东北三校2011年高三第二次联考数学(文)试题及答案
- 格式:doc
- 大小:587.00 KB
- 文档页数:9
2013年三省三校第二次联合考试文科数学答案 一.选择题(每小题5分,共60分) 1.B 2.D 3.A 4.C 5.B 6.A 7.C 8.C 9.D 10.B 11.A 12.B 二.填空题(每小题5分,共20分) 13. 14. 15. 7 16. 三.解答题 17.(本小题满分12分) 解:(Ⅰ) ……2分 所以, 函数的最小正周期为 ……4分 (Ⅱ)得, ……8分 ,, ……10分 ……12分 18.(本题满分12分) ,由甲图知,甲组有(人),∴乙组有20人.,∴甲组有1人、乙组有人符合要求, (人),即估计1000名学生中保持率大于等于60%的人数为180人.范围内的学生有=1人,记为,范围内的学生有人,记为,范围内的学生有2人,记为 从这五人中随机选两人,共有10种等可能的结果: 记“两人均能准确记忆12个(含12个)以上”为事件, 则事件包括6种可能结果: 故,即两人均准确回忆12个(含12个)以上的概率为 ……10分 (Ⅲ)甲组学生准确回忆音节数共有:个 故甲组学生的平均保持率为 乙组学生准确回忆音节数共有: 故乙组学生平均保持率为 所以从本次实验结果来看,乙组临睡前背单词记忆效果更好. ……12分 (回答等,也可给分) 19.(本题满分12分) 解: (Ⅰ)又平面,平面, 为的中点,为的中点 , ……4分 又平面 ……6分 (Ⅱ)(Ⅰ),且 ,,, , ……8分 ,, 又为直角梯形 ……10分 ,, 四棱锥的体积 ……12分 20.(本题满分12分) (Ⅰ) ……1分 ……3分 所以椭圆方程为 ……4分 (Ⅱ)①当直线与轴重合时, 设,则 ……5分 ②当直线不与轴重合时,设其方程为,设 由得 ……6分 由与垂直知: ……10分 当且仅当取到“=”. 综合①②, ……12分 21. (本题满分12分)(Ⅰ),且,即, ……2分 因为上式对任意实数 ……4分 故,所求 ……5分 (Ⅱ), 方法一:在时恒成立,则处必成立,即, 故是不等式恒成立的必要条件. ……7分 另一方面,当时,则在上, ……9分 时,单调递时,单调递 ,,即恒成立 故是不等式恒成立的充分条件. ……11分 综上,实数的取值范围 ……12分 方法二:记则在上, ……7分 若,,,,单调递,上矛盾;若,,递增,而, 这与上矛盾; ③若,时,单调递时,单调递,即恒成立 ……11分 综上,实数的取值范围 ……12分 22.(本题满分10分)选修4-1:几何证明选讲 (Ⅰ)证明:连接BE. ∵BC为⊙O的切线 ∴∠ABC=90° ∵AB为⊙O的直径 ∴∠AEB=90° ……2分 ∴∠DBE+∠OBE=90°,∠AEO+∠OEB=90° ∵OB=OE,∴∠OBE=∠OEB ∴∠DBE=∠AEO ……4分 ∵∠AEO=∠CED ∴∠CED=∠CBE, ∵∠C=∠C∴△CED∽△CBE ∴ ∴CE=CDCB ……6分 (Ⅱ)∵OB=1,BC=2 ∴OC=∴CE=OC-OE=-1 ……8分 由(Ⅰ)CE =CD?CB得(-1)=2CD∴CD=3- ……10分 23.(本题满分10分)选修4-4:坐标与参数方程 解:(Ⅰ)直线即直线的直角坐标方程为,点在直线上. ……5分 (Ⅱ)直线的参数方程为(为参数),曲线C的直角坐标方程为 将直线的参数方程代入曲线C的直角坐标方程, 有,设两根为, 24.(本题满分10分)选修4-5:不等式选讲(Ⅰ)原不等式等价于 当时,,解得不存在; 当时,,解得; 当时,,解得. 综上,不等式的解集为 ……5分 (Ⅱ) 方法一:由函数与函数的图象可知, 当且仅当时,函数与函数的图象有交点, 故存在使不等式成立时,的取值范围是 ……10分 方法二:即 , ()当,, 若,则, 满足条件; 若,则,由解得: . ……7分 ()当时,, 若 ,则在时就有,满足条件; 若,则,不满足条件; 若,则,由,解得. . ……9分 综上, . 即的取值范围是 ……10分 版权所有:高考学习网( 版权所有:高考学习网(。
2011届高三第二次联考数学试题(文科)参考答案一、1.B 2.C 3.C 4.D 5.A 6.C 7.B 8.C 9.C 10.A 二、11.π12 12.1120 1314.45[,]33ππ15.①[3,)+∞;② 16.解:(Ⅰ)假设a ∥b ,则2cos (cos sin )sin (cos sin )0x x x x x x +--=,……… 2分 ∴221cos211cos22cos sin cos sin 0,2sin20222x xx x x x x +-++=⋅++=, 即sin 2cos 23x x +=-2)34x π+=-,…………………………………… 4分与)|4x π+∴假设不成立,故向量a 与向量b 不可能平行.……………………………………… 6分 (Ⅱ)∵a ⋅b (cos sin )(cos sin )sin 2cos x x x x x x =+⋅-+⋅22cos sin 2sin cos x x x x =-+cos 2sin 222)2)4x x x x x π=+==+,……… 8分∴sin(2)42x π+=. ]2,0[π∈x ,∴52[,]444x πππ+∈,……………………………………………………10分442ππ=+∴x 或4342ππ=+x ,0=∴x 或4π=x .………………………………12分17.解:(Ⅰ)305350?,205250?,∴男生被抽取人数为3人,女生被抽取人数为2人. ………………………………4分(Ⅱ)2225C 91C 10-=.…………………………………………………………………………8分 (Ⅲ)333544124128C ()555625´鬃==.………………………………………………………12分 18.解:(Ⅰ)取AD 中点H ,连EH ,则EH ⊥平面ABCD .过H 作HF ⊥AC 于F ,连FE .∵EF 在平面ABCD 内的射影为HF , ∵HF ⊥AC ,∴由三垂线定理得EF ⊥AC ,∴EFH Ð为二面角E AC B --的平面角的补角.……3分∵EH a =,14HF BD ==,∴tan EHEFH HF?=== ∴二面角E AC B --的正切值为-.……………………………………………6分 (Ⅱ)直线A 1C 1到平面ACE 的距离,即A 1到平面ACE 的距离,设为d .…………8分∵11A EAC C A AEV V --=,∴11133EAC A AE S dS CD D D ??.C 1D 1 B 1A 1D CE ABHF∵AE==,32CE a=,AC=,∴222592cosa a aEAC+-?∴sin EAC?,∴21324EACS aD=,121224A AEa aS aD=鬃=,∴22344aa d a??,∴3ad=.∴直线A1C1到平面EAC的距离为3a.………………………………………………12分19.解:(Ⅰ)2()34f x tx x¢=-,令2()34g t x t x=-,则有(1)0,(1)0.gg≥≥ì-ïïíïïî即22340,340.x xx x≥≥ìï--ïíï-ïî……………………………………2分∴40,340.3xx x≤≤≤或≥ìïï-ïïïíïïïïïî∴43x≤≤-.∴x的取值范围为4[,0]3-.……………………………………………………5分(Ⅱ)32()21f x x x=-+,2()34(34)f x x x x x¢=-=-,令()0f x¢>得0x<或43x>.令()0f x¢<得43x<<,∴()f x在(,0)-?和4(,)3+?为递增函数,在4(0,)3为递减函数.又因为(0)1f=,45()327f=-,令()1f x=可得0x=或2x=.……………8分①当30a+<,即3a<-时,()f x在[,3]a a+单调递增,∴32()(3)71510h a f a a a a=+=+++.②当032a≤≤+,即31a≤≤--时,()(0)1h a f==.③当32a+>,即01a>>-时,32()(3)71510h a f a a a a=+=+++,∴321(31)()71510(31)ah aa a a a a≤≤或ìï--ï=íï+++<->-ïî……………………………12分20.解:(Ⅰ)由已知得11n na a+=+,∴{}na为首项为1,公差为1的等差数列,∴na n=.………………………………………………………………………………3分∵13n n n b b +-=,∴21321()()()0n n n b b b b b b b -=-+-++-+121333n -=+++113(13)313(31)313222n n n---==-=?-, ∴n a n =,13322n n b =?.……………………………………………………………6分 (Ⅱ)132(3)cos 22n n C n n π=⋅⋅-(33),(33),nnn n n n ⎧--⎪=⎨-⎪⎩为奇数,为偶数.……………………8分∴当n 为偶数时123(33)2(33)3(33)(33)n n S n =--+⋅--⋅-++-12345(3233343533)(32333433)n n n =-+⋅-⋅+⋅-⋅++⋅+-⋅+⋅-⋅+- . 设23323333n n T n =-+??+?,则23413323333n n T n +-=-??-?,∴23414333333n n n T n +=-+-+-++?131()344n n +=-++⋅,∴11[3(41)3]16n n T n +=-++⋅. ∴1113(41)3243[3(41)3]()16216n n n n n S n n +++⋅--=-++⋅+-=.……………………11分当n 为奇数时 11(41)3242116n n n n n n S S c +--+⋅++=+=,∴11(41)32421,16(41)3243,16n n n n n n S n n n ++⎧-+⋅++⎪⎪=⎨+⋅--⎪⎪⎩为奇数.为偶数.……………………………………13分 21. 解: (Ⅰ)依题意,有点C 到定点M 的距离等于到直线l 的距离,所以点C 的轨迹为抛物线,方程为y x 42=.……………………………………………………………………3分(Ⅱ)可得直线AB 的方程是0122=+-y x ,由⎩⎨⎧=+-=,0122,42y x y x 得点A 、B 的坐标分别是(6,9)、(4,4)-.…………………………………………………………………………4分由y x 42=得241x y =, 12y x '=, 所以抛物线y x 42=在点A 处切线的斜率为63x y ='=.设圆C 的方程是222)()(r b y a x =-+-,则222291,63(6)(9)(4)(4).b a a b a b -⎧=-⎪-⎨⎪-+-=++-⎩………………………………………………………6分 解之得 .2125)4()4(,223,23222=-++==-=b a r b a 所以圆C 的方程是2125)223()23(22=-++y x .