最新人教版高中数学必修2第二章平面与平面垂直的判定1
- 格式:pptx
- 大小:1.36 MB
- 文档页数:25
2.3.4 平面与平面垂直的性质平面与平面垂直的性质定理文字语言两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直符号语言α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β图形语言性质定理若去掉“一个平面内(a⊂α)”,定理是否成立?提示:不一定成立,如图a⊥α,这时也有a⊥l,但a与β不垂直.1.辨析记忆(对的打“√”,错的打“×”)(1)两个平面垂直,其中一个平面内的任一条直线与另一个平面一定垂直.( ×) 提示:不一定.只有在一个平面内垂直于两平面交线的直线才能垂直于另一个平面.(2)若α⊥β,则α内的直线必垂直于β内的无数条直线. ( √)提示:若设α∩β=l,a⊂α,b⊂β,b⊥l,则a⊥b,故β内与b平行的无数条直线均垂直于α内的任意直线.(3)如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ.( √)提示:设α∩γ=m,β∩γ=n,在平面γ内取一点P不在m,n上,过P作直线a,b,使a ⊥m,b⊥n.因为γ⊥α,a⊥m,则a⊥α.所以a⊥l,同理有b⊥l.又a∩b=P,l⊄γ,所以l⊥γ.故正确.(4)若两个平面互相垂直,一条直线与一个平面垂直,那么这条直线在另一个平面内.( ×) 提示:若α⊥β,l⊥α,在β内作a与α,β的交线垂直,则a⊥α,所以a∥l. 所以l∥β或l⊂β,即直线l与平面β平行或在平面β内.2.在四棱柱ABCDA1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC,AD=CD,则BD与CC1( )A.平行B.相交C.异面且垂直D.异面且不垂直【解析】选C.如图所示,在四边形ABCD中,因为AB=BC,AD=CD.所以BD⊥AC. 因为平面AA1C1C⊥平面ABCD,平面AA1C1C∩平面ABCD=AC,BD⊂平面ABCD,所以BD⊥平面AA1C1C.又CC1⊂平面AA1C1C,所以BD⊥CC1.3.如图所示,三棱锥PABC中,平面PAB⊥底面ABC,且PA=PB=PC,则△ABC是________三角形.【解析】设P在平面ABC上的射影为O,因为平面PAB⊥底面ABC,平面PAB∩平面ABC=AB,所以O∈AB.因为PA=PB=PC,所以OA=OB=OC,所以O是△ABC的外心,且是AB的中点,所以△ABC是直角三角形.答案:直角类型一用面面垂直的性质定理解证明问题(逻辑推理、直观想象) 【典例】如图,在三棱锥PABC中,PA⊥平面ABC,平面PAB⊥平面PBC.求证:BC⊥AB.【思路导引】面面垂直→线面垂直→线线垂直【证明】如图,在平面PAB内,作AD⊥PB于点D.因为平面PAB⊥平面PBC,且平面PAB∩平面PBC=PB,AD⊂平面PAB,所以AD⊥平面PBC.又BC⊂平面PBC,所以AD⊥BC.又因为PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC,又因为PA∩AD=A,所以BC⊥平面PAB.又AB⊂平面PAB,所以BC⊥AB.1.应用面面垂直的性质定理的一个意识和三个注意点(1)一个意识若所给题目中有面面垂直的条件,一般要利用面面垂直的性质定理将其转化为线面垂直.(2)三个注意点:①两个平面垂直,是前提条件;②直线必须在其中一个平面内;③直线必须垂直于它们的交线.2.证明线面垂直的常用方法(1)线面垂直的判定定理;(2)面面垂直的性质定理;(3)若a∥b,a⊥α,则b⊥α(a,b为直线,α为平面);(4)若a⊥α,α∥β,则a⊥β(a为直线,α,β为平面).如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2.求证:BF⊥平面ACFD.【证明】延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,平面BCFE∩平面ABC=BC,且AC⊥BC,AC⊂平面ABC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.又CK∩AC=C,CK,AC⊂平面ACFD,所以BF⊥平面ACFD.【补偿训练】如图,在三棱锥PABC中,E,F分别为AC,BC的中点.(1)求证:EF∥平面PAB.