推理等数学学习的探究方法,发展合情推理和初步的推理能力。
3.情感与态度目标:在探索的学习活动中获得成功的体验,建立学生良好的自信;体验数学学习活动充满着探索与创造,并在学习活动中学会与人合作与交流;(二)教学重点与难点:教学重点:探索并掌握“内错角相等,两直线平行”和“同旁内角互补,两直线平行”等两直线平行的条件。
2.2探索直线平行的条件(2)
教学目标:
、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.
2、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.
3、会用三角尺过已知直线外一点画这条直线的平行线.
教学重点:
弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”.
教学难点:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”.
准备活动:
、如图,a∥b,数一数图中有几个角(不含平角)
2、写出图中的所有同位角.
教学过程:
一、引入:
小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示).他只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?
定义:1、内错角;2、同旁内角.
二、探索练习:
观察三线八角,内错角的变化和同旁内角的变化,讨论:(1)内错角满足什么关系时,两直线平行?为什么?
(2)同旁内角满足什么关系时,两直线平行?为什么?
★结论:内错角相等,两直线平行.
同旁内角互补,两直线平行.
三、巩固练习:
、如右图,∵∠1=∠2
∴_____∥_____,___________________________
∵∠2=_____
∴____∥____,同位角相等,两直线平行
∵∠3+∠4=180º
∴____∥_____,___________________________
∴Ac∥FG,_______________________________
2、如右图,∵DE∥Bc
∴∠2=_____,___________________________
∴∠B+_____=180º,___________________
∵∠B=∠4
∴_____∥_____,________________________
∴____+_____=180º,两直线平行,同旁内角互补
小结:
会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”.
作业:
课本P58习题2.3:1、2、3.
教学后记:
初步了解内错角和同旁内角,但在三线八角图中,找同位角、内错角、同旁内角就有些混乱,不过能通过观察内错角、同旁内角度数的变化发现“内错角相等,两直线平行和同旁内角互补,两直线平行”.在实际应用中比较乱,出现“同旁内角相等,两直线平行”的错误.。