……………………………………8分(Ⅲ)设)4,(211x x A ,)4,(222x x B ,由241x y =得x y 21=',所以过点A 的切线的斜率为121x ,切线方程为042211=--x y x x .令1-=y 得Q 点横坐标为12124x x x -=,同理可得22224x x x -=,所以1211212424x x x x -=-,化简得421-=x x .…………………………………………………………………………10分又21222144x x xx k AB--==421x x +,所以直线AB 的方程为21121()44x x x y x x +-=-. 令0=x ,得1421-==x x y ,所以1-=t .……………………………………………12分 )44,24(21121++=x x x ,同理)44,24(22222++=x x x ,所以0)16141)(4)(4(212221=+++=⋅x x x x QB QA .……………………………14分第21题第三问,1-=t 应为1t =(Ⅲ)设)4,(211x x A ,)4,(222x x B ,由241x y =得x y 21=',所以过点A 的切线的斜率为121x ,切线方程为042211=--x y x x .令1-=y 得Q 点横坐标为12124x x x -=,同理可得22224x x x -=,所以1211212424x x x x -=-,化简得421-=x x .…………………………………………………………………………10分又21222144x x xx k AB --==421x x +,所以直线AB 的方程为21121()44x x x y x x +-=-.令0=x ,得1214x x y =-=,所以1t =.……………………………………………12分)44,24(21121++=x x x ,同理)44,24(22222++=x x x ,所以0)16141)(4)(4(212221=+++=⋅x x x x QB QA .……………………………14分。
2024—2025学年度上学期高三10月联合教学质量检测高三数学试卷本试卷共5页 满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1. 已知集合{}21A x x =-<,{}3B x a x a =<<+,若{}15A B x x ⋃=<<,则a =()A. 0B. 1C. 2D. 3【答案】C 【解析】【分析】先求出集合A ,再根据并集得出参数的值.【详解】因为()1,3A =,()1,5A B ⋃=,又因为(),3B a a =+,所以35,a +=即a =2.故选:C.2. 如图,在ABC V 中,点D 是BC 边的中点,3AD GD = ,则用向量AB ,AC表示BG 为( )A. 2133BG AB AC=-+u u u u r uu r u u u r B. 1233BG AB AC=-+u u u r u uu r u u u r C. 2133BG AB AC=-u u u r u u u r u u u r D. 2133BG AB AC=+u u u r u u u r u u u r【答案】A 【解析】【分析】利用向量的线性运算求解即可.【详解】3AD GD =,故23AG AD = ,则()2212133233B C G BA BA BA AG AD AB A AB AC =+=+=+⨯+=-+.故选:A3. 在等比数列{}n a 中,记其前n 项和为n S ,已知3212a a a =-+,则84S S 的值为( )A. 2 B. 17 C. 2或8D. 2或17【答案】D 【解析】【分析】根据等比数列通项公式求得1q =或2q =-,再利用等比数的求和公式求解即可.【详解】解:由等比数列的通项公式可得21112a q a q a =-+,整理得220q q +-=,解得1q =或2q =-.当q =1时,1841824S a S a ==;当2q =-时,()()814844184111117111a q S q q q S q a q q ---====-+--.所以84S S 的值为2或17.故选:D .4. 每年10月1日国庆节,根据气象统计资料,这一天吹南风的概率为25%,下雨的概率为20%,吹南风或下雨的概率为35%,则既吹南风又下雨的概率为( )A. 5% B. 10%C. 15%D. 45%【答案】B 【解析】【分析】根据概率公式直接得出结论.【详解】由题知,既吹南风又下雨的概率为25%20%35%10%+-=.故选:B5. 若直线:3l y kx k =+-与曲线:C y =恰有两个交点,则实数k 的取值范围是( )A. 4,+3∞⎛⎫⎪⎝⎭B. 43,32⎛⎤⎥⎝⎦C. 40,3⎛⎫ ⎪⎝⎭D. 43,32⎡⎫⎪⎢⎣⎭【答案】B 【解析】【分析】先得到直线过定点()1,3P ,作出直线l 与曲线C ,由图求出直线l 过点()1,0A -时的斜率和直线l 与曲线C 相切时的斜率即可树形结合得解.【详解】由()313y kx k k x =+-=-+可知直线l 过定点()1,3P ,曲线:C y =两边平方得()2210x y y +=≥,所以曲线C 是以()0,0为圆心,半径为1且位于直线x 轴上方的半圆,当直线l 过点()1,0A -时,直线l 与曲线C 有两个不同的交点,此时3032k k k =-+-⇒=,当直线l 与曲线C 相切时,直线和圆有一个交点,圆心()0,0到直线l的距离1d ,两边平方解得43k =,所以结合图形可知直线l 与曲线C 恰有两个交点,则4332k <≤.故选:B.6. 已知()ππsin 0,32f x x ωϕωϕ⎛⎫⎛⎫=++>< ⎪⎪⎝⎭⎝⎭为偶函数,()()sin g x x ωϕ=+,则下列结论不正确的A. π6ϕ=B. 若()g x 的最小正周期为3π,则23ω=C. 若()g x 在区间()0,π上有且仅有3个最值点,则ω的取值范围为710,33⎛⎫⎪⎝⎭D. 若π4g ⎛⎫= ⎪⎝⎭,则ω的最小值为2【答案】D 【解析】【分析】先根据()f x 是偶函数求ϕ判断A 选项;根据最小正周期公式计算可以判断B 选项;据有且仅有3个最值点求范围判断C 选项;据函数值求参数范围结合给定范围求最值可以判断D 选项.【详解】()ππsin 0,32f x x ωϕωϕ⎛⎫⎛⎫=++>< ⎪⎪⎝⎭⎝⎭为偶函数,则πππππ,Z,,,3226k k ϕϕϕ+=+∈<∴=∣∣A 选项正确;若()g x 的最小正周期为3π,由()sin()g x x ωϕ=+则2π23π,3T ωω==∴=,B 选项正确;πππ(0,π),(,π)666x x ωω∈+∈+ 若()g x 在区间()0,π上有且仅有3个最值点,则5ππ7π710π,26233ωω<+≤<≤,C 选项正确;若π()sin(6g x x ω=+ πππsin +446g ω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则πππ+2π463k ω=+或ππ2π+2π463k ω=+,Z k ∈,则 283k ω=+或28,Z k k ω=+∈,又因为0ω>,则ω的最小值为23,D 选项错误.故选:D.7. 已知()612a x x x ⎛⎫-- ⎪⎝⎭的展开式中,常数项为1280-,则a =( )A. ―2B. 2C. D. 1【解析】【分析】根据已知条件,结合二项式定理并分类讨论,即可求解.【详解】由题意,62a x x ⎛⎫- ⎪⎝⎭的通项公式为()()6662166C 2C 2rr r r r rr r a T x a x x ---+-⎛⎫=⋅=- ⎪⎝⎭,令620r -=,则3r =,令621r -=-,则72r =不符合题意,所以()612a x x x ⎛⎫-- ⎪⎝⎭的常数项为()3336C 21280a --=-,解得2a =-.故选:A .8. 已知函数22()log f x x mx x =-+,若不等式()0f x >的解集中恰有两个不同的正整数解,则实数m的取值范围是( )A. 23log 33,89+⎡⎫⎪⎢⎣⎭B. 23log 33,94+⎛⎫⎪⎝⎭C. 23log 33,94+⎡⎫⎪⎢⎣⎭ D. 23log 33,89+⎛⎫⎪⎝⎭【答案】C 【解析】【分析】不等式()0f x >可化为2log 1xmx x-<,利用导数分析函数()2log x g x x =的单调性,作函数()1h x mx =-,()2log xg x x=的图象,由条件结合图象列不等式求m 的取值范围.【详解】函数22()log f x x mx x =-+的定义域为(0,+∞),不等式()0f x >化为:2log 1xmx x-<.令()1h x mx =-,()2log x g x x=,()2222221log e log log e log x xx x g x x x --='=,故函数()g x 在()0,e 上单调递增,在()e,∞+上单调递减.当1x >时,()0g x >,当1x =时,()0g x =,当01x <<时,()0g x <,当x →+∞时,()0g x →,当0x >,且0x →时,()g x ∞→-,画出()g x 及()h x 的大致图象如下,因为不等式()0f x >的解集中恰有两个不同的正整数解,故正整数解为1,2.故()()()()2233h g h g ⎧<⎪⎨≥⎪⎩,即22log 2212log 3313m m ⎧-<⎪⎪⎨⎪-≥⎪⎩,解得23log 3943m +≤<.故选:C.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9. 已知复数232023i i i i 1iz ++++=+ ,则下列结论正确的是( )A. 1i 2z -=-B. 1i 2z -=C. 1i 2z +=-D. z =【答案】ACD 【解析】【分析】利用234i+i +i +i 0=对分子化简,然后利用复数的除法化简,可求共轭复数、复数的模依次判断即可得出结果.【详解】因为i,411,42i ,i,431,4nn k n k k n k n k=+⎧⎪-=+⎪=∈⎨-=+⎪⎪=⎩Z ,所以234i+i +i +i 0=,所以()()()()2342323202323505i+i +i +i i i i 1i i i i i i i i 111i 1i 1i 1i 1i 1i 1i 22z +++--++++++-======-++++++- ,所以A 正确,B 错误,111i i=222z +=---,C 准确,所以z ==D 正确.故选:ACD10. “费马点”是由十七世纪法国数学家费马提出并征解的一个问题. 该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.