(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°.求证:平面PEF⊥平面PBC.【证明】(1)因为E,F分别为AC,BC的中点,所以EF∥AB.又EF⊄平面PAB,AB⊂平面PAB,所以EF∥平面PAB.(2)因为PA=PC,E为AC的中点,所以PE⊥AC.又因为平面PAC⊥平面ABC,所以PE⊥平面ABC,所以PE⊥BC.又因为F为BC的中点,所以EF∥AB.因为∠ABC=90°,所以BC⊥EF.因为EF∩PE=E,所以BC⊥平面PEF.又因为BC⊂平面PBC,所以平面PBC⊥平面PEF.类型二用面面垂直的性质定理解计算问题(逻辑推理,直观想象)角度1 求空间角【典例】如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求EC与平面ABE所成角的正切值.【思路导引】(1)由正方形ACDE所在的平面与平面ABC垂直可得BC⊥平面ACDE,可得AM⊥平面EBC;(2)根据面面垂直的性质定理作出线面角,在三角形中求出其正切值.【解析】(1)因为平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,BC⊥AC,所以BC⊥平面ACDE.又AM⊂平面ACDE,所以BC⊥AM.因为四边形ACDE是正方形,所以AM⊥CE.又BC∩CE=C,所以AM⊥平面EBC.(2)取AB的中点F,连接CF,EF.因为EA⊥AC,平面ACDE⊥平面ABC,平面ACDE∩平面ABC=AC,所以EA⊥平面ABC,因为CF⊂平面ABC,所以EA⊥CF.又AC=BC,所以CF⊥AB.因为EA∩AB=A,所以CF⊥平面AEB,所以∠CEF即为EC与平面ABE所成的角.在Rt△CFE中,CF= 2 ,FE= 6 ,tan ∠CEF=26=33.角度2 求体积【典例】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC.(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥QABP的体积.【思路导引】(1)转化为证明AB⊥平面ACD.(2)过Q作AC的垂线,得三棱锥QABP底面ABP上的高.【解析】(1)由已知可得,∠BAC=90°,则BA⊥AC.又BA⊥AD,AD∩AC=A,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3 2 .又BP=DQ=23DA,所以BP=2 2 .作QE⊥AC,垂足为E,则QE=13DC=1.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,因此,三棱锥Q ABP的体积为VQABP =13×QE×S△ABP=13×1×12×3×2 2 sin 45°=1. 计算问题的解决方法(1)求角、求距离等计算问题一般在三角形中求解.所给条件中的面面垂直首先转化为线面垂直,然后转化为线线垂直.往往把计算问题归结为一个直角三角形中的计算问题.(2)求几何体的体积时要注意应用转换顶点法,求线段的长度或点到平面的距离时往往也应用几何体中的转换顶点(等体积)法.1.如图,α⊥β,AB⊂α,AC⊂β,∠BAD=∠CAD=45°,则∠BAC=( )A.90° B.60° C.45° D.30°【解析】选B.在AB上任意找一点F,过点F作AD的垂线EF,垂足为E,再过点E作EG⊥AD,EG交AC于点G.如图所示.因为∠BAD=∠CAD=45°,EF⊥AE,EG⊥AD,所以EF=AE=EG,所以根据三角形的勾股定理可知,AF2=AE2+FE2,FG2=FE2+EG2,AG2=AE2+EG2,所以AF=AG=FG,所以△AFG是等边三角形,则∠BAC=60°.2.如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.O为AB的中点.(1)证明:AB⊥平面A1OC.(2)若AB=CB=2,平面ABC⊥平面A1ABB1,求三棱柱ABCA1B1C1的体积.【解析】 (1)连接A1B.,因为CA=CB,OA=OB,所以OC⊥AB,因为AB=AA1,∠BAA1=60°,所以三角形AA1B为等边三角形,所以AA1=A1B,又OA=OB,所以OA1⊥AB,又OC∩OA1=O,所以AB⊥平面A1OC.(2)由题可知,△ABC与△AA1B是边长为2的等边三角形,得OA1= 3 ,因为平面ABC⊥平面A 1ABB1,平面ABC∩平面A1ABB1=AB,由(1)OA1⊥AB,OA1⊂平面A1ABB1,所以OA1⊥面ABC,所以OA1是三棱柱ABCA1B1C1的高,所以VABCA1B1C1=S△ABC×OA1=3.