意大利数学家托里拆利给出了解答,当 ABC V 的三个内角均小于120°时,使得120AOB BOC COA ︒∠=∠=∠=的点O 即为费马点;当 ABC V 有一个内角大于或等于120°时,最大内角的顶点为费马点.下列说法正确的是( )A. 正三角形的的费马点是正三角形的中心B. 若P 为ABC V 的费马点, 且 0PA PB PC ++=u u r u u r u u u r r,则ABC V 一定为正三角形C. 若ABC V 三边长分别为2D. ABC V 的内角A ,B ,C 所对的边分别为a ,b , c , π22A ,bc ∠==,若点P 为ABC V 的费马点,则PA PB PB PC PC PA ⋅+⋅+⋅=.【答案】ABC 【解析】【分析】对A ,根据正三角形中心的性质结合费马点定义易判断;对B ,取AB 的中点D ,由0PA PB PC ++=可得点P 是ABC V 的重心,再结合条件可得点P 是ABC V 的中心,得证;对C ,利用三角形旋转,结合费马点定义,构造正三角形转化线段长求解;对D ,由向量数量积定义,结合费马点定义和三角形等面积法列式求解.【详解】对于A ,如图O 是正三角形ABC 的中心,根据正三角形的性质易得o 120AOB AOC BOC ∠=∠=∠=,所以点O 是正三角形ABC 的费马点,故A 正确;对于B ,如图,取AB 的中点D ,则2PA PB PD += ,因为0PA PB PC ++=,所以2PC PD =-u u u r u u u r,所以,,C P D 三点共线,且点P 是ABC V 的重心,又点P 是ABC V 费马点,则o 120APB APC BPC ∠=∠=∠=,则o 60APD BPD ∠=∠=,又AD BD =,易得PA PB =,同理可得PC PB =,所以PA PB PC ==所以点P 是ABC V 的外心,所以点P 是ABC V 的中心,即ABC V 是正三角形.故B 正确;对于C ,如图,在Rt ABC △中,1AB =,BC =,2AC =,o 30ACB ∠=,点O 是Rt ABC △的费马点,将COA 绕点C 顺时针旋转o 60,得到CED △,易证COE ,ACD 是正三角形,则OC OE =,OA DE =,CD AC =,且点,,,B O E D 共线,所以o90BCD ∠=,所以BD ===又OA OB OC DE OE OB DB ++=++==,的.故C 正确;对于D ,由费马点定义可得o 120APB APC BPC ∠=∠=∠=,设PA x =,PB y =,PC z =,,,0x y z >,由ABC PAB PAB PAB S S S S =++V V V V,可得111122222xy xz yz ++=⨯,整理得xy yz xz ++=,所以111222PA PB PB PC PC PA xy yz xz ⎛⎫⎛⎫⎛⎫⋅+⋅+⋅=⋅-+⋅-+⋅- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()1122xy yz xz =-++=-=,故D 错误.故选:ABC.【点睛】关键点点睛:解答本题首先要理解费马点的含义,解答D 选项的关键在于利用三角形等面积法求出xy yz xz ++=.11. 在四面体ABCD 中,棱AB 的长为4,AB BD ⊥,CD BD ⊥,2BD CD ==,若该四面体的体积为)A. 异面直线AB 与CD 所成角的大小为π3B. AC的长可以为C. 点D 到平面ABCD. 当二面角A BC D --是钝角时,其正切值为【答案】ACD【解析】【分析】根据等体积法可结合三角形的面积公式可得sin CDE ∠=A ,根据余弦定理即可求解B ,根据等体积法即可求解C ,根据二面角的几何法,结合同角关系即可求解D.【详解】在平面ABD 内过D 作DE AB ∥,且ED AB =,由于AB BD ⊥,故四边形ABDE 为矩形,CD BD ⊥,DE BD ⊥,BD DE C = ,CD ⊂平面CDE ,DE ⊂平面CDE ,故BD ⊥平面CDE ,故11233C ABD C EDA B CDE CDE CDE V V V S BD S ---===⋅=⨯=,11sin 24sin 4sin 22CDE S CD DE CDE CDE CDE=⋅⋅∠=⨯⨯∠=∠故1124sin 233C ABD CDE V S CDE -=⨯=⨯∠⨯=,因此sin CDE ∠=由于()0,CDE π∠∈,所以3CDE π∠=或23π,由于CDE ∠为异面直线AB 与CD 所成角或其补角,故异面直线AB 与CD 所成角的大小为3π,A 正确,当23CDE π∠=时,CE ===,由于BD ⊥平面CDE ,AE BD ,∴AE ⊥平面CDE ,CE ⊂平面CDE ,故AE CE ⊥,此时AC ==当3CDE π∠=时,CE ===,由于BD ⊥平面CDE ,AE BD ,∴AE ⊥平面CDE ,CE ⊂平面CDE ,故AE CE ⊥,此时4AC ==,故B 错误,由于BC ==,4AB =,当AC =cos BAC ∠==sin BAC ∠=,11sin 422ABC S AB AC BAC =⋅⋅∠=⨯⨯= ,当4AC =时,161683cos 2444BAC +-∠==⨯⨯,故sin BAC ∠=,1sin 2ABC S AB AC BAC =⋅∠= ,故点D 到平面ABC的距离为d ===,C 正确,当4AC =时,4AB AC ==,2CD BD ==,取BC 中点为O ,连接OA ,OD ,则AOD ∠即为二面角A BC D --的平面角,12OD BC ===,AO ==所以22cos 0AOD ∠===<,故AOD ∠为钝角,符合题意,此时sin tan cos AODAOD AOD∠∠==∠,当4AC =,由于2DBCS =,点A 到平面BDC距离为d ===,设A 在平面BDC 的投影为H ,则AH =,故HD==HC ==,因此点O 为以D ,C为圆心,以半径为,显然交点位于BC ,同D 的一侧,故此时二面角A BC D --为锐角,不符合要求,故D 正确,故选:ACD三、填空题(本大题共3小题,每小题5分,共15分)12. 已知,a b +∈R ,41a b +=,则aba b+的最大值是________.【答案】19【解析】的【分析】先求出11a b+的最小值,再将aba b +化为111a b+,即可求得答案.【详解】因为,a b +∈R ,41a b +=,故()111144559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b=,结合41a b +=,即11,63==a b 时等号成立,所以11119ab a b a b =≤++,即ab a b +的最大值是19,故答案为:1913. 刻画空间的弯曲性是几何研究的重要内容,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体(四个面都是等边三角形围成的几何体)在每个顶点有3个面角,每个面角是π3,所以正四面体在每个顶点的曲率为π2π3π3-⨯=,故其总曲率为4π.我们把平面四边形ABCD 外的点P 连接顶点A 、B 、C 、D 构成的几何体称为四棱锥,根据曲率的定义,四棱锥的总曲率为______.【答案】4π【解析】【分析】根据曲率的定义求解即可.【详解】由定义可得多面体的总曲率2π=⨯顶点数各面内角和,因为四棱锥有5个顶点,5个面,分别为4个三角形和1个四边形,所以任意四棱锥的总曲率为()2π5π42π14π⨯-⨯+⨯=.故答案为:4π.14. 过双曲线22221(0,0)y x a b a b-=>>的上焦点1F ,作其中一条渐近线的垂线,垂足为H ,直线1F H 与双曲线的上、下两支分别交于,M N ,若3NH HM =,则双曲线的离心率e =__________.【解析】【分析】设双曲线右焦点为2F ,HM t =,3NH t =,由题意结合双曲线定义可依次求出1F H 、1OF 、1F M 、1F N 、2F N 和2F M ,接着分别在1Rt F OH 、12F MF △和12F NF △中结合余弦定理求出1cos OF M ∠,进而建立等量关系式求出t ,从而求得2b a =,进而由离心率公式即可得解.【详解】设双曲线右焦点为2F ,由题()10,F c ,双曲线的一条渐近线方程为ay x b=-即0ax by +=,过该渐近线作垂线,则由题1F H b =,1OF c =,设HM t =,则由题3NH t =,1F M b t =-,13F N b t =+,所以232F N b t a =+-,22F M b t a =-+,所以在1Rt F OH 中,111cos F H bOF M OF c∠==①,在12F MF △中,()()()()()22222211221112||||22cos 222F M F F F M b t c b t a OF M b t c F M F F +--+--+∠==-⋅②,在12F NF △中,()()()()()22222211221112||||3232cos 2322F N F F F N b t c b t a OF M b t c F N F F +-++-+-∠==+⋅③,由①②得()()()()()2222222b t c b t a bb tc c-+--+=-,化简解得ab t a b =+,由①③得()()()()()2223232232b t c b t a b b t c c++-+-=+,化简解得()3ab t b a =-,所以()23ab abb a a b b a =⇒=+-,故双曲线的离心率c e a====.【点睛】思路点睛:依据题意设双曲线右焦点为2F ,HM t =,则结合双曲线定义可得1Rt F OH 、12F MF △和12F NF △的边长均是已知的,接着结合余弦定理均可求出三个三角形的公共角1OF M ∠的余弦值1cos OF M ∠,从而可建立等量关系式依次求出t 和2b a =,进而由离心率公式得解.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15. 设n S 为数列{}n a 的前n 项和,满足()*1N n n S a n =-∈.(1)求数列{}n a 的通项公式;(2)记22212n n T S S S =+++ ,求n T .【答案】(1)1()2n n a = (2)1235111((3232n nn n T --=+-⋅【解析】【分析】(1)应用1n n n S S a --=,再结合等比数列定义及通项公式计算即可;(2)先化简得出21111()()24n n n S --+=,再应用分组求和及等比数列前n 项和公式计算.小问1详解】因为数列{a n }的前n 项和,满足1n n S a =-,当2n ≥时,可得111n n S a --=-,两式相减得1n n n a a a -=-,即12n n a a -=,所以112n n a a -=,令1n =,可得1111S a a =-=,解得112a =,所以数列{a n }构成首项为12,公比为12的等比数列,所以{a n }的通项公式为1111()(222n nn a -=⋅=.【小问2详解】由(1)知1(2nn a =,可得11(2nn S =-,所以222111111()]12()()1((22224[1n n n n n n S -=-⋅=+=-+-,【则222121111()[1()]244(111)111124n n n n T S S S -⋅-=+++=+++-+-- 1235111()()3232n n n --=+-⋅.16. 如图,正四棱台ABCD EFGH -中,24,EG AC MN ==上为上下底面中心的连线,且MN 与侧面.(1)求点A 到平面MHG 的距离;(2)求二面角E HM G --的余弦值.【答案】(1(2)23-【解析】【分析】(1)由题意建立空间直角坐标系,求得平面法向量,利用点面距向量公式,可得答案;(2)求得两个平面的法向量,利用面面角的向量公式,可得答案.【小问1详解】由题意,易知,,MN MA MB 两两垂直,分别以,,MA MB MN 为,,x y z 轴建立直角坐标系,如下图:则()()()()1,0,0,0,0,0,0,2,1,2,0,1A M H G --,取()()0,2,1,2,0,1MH MG =-=-,设平面MHG 的法向量(),,n x y z = ,则2020n MH y z n MG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令2z =,则1,1x y ==,所以平面MHG 的一个法向量()1,1,2n =,取()1,0,0MA = ,点A 到平面MHG的距离MA n d n ⋅===.【小问2详解】由(1)可知()()()()2,0,1,0,2,1,0,0,0,2,0,1E H M G --,取()()()()2,2,0,2,0,1,2,2,0,2,0,1HE ME HG MG ===-=-,设平面EHM 的法向量()1111,,m x y z = ,则11111122020m HE x y m ME x z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,令11x =-,则221,2y z ==,所以平面EHM 的一个法向量()11,1,2m =-,设平面HMG 的法向量()2222,,m x y z = ,则22222222020m HG x y m MG x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令21x =,则111,2y z ==,所以平面EHG 的一个法向量()21,1,2m =,设二面角E HM G --的大小为θ,则12121142cos 1143m m m m θ⋅-++=-=-=-++⋅ .17. 某汽车公司最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行整理,得到如下的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表);(2)由频率分布直方图计算得样本标准差s 的近似值为49.75.根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x ,σ近似为样本标准差S.(ⅰ)利用该正态分布,求()250.25399.5P X <<;(ⅱ)假设某企业从该汽车公司购买了20辆该款新能源汽车,记Z 表示这20辆新能源汽车中单次最大续航里程位于区间(250.25,399.5)的车辆数,求E (Z );参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<<+=,()()220.9545,330.99731P P μσξμσμσξμσ-<<+=-<<+=.(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在x 轴上从原点O 出发向右运动,已知硬币出现正、反面的概率都12,客户每掷一次硬币,遥控车向右移动一次,若掷出正面,则遥控车向移动一个单位,若掷出反面,则遥控车向右移动两个单位,直到遥控车移到点(59,0)(胜利大本营)或点(60,0)(失败大本营)时,游戏结束,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.设遥控车移到点(),0n 的概率为()160n P n ≤≤,试证明数列{}1n n P P --是等比数列()259n ≤≤,求出数列{}()160n P n ≤≤的通项公式,并比较59P 和60P 的大小.【答案】(1)300 (2)(ⅰ)0.8186;(ⅱ)16.372(3)证明见解析,158211,159362111,60362n n n P n -⎧⎛⎫-⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+⋅= ⎪⎪⎝⎭⎩,5960P P >【解析】【分析】(1)根据平均数的求法求得正确答案.(2)(ⅰ)根据正态分布的对称性求得正确答案.(ⅱ)根据二项分布的知识求得正确答案.(3)根据已知条件构造等比数列,然后利用累加法求得n P ,利用差比较法比较59P 和60P 的大小.【小问1详解】2050.12550.23050.453550.24050.05300x ≈⨯+⨯+⨯+⨯+⨯=.【小问2详解】(ⅰ)0.95450.6827(250.25399.5)0.68270.81862P X -<<=+=.(ⅱ))∵Z 服从二项分布()20,0.8186B ,∴()200.818616.372E Z =⨯=.【小问3详解】当359n ≤≤时,()12112111,222n n n n n n n P P P P P P P -----=+-=--,1221111131,,222244P P P P ==⨯+=-=.∴{}1(259)n n P P n --≤≤是以14为首项,12-为公比的等比数列,2111(259)42n n n P P n --⎛⎫-=⋅-≤≤ ⎪⎝⎭.22132111111,,,(259)44242n n n P P P P P P n --⎛⎫⎛⎫-=-=⋅-⋯-=⋅-≤≤ ⎪⎪⎝⎭⎝⎭.累加得:115816058111422111111,(259),1362236212n n n n P P P n P P --⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎝⎭-==-⋅-≤≤==+⋅ ⎪ ⎪⎝⎭⎝⎭+.∴158211,159362111,60362n n n P n -⎧⎛⎫-⋅-≤≤⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+⋅= ⎪⎪⎝⎭⎩∵58585960111111033232P P ⎛⎫⎛⎫⎛⎫-=-⨯=-> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴5960P P >.注:比较59P 和60P 的另一个过程:58596059592112111,13623622P P P P ⎛⎫=-⋅>-==-<< ⎪⎝⎭.18. 已知函数()1e xx f x +=.(1)求函数()f x 的极值;(2)若不等式()e ln 1xf x a x +≥恒成立,求实数a 的取值范围;(3)已知直线l 是曲线()y f x =在点()(),t f t 处的切线,求证:当1t >时,直线l 与曲线()y f x =相交于点()(),s f s ,其中s t <.【答案】(1)极大值为1,没有极小值 (2)[]e,0- (3)证明见解析【解析】【分析】(1)求导,利用导数判断()f x 的单调性和极值;(2)根据题意可得ln 0x a x +≥恒成立,构建()ln ,0g x x a x x =+>,分类讨论a 的符号,利用导数求最值,结合恒成立问题分析求解;(3)根据导数的几何意义可得当1t >时,方程2110e e ex t tx tx t t ++++-=有小于t 的解,构建()211e e ex t tx tx t t h x +++=+-,其中x t <,1t >,利用导数研究函数零点分析证明.小问1详解】由题意可知:()f x 的定义域为R ,且()ex xf x '-=,令()0f x '=时,0x =,则x ,f ′(x ),()f x 的关系为x(),0∞-0(0,+∞)f ′(x )+0-()f x 单调递增极大值单调递减所以,当0x =时,()f x 取到极大值为1,没有极小值.【小问2详解】若()e ln 1xf x a x +≥,即ln 0x a x +≥恒成立,设()ln ,0g x x a x x =+>,则()1a x a g x x x'+=+=,①当0a =时,则()0g x x =>恒成立,符合题意;②当0a >时,则()0g x '≥,可知()g x 在(0,+∞)上单调递增,因为11e e 10a a g --⎛⎫=-< ⎪⎝⎭,所以ln 0x a x +≥不恒成立;③当0a <时,x ,()g x ',()g x 的关系为x()0,a -a-(),a ∞-+()g x '-+【()g x 单调递减极小值单调递增可知()g x 的最小值为()()min ln g x a a a =-+-,则()ln 0a a a -+-≥,因为0a <,则()1ln 0a --≥,解得e 0a ≤-<;综上所述:实数a 的取值范围是[]e,0-.【小问3详解】因为()1e x x f x +=,()e x x f x '-=,则()1e t tf t +=,e t t k -=即切点坐标为1,e t t t +⎛⎫⎪⎝⎭,切线l 斜率为e tt k -=,可得l 的方程为()1e e t t t t y x t +--=-,即21e et tt t t y x -++=+,联立方程21e e 1e t txt t t y x x y ⎧-++=+⎪⎪⎨+⎪=⎪⎩,可得2110e e e x t tx tx t t ++++-=,由题可知:当1t >时,方程2110e e ex t tx tx t t ++++-=有小于t 的解,设()211e e ex t tx tx t t h x +++=+-,其中x t <,1t >且()0h t =,则()e e x t x t h x '-=+,设()()F x h x =',则()1e xx F x '-=,因为1t >,x ,()F x ',F (x )的关系为x(),1∞-1()1,t ()F x '-+F (x )单调递减1e et t -+,单调递增可知F (x )的最小值()()()min 10F x F F t =<=,且()1e 0e ttF -=+>,可知()01,1x ∃∈-,使()00F x =,当()0,x x ∞∈-时,()0F x >,即h ′(x )>0;当()0,x x t ∈时,()0F x <,即h ′(x )<0;可知h (x )在()0,x ∞-内单调递增;在()0,x t 内单调递减,可知h (x )的最大值()()()0max 0h x h x h t '=>=,且()()2110e t t h -+-=<,可知h (x )存在小于t 的零点,所以当1t >时,直线l 与曲线y =f (x )相交于点()(),s f s ,其中s t <,得证.