类型三折叠问题(逻辑推理、直观想象)【典例】如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD 于点H,将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=54,OD′=2 2 ,求五棱锥D′ABCFE的体积.【思路导引】(1)HD、HD′与EF的位置关系是不变的;(2)证明OD′是五棱锥D′ABCFE的高是关键.【解析】(1)由已知得AC⊥BD,AD=CD,又由AE=CF得AEAD=CFCD,故AC∥EF,由此得EF⊥HD,故EF⊥HD′,所以AC⊥HD′.(2)由EF∥AC得OHDO=AEAD=14.由AB=5,AC=6得DO=BO=AB2-AO2=4,所以OH=1,D′H=DH=3,于是OD′2+OH2=(2 2 )2+12=9=D′H2,故OD′⊥OH. 由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′,又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由EFAC=DHDO得EF=92.五边形ABCFE的面积S=12×6×8-12×92×3=694.所以五棱锥D′ABCFE的体积V=13×69 4×2 2 =2322.解决折叠问题的策略(1)抓住折叠前后的变量与不变量,一般情况下,在折线同侧的量,折叠前后不变,“跨过”折线的量,折叠前后可能会发生变化,这是解决这类问题的关键.(2)在解题时仔细审视从平面图形到立体图形的几何特征的变化情况,注意相应的点、直线、平面间的位置关系,线段的长度,角度的变化情况.如图1所示,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2所示.(1)求证:A1F⊥BE;(2)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【解析】(1)由已知,得AC⊥BC,且DE∥BC.所以DE⊥AC,则DE⊥DC,DE⊥DA1,又因为DC∩DA1=D,所以DE⊥平面A1DC.由于A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.(2)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图所示,分别取A1C,A1B的中点P,Q,连接PQ,QE,PD,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEQP. 由(1)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP,又DE∩DP=D,所以A1C⊥平面DEQP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.【补偿训练】如图,在矩形ABCD中,AB=3 3 ,BC=3,沿对角线BD把△BCD折起,使C移到C′,且C′在平面ABD内的射影O恰好落在AB上.(1)求证:AC′⊥BC′.(2)求AB与平面BC′D所成的角的正弦值.(3)求二面角C′BDA的正切值.【解析】(1)由题意,知C′O⊥平面ABD,因为C′O⊂平面ABC′,所以平面ABC′⊥平面ABD.又因为AD⊥AB,平面ABC′∩平面ABD=AB,所以AD⊥平面ABC′. 所以AD⊥BC′.因为BC′⊥C′D,AD∩C′D=D,所以BC′⊥平面AC′D.所以BC′⊥AC′.(2)因为BC′⊥平面AC′D,BC′⊂平面BC′D,所以平面AC′D⊥平面BC′D.作AH⊥C′D于H,则AH⊥平面BC′D,连接BH,则BH为AB在平面BC′D上的射影,所以∠ABH为AB与平面BC′D所成的角.又在Rt△AC′D中,C′D=3 3 ,AD=3,所以AC′=3 2 .所以AH= 6 .所以sin ∠ABH=AHAB=23,即AB与平面BC′D所成角的正弦值为23 .(3)过O作OG⊥BD于G,连接C′G,则C′G⊥BD,则∠C′GO为二面角C′BDA的平面角.在Rt△AC′B中,C′O=AC′·BC′AB= 6 ,在Rt△BC′D中,C′G=BC′·C′DBD=332.所以OG=C′G2-C′O2=32 .所以tan∠C′GO=C′OOG=2 2 ,即二面角C′BDA的正切值为2 2 .。