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.19. 蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为222()x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.设CF 交x 轴于点P ,ED 交x 轴于点Q .(1)当0b =,r =,12m =-,2n =时,分别求线段OP 和OQ 的长度;(2)①求证:34121234y y y y y y y y ++=.②猜想|OP |和|OQ |的大小关系,并证明.【答案】(1)53OP OQ == (2)①证明见解析;②猜测OP OQ =,证明见解析.【解析】【分析】(1)联立直线与圆的方程,可求,,,C D E F 各点的坐标,利用直线的两点式方程,可得直线CF 和ED 的方程,并求它们与x 轴的交点坐标,可得问题答案.(2)①联立直线与圆的方程,求出两根之和与两根之积,找到相等代换量,从而证明成立.②分别求出点P 和点Q 的横坐标表达式,结合①中的结论,从而证明成立.【小问1详解】当0b =,r =,12m =-,2n =时,圆M :225x y +=,直线CD :12x y =-,由22512x y x y ⎧+=⎪⎨=-⎪⎩⇒12x y =⎧⎨=-⎩或12x y =-⎧⎨=⎩,故()1,2C -,()1,2D -;直线EF :2x y =,由2252x y x y⎧+=⎨=⎩⇒21x y =⎧⎨=⎩或21x y =-⎧⎨=-⎩,故()2,1E ,()2,1F --.所以直线CF :122112y x ++=+-+,令0y =得53x =-,即5,03P ⎛⎫- ⎪⎝⎭;直线ED :122112y x --=---,令0y =得53x =,即5,03Q ⎛⎫ ⎪⎝⎭.所以:53OP OQ ==.【小问2详解】①由题意:22b r <.由()222x y b r x my ⎧+-=⎪⎨=⎪⎩⇒()()222my y b r +-=⇒()2222120m y by b r +-+-=,则1y ,2y 是该方程的两个解,由韦达定理得:12222122211b y y m b r y y m ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,所以1222122y y b y y b r +=⋅-.同理可得:3422342y y b y y b r +=⋅-,所以34121234y y y y y y y y ++=⋅⋅.②猜测OP OQ =,证明如下:设点(),0P p ,(),0Q q .因为,,C P F 三点共线,所以:414100y y x p x p --=--⇒411414x y x y p y y -=-,又因为点C 在直线x my =上,所以11x my =;点F 在直线x ny =上,所以44x ny =.所以()1441141414y y n m ny y my y p y y y y --==--;同理因为,,E Q D 三点共线,可得:()2323y y n m q y y -=-.由①可知:34121234y y y y y y y y ++=⋅⋅⇒12341111y y y y +=+⇒14321111y y y y -=-⇒23411423y y y y y y y y --=⋅⋅⇒231414230y y y y y y y y ⋅⋅+=--, 所以()()14231423y y n m y y n m p q y y y y --+=+--()23141423y y y y n m y y y y ⎛⎫=-+ ⎪--⎝⎭0=.即p q =-,所以OP OQ =成立.【点睛】关键点点睛:本题的关键是联立直线与圆的方程,结合一元二次方程根与系数的关系,进行化简处理,设计多个字母的运算,整个运算过程一定要小心、仔细.。
2011年浙江省三校高三联考数学(文)试卷参考公式:球的表面积公式 棱柱的体积公式 24S R π= V Sh=球的体积公式 其中S 表示棱柱的底面积,h 表示棱柱的高334R V π=棱台的体积公式其中R 表示球的半径 )(312211S S S S h V ++=棱锥的体积公式 其中S 1、S 2分别表示棱台的上、下底面积,13V Sh = h 表示棱台的高其中S 表示棱锥的底面积,h 表示棱锥的高 如果事件,A B 互斥,那么()()()P A B P A P B +=+一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知集合 A={}2|20,1,x x x a A a -+≥∉且则实数的取值范围是( ▲ )(][)()[).,1.1,.,1.0,A B C D -∞+∞-∞+∞2.“m=2”是“直线02=+my x 与直线1=+y x 平行”的( ▲ ) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.设复数()a bi a b R +∈、满足2()34a bi i +=-则复数a bi +在复平面内 对应的点位于( ▲ )A .第一、第二象限B .第一、第三象限C .第二、第四象限D .第三、第四象限4.已知cos()cos())442πππααα-+=<<则a 2sin 等于 ( ▲ )A .B C D 5.若圆222(3)(5)x y r -++=上有且只有两个点到直线432x y -=的距离等 于1,则半径r 的取值范围是( ▲ )A .()4,6B .[)4,6C .(]4,6D . []4,66.已知直线α平面⊥l ,直线β平面//m ,下列命题中正确的是( ▲ ) A .l m αβ⊥⇒⊥B .//l m αβ⊥⇒C .//l m αβ⊥⇒D . //l m αβ⇒⊥第9题图7.已知a 是实数,则函数()cos f x a ax=的图像可能是(▲ )A .B .C .D .8.已知||2a =u r ,|b|2=u r ,且()a b a -⊥r r r,则a r 与b r 的夹角是 ( ▲ )A .30O75OB .45OC .60OD .75O9.某程序框图如图所示,该程序运行后输出的S 的值是 ( ▲ )A .2B .12-C .3-D .1310.已知)0,(),0,(21c F c F -为椭圆12222=+by a x 的两个焦点,P 为椭圆上一点且221c PF PF =⋅,则此椭圆离心率的取值范围是 ( ▲ )A .3[,1) B .11[,]32 C .32[,]32 D .2(0,]2非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.已知2()1x f x x +=+,则111(1)(2)(10)()()()2310f f f f f f ++⋅⋅⋅++++⋅⋅⋅= ▲ .12.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情 况,根据所得数据画出样本的频率分 布直方图如右图所示.根据此图,估 计该校2000名高中男生中体重大于 70公斤的人数大约为 ▲ .第16题图13.若实数x ,y 满足不等式组⎪⎩⎪⎨⎧≤≤≥+222y x y x 则11y x -+的最大值是 ▲ .14.设等差数列{}n a 的前n 项和为n S ,若m>1,且2112110,39m m m m a a a S -+-+--==则m= ▲ .15.为了庆祝2011年元旦,某单位特意制作了一个热气球,在气球上写着“喜迎新年”四个大字,已知热气球在第一分钟内能上升25米,以后每分钟上升的高度都是前一分钟的80%,则该气球 ▲ 上升到125米的高空.(填“能”或“不能”)16.若某几何体的三视图如图所示,均是直角边长为1的等腰 直角三角形,则此几何体的体积是 ▲17.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲乙两个盒子中各取一个球,每个球被 取出的可能性相等,则取出的两个球上标号之和能被 3整除的概率是 ▲ .三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)已知向量1(sin ,)2m A =u r 与(3,sin 3)n A A =r 共线,其中A 是△ABC 的内角.(1)求角A 的大小;(2)若BC =2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状.19.(本题满分14分 )已知数列}{n a 的前n 项和为).(12,4,*2N n a nS a S n nn ∈+==且满足(1)求431,,a a a 的值,并猜想出数列}{n a 的通项公式;n a(2)设n nn a b )1(-=,请利用(I )的结论,求数列}{n b 的前15项和.15T20.(本题满分14分)如图,直角△BCD 所在的平面垂直于正△ABCP A ⊥平面ABC ,PA BC DC 2==,E 、F 分别为DB 、(1)证明:AE ⊥BC ;(2)求直线PF 与平面BCD 所成的角.21.(本题满分15分)已知函数()().a x x x h ,x ln x x f +-=-=222(1)求函数()x f 的极值;(2)设函数()()(),x h x f x k -=若函数()x k 在[]31,上恰有两个不同零点,求实数 a 的取值范围.22.(本题满分15分)已知曲线C 上的动点(),P x y 满足到点()1,0F 的距离比到直线:2l y =-的距离小1. (1)求曲线C 的方程;(2)动点E 在直线l 上,过点E 分别作曲线C 的切线,EA EB ,切点为A 、B . (ⅰ)求证:直线AB 恒过一定点,并求出该定点的坐标;(ⅱ)在直线l 上是否存在一点E ,使得ABM ∆为等边三角形(M 点也在直线l上)?若存在,求出点E 坐标,若不存在,请说明理由.第20题图PAB。
东北三省三校2012届高三数学第二次联考试题 文 新人教A 版本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,满分150分,考试结束后,请将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔记清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.设全集U R =,集合2{|20},{|1}xA x x xB y y e =->==+集合,则AB =( )A .{|12}x x ≤<B .{|2}x x >C .{|1}x x >D .{|12}x x << 2.已知3,,1x yii x y i i+=+其中是实数,是虚数单位,则x y +的值为( ) A .0 B .6 C .9 D .-63.已知命题:p 对于,x R ∈恒有222x x-+≥成立;命题:q 奇函数()f x 的图像必过原点,则下列结论正确的是( )A .p q ∧为真B .p q ⌝∨为真C .()p q ∧⌝为真D .q ⌝为真 4.已知,a b 是两个向量,则“3a b =”是“||3||a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 5.要得到函数sin(2)4y x π=+的图像,只需将函数sin 2y x =的图像( )A .左移4π各单位 B .左移4π各单位C .右移4π各单位 D .右移4π各单位 6.已知数列{}n a 的前n 项和n 3n S =-A .132n - B .123n -7.如图,三棱锥A-BCD AB=BC=BD=2,E 是棱CD 上的任意一点,则在下面的命题中:①平面ABE ⊥平面EFG 平面③四面体FECG 的体积最大值是13A .0B .8. A .32B .16C .2512D .137609.已知圆C:2212x y +=,直线:4l x 则圆C 上任意一点A 到直线l A .56 B .16 C .1310.设函数()sin+sin 3f x x πω=()+为( )A .32 B .32- C .2 D .2- 11.已知P 是椭圆22143x y +=上的一点,12F F 、是该椭圆的两个焦点,若12PF F ∆的内切圆的半径为12,则12tan F PF ∠=( ) A .34 B .43 C 12.已知()f x 是定义在R 上的偶函数,对任意x R ∈,都有(2+)=-()f x f x ,且当[0,1]x ∈时在2()1f x x =-+,若2[()]()30a f x bf x -+=在[1,5]-上有5个根(1,2,3,4,5)i x i =,则12345x x x x x ++++的值为( )A .7B .8C .9D .10第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分。
2011年东北三省三校第一次联合模拟考试理科数学参考答案二、填空题: 13、14-14、540- 15、1 16、8 三:解答题:18、(1)连接1AC 交1AC 于点O ,连OD1111111O AC 1OD//BC ,OD=BC 2 AB BC A CD ACC A D ⎫⇒⎬⎭⊄中,为中点为中点平面111BC //4' OD A CD ACD ⎫⎪⎪⇒⎬⎪⎪⊂⎭平面平面(2) 延长1A D 交1BB 延长线于E ,则111A D BBC C 平面=E取11B C 中点F ,连1,A F EF11111111111111ABC A B C A F B C A F BB C C6'A B C BB C C -⇒⊥⎫⇒⊥⎬⊥⎭在三棱柱中平面 平面平面111EF A E BB C C ⇒为在平面内的射影1111E A E BB C C 8'A F ∴∠为与平面成的角在正1111111A B C B C 1,A F=A 2BC ∆==中故: 17RT A EF EF=2∆在中1cos EF AEF A E ∠==111A D BB C C 12'故与平面19、(1)30位亲属中50岁以上的人多以食蔬菜为主2'50岁以下的人多以食肉为主4'8'2230(8-128)30120120K ===10>6.6351218201012182010⨯⨯⨯⨯⨯⨯⨯⨯10'有99%的把握认为亲属的饮食习惯与年龄有关。
12'20、(1)设(2cos ,2sin ),(cos ,sin )P Q αααα由N PM QN PM=0QN PM PN PM λ=⋅⊥知在上,由知N (2c o s,s i n )αα∴{s i n y αα=x=2cos 即:2214'4x y ∴+=(2) 联立方程2222221(41)2436404(3)x y k x k x k y k x ⎧+=⎪⇒+++-=⎨⎪=+⎩2106'5k ∆>⇒<22212121212122224364, y y [3()9]8'4141k k x x x x k x x x x k k -+=-⋅==⋅+++++121212()1BE BF x x x x y y ⋅=⋅-+++222222227(1)4(91)(31)(24)699291(1)10'14144k k k k k k k -+-+--=++=+++由210< BE BF [3,6)12'5k ≤∴⋅∈-21、(1)()(),ln()ln()x x f x f x e a e a --=-∴+=-+-x -x x x1e (e e )0 01'e a a a a a∴+=⇒++=∴=+()g(x)=x+sinx [-1,1]f x x λ∴=,且在递减'()cos 0[1,1]2'g x x x λ∴=+≤∈-在上恒成立λ∴≤-cosx 1A =(--λ∴≤-∞即:,] (2) max 1[1,1]()1t x g x t λλ≤++∈-⇔≤++22g(x)t 在恒成立t 恒成立2max ()(1) sin1 1 1g x g t t λλλ=-∴--≤++≤-对任意恒成立5'即: 2(t+1)+t 1sin10 1λλ++≥≤-对任意恒成立 故,{11st ≤⇒≤++2t +-1-t+t 7'(3) 222ln ln (2)()xx x x ex m x e m e x=-+⇔=-+- 令22ln () ()()xh x x x e m e xφ==-+-,21l n 1'() ()(0e )(e ,+) ()xh x h x h ex e-=∴∞∴==max 在,递增,递减h(x)9'2m i n ()(e ,+) (x )x m eφφ∞=-为二次函数在(0,e)递减,递增, 22222211, 11= =, 111< <, 2m e m e e e m e m e e e m e m e e e∴->>+-+-+即:无解即:解即:解12'22、解:(Ⅰ)︒=∠=∠90PKQ PHQ∴四点P 、K 、H 、Q 共圆.2'(Ⅱ) 四点P 、K 、H 、Q 共圆,HQP HKS ∠=∠∴①4'︒=∠90PSR ,PR 为圆的直径,90PQR ∴∠=︒,HQP QRH ∠=∠ ②6'由①②得,H Q S P ∠=∠,TKSK =∴8'又︒=∠90SKPTKQSQK ∠=∠,TS QT TK QT =∴=∴,.10'23、(1)直线l的方程:11(y x -=-+即:y=-x 1'240y x ρθ+-=2C:=4cos 即:x 2'40x -=2联立方程得: 2x7 A (0,0) ,B (2,-2)0,0),B (22,)4π∴极坐标5'22(2) 1 : :(2)431 08'4d l y x C x y k k ===--+=∴=∴==或{4x =-1-51()()1315t x tl t t y y t⎧⎪⎪=-+∴⎨=⎪=+⎪⎩:为参数或为参数10'24、 2121413x x x ≥⇒++≥⇒-≤≤2(1) |x+1|2|x|x 1[,1]3∴-解集为4'(2) 存在|x+1|2|x|+a x R |x+1|-2|x|a x R ∈≥∴∈≥使存在使 令6'1 0()3 1 -101 1x x x x x x x ϕ-≥⎧⎪=+≤<⎨-<-⎪⎩8'当0 1 -10-2y<1; x<-1x x ≥≤≤<≤时,;时,时,y<-2 综上可得:()1x ϕ≤ 1.a ∴≤10'。
哈尔滨师大附中 东北师大附中 辽宁省实验中学2024年高三第一次联合模拟考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,定在.本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四选项中,只有一项是符合题目要求的.1.已知集合{}1,2M =,(){}2log 212N x x =∈−≤R ,则M N = ( ) A .{}1B .{}2C .{}1,2D .∅2.已知复数z 的共轭复数是z ,若i 1i z ⋅=−,则z =( ) A .1i −+B .1i −−C .1i −D .1i +3.已知函数()y f x =是定义在R 上的奇函数,且当0x <时,()2af x x x=+,若()38f =−,则a =( ) A .3−B .3C .13D .13−4.已知平面直角坐标系xOy 中,椭圆C :22221x y a b+=(0a b >>)的左顶点和上顶点分别为A ,B ,过左焦点F 且平行于直线AB 的直线交y 轴于点D ,若2OD DB =,则椭圆C 的离心率为( )A .12B C .13D .235.()521x x y y −−的展开式中32x y 的系数为( ) A .55B .70−C .30D .25−6.已知正四棱锥P ABCD −各顶点都在同一球面上,且正四棱锥底面边长为4,体积为643,则该球表面积为( ) A .9πB .36πC .4πD .4π37.已知函数()22e e xx f x ax −=−−,若0x ≥时,恒有()0f x ≥,则a 的取值范围是( )A .(],2−∞B .(],4−∞C .[)2,+∞D .[)4,+∞8.设1033e a =,11ln 10b =,ln 2.210c =,则( ) A .a b c <<B .c b a <<C .b c a <<D .a c b <<二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.等差数列{}n a 中,10a >,则下列命题正确的是( ) A .若374a a +=,则918S =B .若150S >,160S <,则2289a a > C .若211a a +=,349a a +=,则7825a a += D .若810a S =,则90S >,100S <10.在平面直角坐标系xOy 中,抛物线C :24y x =的焦点为F ,点P 在抛物线C 上,点Q 在抛物线C 的准线上,则以下命题正确的是( ) A .PQ PF +的最小值是2 B .PQ PF ≥C .当点P 的纵坐标为4时,存在点Q ,使得3QF FP =D .若PQF △是等边三角形,则点P 的橫坐标是311.在一个只有一条环形道路的小镇上,有2家酒馆A ,一个酒鬼家住在D ,其相对位置关系如图所示.小镇的环形道路可以视为8段小路,每段小路需要步行3分钟时间.某天晚上酒鬼从酒馆喝完酒后离开,因为醉酒,所以酒鬼在每段小路的起点都等可能的选择顺时针或者逆时针的走完这段小路。
三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。
高三三校联考文科数学试题三校联考数学(文)试题本试卷共8页,21小题,满分150分,考试时间为120分钟.注意事项:1、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.2、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.一、选择题:(本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合要求的。
)1.已知全集U=R ,集合}{|A x y ==,集合{|0B x =<x <2},则()U C A B ⋃=( ) A .[1,)+∞ B .()1+∞, C .[0)∞,+ D .()0∞,+2.设复数121212z i z bi z =+=+⋅,,若z 为实数,则b= ( ) A .2 B .1 C .-1 D .-23.在等比数列{}n a 中,如果12344060a a a a +=+=,,那么78a a += ( ) A .135 B .100 C .95 D .804.在边长为1的等边△ABC 中,设,,BC a CA b AB c a b b c c a ===⋅+⋅+⋅=,则 ( ) A .32-B .0C .32D .35.在△ABC 中,a ,b ,c 分别是A ∠,B ∠,C ∠的对边,且222b c a ++=,则A ∠等于 ( )A .6π B .3πC .23πD .56π6.已知直线l m n ,,及平面α,下列命题中是假命题的是 ( )A .若l ∥m ,m ∥n ,则l ∥n ;B .若l ∥α,n ∥α,则l ∥n .C .若l m ⊥,m ∥n ,则l n ⊥;D .若,l n α⊥∥α,则l n ⊥;7.已知函数2()f x x x c =++,若(0)f >0,()f p <0,则必有 ( )A .(1)f p +>0B .(1)f p +<0C .(1)f p +=0D .(1)f p +的符号不能确定8.曲线32y x x =-在横坐标为-1的点处的切线为l ,则点(3,2)P 到直线l 的距离为( )A.2 B.2 C.2 D.109.已知{}(,)|6,0,0x y x y x y Ω=+≤≥≥,{}(,)|4,0,20A x y x y x y =≤≥-≥,若向区域Ω上随机投一点P ,则点P 落在区域A 的概率为 ( ) A .13 B .23 C .19 D .2910.对于函数①()|2|f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在(,2)-∞上是减函数,在(2,)+∞上是增函数;能使命题甲、乙均为真的所有函数的序号是 ( ) A .①② B .①③ C .② D .③二、填空题:(本大题共5小题,每小题5分,满分20分,其中14,15题是选做题,考生只能做一题,两题全答的,只计算14题的得分.)11、已知椭圆C 的焦点与双曲线2213y x -=的焦点相同,且离心率为12,则椭圆C 的标准方程为 . 12、函数2()lg(21)f x x ax a =-++在区间(]1-∞,上单调递减,则实数a 的取值范围是 . 13、如图所示,这是计算111124620++++的值的一个程序框图,其中判断框内应填入的条件是 .14、(坐标系与参数方程选做题)已知直线的极坐标方程为sin()4πρθ+=,则极点到这条直线的距离是 .13题图15、(平面几何选讲选做题)如图,⊙O 的割线PBA 过圆心O ,弦CD 交PA 于点F ,且△COF ∽△PDF ,2PB OA ==,则PF = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16、(本题满分12分)已知向量(cos sin ,sin )a x x x =+,(cos sin ,2cos )b x x x =-, 设()f x a b =⋅.(1)求函数()f x 的最小正周期.(2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值及最小值.17.(本题满分12分)已知函数2()(0).af x x x a R x=+≠∈,常数 (1)当2a =时,解不等式()(1)f x f x -->21x -; (2)讨论函数()f x 的奇偶性,并说明理由.18.(本题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD,且2PA PD AD ==,若E(1)求证:EF ∥平面PAD ;(2)求证:平面PDC ⊥平面PAD .19、(本题满分14分)已知椭圆C 的中心在坐标原点,焦点在X 轴上,它的一个顶点恰好是抛物线214y x =. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交Y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.20、(本题满分14分)设函数2113()424f x x x =+-,对于正数数列{}n a ,其前n 项和为n S ,且()n n S f a =,()n N *∈.(1)求数列{}n a 的通项公式;(2)是否存在等比数列{}n b ,使得111222(21)2n n n a b a b a b n ++++=-+对一切正整数n 都成立?若存在,请求出数列{}n b 的通项公式;若不存在,请说明理由.21.(本题满分14分)设函数()2ln q f x px x x =--,且()2pf e qe e=--,其中e 是自然对数的底数.(1)求p 与q 的关系;(2)若()f x 在其定义域内为单调函数,求p 的取值范围; (3)设2()eg x x=,若在[]1,e 上至少存在一点0x ,使得0()f x >0()g x 成立,求实数p 的取值范围.答题卷二、填空题:(本大题共须作4小题,每小题5分,共20分,把答案填写在题横线上)11、 12、 13、★选作题 14、 15、三、解答题(本大题共6小题,共80分)16.解:17.解:18.证明:19.解:20.解:◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆21.解:参考答案一、选择题DDAAD,BAADC二、填空题 11.2211612x y += ;12.[)1,2 ; 13. 20n ≤; 14. 2 ;15.3三、解答题16.解:(1)()(cos sin )(cos sin )2sin cos f x a b x x x x x x =⋅=+-+ ………2分 22cos sin 2sin cos cos 2sin 2x x x x x x =-+=+ ………3分)4x π=+ ………5分所以函数()f x 的最小正周期22T ππ== ………6分(2)当44x ππ-≤≤, ∴32444x πππ-≤+≤,1)4x π-≤+≤∴当2,428x x πππ+==即时,()f x ; ………10分当244x ππ+=-,即4x π=-时,()f x 有最小值1-. ………12分17.解:(1)当2a =时,22()f x x x =+,22(1)(1)1f x x x -=-+-, 由 2222(1)1x x x x +---->21x -, ………3分 得221x x -->0,(1)x x -<0 ,0<x <1∴原不等式的解为 0<x <1; ………………6分(2)()f x 的定义域为(0)(0-∞⋃∞,,+), ………………7分 当0a =时,2()f x x =,22()()()f x x x f x -=-==,所以()f x 是偶函数.………………9分 当0a ≠时,2()()20(0)f x f x x x +-=≠≠, 2()()0af x f x x--=≠ 所以()f x 既不是奇函数,也不是偶函数. ………………12分18.(1)证明:连结AC ,则F 是AC 的中点,在△CPA 中,EF ∥PA , …………2分 且PA ⊂平面PAD ,EF ⊄平面PAD ,∴EF ∥平面PAD …………5分(2)证明:因为平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD=AD ,又CD ⊥AD ,所以,CD ⊥平面PAD ,∴CD ⊥PA …………8分又AD ,所以△PAD 是等腰直角三角形, 且2PAD π∠=,即PA ⊥PD ……………………10分又CD ∩PD=D , ∴ PA ⊥平面PDC , 又PA ⊂平面PAD ,所以 平面PAD ⊥平面PDC ……………………12分19.(1)解:设椭圆C 的方程为22221x y a b+= (a >b >0),……1分抛物线方程化为24x y =,其焦点为(0,1), ………………2分 则椭圆C 的一个顶点为(0,1),即 1b = ………………3分由c e a ===,∴25a =, 所以椭圆C 的标准方程为 2215x y += ………………6分 (2)证明:易求出椭圆C 的右焦点(2,0)F , ………………7分 设11220(,),(,),(0,)A x y B x y M y ,显然直线l 的斜率存在,设直线l 的方程为 (2)y k x =-,代入方程2215x y += 并整理, 得 2222(15)202050k x k x k +-+-= ………………9分∴21222015k x x k +=+,212220515k x x k-=+ ………………10分 又,110(,)MA x y y =-,220(,)MB x y y =-,11(2,)AF x y =--,22(2,)BF x y =--,而 1MA AF λ=, 2MB BF λ=,即110111(0,)(2,)x y y x y λ--=--,220222(0,)(2,)x y y x y λ--=-- ∴1112x x λ=-,2222x x λ=-, ……………………12分所以 121212121212122()2102242()x x x x x x x x x x x x λλ+-+=+==----++ ………14分 20.解:(1)由2113()424f x x x =+-,()n n S f a = ,()n N *∈ 得2113424n n n S a a =+- ()n N *∈ ① ………2分 2111113424n n n S a a +++=+- , ② 即 221111111()422n n n n n n n a S S a a a a ++++=-=-+-, ………4分 即 221111()()042n n n n a a a a ++--+= , 即 11()(2)0n n n n a a a a +++--=∵n a >0,∴12n n a a +-= ,即数列{}n a 是公差为2的等差数列,……7分 由①得,21111113424S a a a ==+-,解得13a =, 因此 ,数列{}n a 的通项公式为21n a n =+. ………9分(2)假设存在等比数列{}n b ,使得对一切正整数n 都有111222(21)2n n n a b a b a b n ++++=-+ ③当2n ≥时,有1122112(23)2n n n a b a b a b n --+++=-+ ④ ③-④,得 2(21)n n n a b n =+,由21n a n =+得,2n n b = ………………13分又11162(211)a b ==⨯+满足条件,因此,存在等比数列{}2n,使得111222(21)2n n n a b a b a b n ++++=-+对一切正整数n 都成立. …………………14分21.解:(1)由题意得()2ln 2q p f e pe e qe e e=--=-- …………1分 1()()0p q e e ⇒-+= 而10e e+≠,所以p 、q 的关系为p q = …………3分(2)由(1)知()2ln 2ln q p f x px x px x x x =--=--, 2'2222()p px x p f x p x x x -+=+-= …………4分 令2()2h x px x p =-+,要使()f x 在其定义域(0,)+∞内是单调函数,只需()h x 在(0,)+∞内满足:()0()0h x h x ≥≤或恒成立. …………5分①当0p =时,()2h x x =-,因为x >0,所以()h x <0,'22()x f x x =-<0, ∴()f x 在(0,)+∞内是单调递减函数,即0p =适合题意;…………6分②当p >0时,2()2h x px x p =-+,其图像为开口向上的抛物线,对称轴为1(0,)x p=∈+∞,∴min 1()h x p p=-, 只需10p p-≥,即'1()0,()0p h x f x ≥≥≥时, ∴()f x 在(0,)+∞内为单调递增函数,故1p ≥适合题意. …………7分③当p <0时,2()2h x px x p =-+,其图像为开口向下的抛物线,对称轴为1(0,)x p=∉+∞,只要(0)0h ≤,即0p ≤时,()0h x ≤在(0,)+∞恒成立,故p <0适合题意. 综上所述,p 的取值范围为10p p ≥≤或. ……………………9分(3)∵2()e g x x=在[]1,e 上是减函数, ∴x e =时,min ()2g x =;1x =时,max ()2g x e =,即[]()2,2g x e ∈,…10分①当0p ≤时,由(2)知()f x 在[]1,e 上递减m a x ()(1)0f x f ⇒==<2,不合题意; ……………………11分②当0<p <1时,由[]11,0x e x x∈⇒-≥, 又由(2)知当1p =时,()f x 在[]1,e 上是增函数,∴1111()()2ln 2ln 2ln 2f x p x x x x e e e x x e e=--≤--≤--=--<2,不合题意; ……………………12分③当1p ≥时,由(2)知()f x 在[]1,e 上是增函数,(1)0f =<2,又()g x 在[]1,e 上是减函数, 故只需max ()f x >min ()g x ,[]1,x e ∈ ,而m a x 1()()()2ln f x f e p e e e ==--,min ()2g x =, 即 1()2ln p e e e -->2, 解得p >241e e - , 综上,p 的取值范围是24()1e e +∞-,. ……………………14分。
数学试题(文科)
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,考试结束后,将本试卷和答题卡一并交回。
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只是一项是符合题目要求的。
1.已知集合2{|
0},{||1|1},2x A x B x x A B x -=≤=->+ 则等于
( )
A .{|20}x x -≤<
B .{|02}x x <≤
C .{|20}x x -<<
D .{|20}x x -≤≤
2.4cos ,(,0),sin cos 54παααα=
∈-+则=
( ) A .15 B .15- C .75-
D .75 3.函数ln()ln y x x y x x =-=与的图象关于
( ) A .直线y x =对称 B .x 轴对称 C .y 轴对称 D .原点对称
4.设随机变量~(0,1),(1),(10)N P p P ξξξ>=-<<若则=
哈 师 大 附 中
东 北 师 大 附
中 辽宁省实验中学 2011年高三第二次联合模拟考试
( ) A .12p + B .1p - C .12p - D .12
p - 5.设x 、y 是两个实数,命题“x 、y 中至少有一个数大于1”成立的充分不必要条件是 ( )
A .2x y +=
B .2x y +>
C .222x y +>
D .1xy >
6.右面程序运行的结果为 ( )
A .4
B .5
C .6
D .7 7.已知a 、b 、c 、d 是空间四条直线,如果,,,a c b c a d b d ⊥⊥⊥⊥,
那么
( ) A .a//b 且c//d
B .a 、b 、c 、d 中任意两条可能都不平行
C .a//b 或c//d
D .a 、b 、c 、d 中至多有一对直线互相平行
8.下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程ˆ35y x =-,变量x 增加一个单位时,y 平均增加5个单位;
③线性回归方程ˆˆˆy bx a =+必过(,x y ); ④在一个2×2列联中,由计算得213.079,K =则有99%的把握确认这两个变量间有关系;
` 其中错误..
的个数是
( )
A .0
B .1
C .2
D .3
9.已知函数()f x 是奇函数,且在(,)-∞+∞上为增函数,若x ,y 满足等式
2(2)()0,f x x f y -+= 则2x y +的最大值是
( ) A .0 B .1
C .4
D .12 10.已知{}n a 是等差数列,201011,2010,
a a ==已知O 为坐标原点,若20092012OP a OA a OB =+ ,则AB
( )
A .PA
B .AP
C .PB
D .BP
11.O 为坐标原点,点M 的坐标为(1,1),若点N (x ,y )的坐标满足22420,0x y x y OM ON
y ⎧+≤⎪->⋅⎨⎪>⎩
则的最大值为
( ) A
B
.C
D
.12.双曲线22
1169
x y -=的左、右焦点分别F 1、F 2,P 为双曲线右支上的点,12PF F ∆的内切圆与x 轴相切于点A ,则圆心I 到y 轴的距离为
( )
A .1
B .2
C .3
D .4
第Ⅱ卷
本卷包括必考题和选考题两部分。
第(13)题~第(21)题为必考题,每个试题考生都必须做答。
第(22)题~第(24)题为选考题,考生根据要求做答。
二、填空题:本大题共4小题,每小题5分。
13.数列{}n a 的前n 项和为12n n S =-,其通项公式n a = 。
14.直线22:(3):4l y k x O x y =++=与圆交于A 、B 两点,
|AB|=,则实数k= 。
15.若函数()2sin(2)(||)2y x x πϕϕ=+<与函数()cos()(0)6g x x π
ωω=->的图象具有相同的对称中心,则
16.Rt ABC ∆中,90,BAC ∠=︒⊥作AD BC ,D 为垂足,BD 为AB 在BC 上的射影,CD 为
AC 在BC 上的射影,则有AB 2+AC 2=BC 2,AC 2=CD ·BC 成立。
直角四面体P —ABC (即
,,PA PB PB PC PC PA ⊥⊥⊥)中,O 为P 在OCA ∆的面积分别为'''123,,,S S S ABC ∆的面积记为S 。
类比直角三角形中的射影结论,在直角四面体P —ABC 中可得到正确结论 。
(写出一个正确结论即可)
三、解答题:解答应写出文字说明、证明过程或演算步骤。
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分。
做答时用2B 铅笔在答题卡上把所选题目的题号涂黑。
17.(本小题满分12分)
港口A 北偏东30°方向的C 处有一检查站,港口正东方向的B 处有一轮船,距离
检查站为31海里,该轮船从B 处沿正西方向航行20海里后到达D
处观测站,已知观
测站与检查站距离21海里,问此时轮船离港口A 还有多远?
18.(本小题满分12分)
一次数学模拟考试,共12道选择题,每题5分,共计60分,每道题有四个可供选
择的答案,仅一个是正确的。
学生小张只能确定其中10道题的正确答案,其余2道题完全靠猜测回答。
(I )求小张仅答错一道选择题的概率;
(i )应抽取多少张选择题得60分的试卷?
(ii )若小张选择题得60分,求他的试卷被抽到的概率。
19.(本小题满分12分)
如图,多面体ABCD —EFG 中,底面ABCD 为正方形,GD//FC//AE ,AE ⊥平面ABCD ,
其正视图、俯视图如下:
(I )求证:平面AEF ⊥平面BDG ;
(II )若存在0λ>使得AK AE λ= ,二面角A —BG —K 的大小为60︒,求λ的值。
20.(本小题满分12分)
已知21()2,()log (01)2
a f x x x g x x a a =-=>≠且 (I )过P (0,2)作曲线()y f x =的切线,求切线方程;
(II )设()()()h x f x g x =-在定义域上为减函数,且其导函数'()y h x =存在零点,求
实数a 的
值。
21.(本小题满分12分)
椭圆22
221(0)x y a b a b
+=>>的左、右焦点分别为F 1、F 2,点P 在椭圆上,1260F PF ∠=︒,设12||.||
PF PF λ=
(I )当2λ=时,求椭圆离心率e ;
(II )当椭圆离心率最小时,PQ 为过椭圆右焦点F 2的弦,且16
||5PQ =,求椭圆的方程。
22.(本小题满分10分)
如图,在⊙O 中,弦CD 垂直于直径AB ,求证:.CB CD
CO CA =
23.(本小题满分10分)
已知椭圆的参数方程3cos 2sin x y
θ
θ=⎧⎨=⎩(θ为参数),求椭圆上的动点P 到直线2322x t
y t =-⎧⎨=
+⎩(t 为参数)的最短距离。
24.(本小题满分10分)
已知222342,:|34| 4.x y z x y z ++=++≤求证。