数学建模D题的答案
- 格式:docx
- 大小:140.71 KB
- 文档页数:11
2023年国赛数学建模d题
以下是2023年国赛数学建模d题,供您参考:
1.一个自行车车队计划进行一次长途骑行,总路程为200公里。
每
个队员的骑行速度不同,车队的速度由最慢的队员决定。
假设车队中的队员骑行速度在5-15公里/小时之间均匀分布,请问车队完成整个骑行所需的最短时间是多少?
2.一家快递公司需要在规定时间内将货物送达目的地。
假设快递公
司有n辆卡车,每辆卡车的运输速度不同,且运输速度在v1到v2之间均匀分布。
如果将所有卡车按照其运输速度从慢到快排列,那么最慢的卡车将决定整个运输队伍的速度。
快递公司希望找到一种最优的卡车排列方式,使得整个运输队伍的平均运输速度达到最大。
请设计一个数学模型来解决这个问题。
3.一个公司有n个销售代表,每个销售代表每个月可以完成一定数
量的销售任务,且完成销售任务的数量在区间[a, b]之间均匀分布。
如果将所有销售代表按照其销售能力从低到高排列,那么销售能力最低的销售代表将决定整个销售团队的销售业绩。
公司希望找到一种最优的销售代表排列方式,使得整个销售团队的平均销售业绩达到最大。
请设计一个数学模型来解决这个问题。
4.一个城市有n个居民区,每个居民区的居民数量不同。
居民区之
间的距离也不同,且已知每个居民区到市中心的最短距离。
居民们可以选择不同的交通方式前往市中心,每种交通方式的费用和
时间也不同。
城市管理者希望找到一种最优的交通方式组合,使得所有居民到达市中心的总费用最小。
请设计一个数学模型来解决这个问题。
2023研究生数学建模竞赛d题摘要:一、引言1.2023年研究生数学建模竞赛背景2.题目D的概述二、题目D详细解析1.题目要求2.题目特点3.解题思路三、解题步骤1.数据收集与处理1.1 数据来源1.2 数据清洗1.3 数据预处理2.建立数学模型2.1 确定模型类型2.2 参数估计2.3 模型检验3.模型求解与优化3.1 求解方法3.2 结果分析3.3 模型优化4.模型应用与验证4.1 应用场景选择4.2 结果对比与分析4.3 模型验证四、结果与分析1.模型预测结果2.模型性能评估3.结果可靠性分析五、总结与展望1.题目D解决的意义2.不足与改进3.未来研究方向正文:随着科技的发展和数学应用的广泛性,数学建模竞赛越来越受到研究生的关注。
2023年研究生数学建模竞赛中,题目D引起了广大参赛者的兴趣。
本文将详细解析题目D,并给出解题思路和步骤,以期为大家提供实用的参考。
一、引言2023年研究生数学建模竞赛共有多个题目供参赛者选择,其中题目D以其实用性和挑战性吸引了众多选手。
题目D的概述如下:“某城市交通部门拟对市区范围内的交通流量进行监测与调控,以减轻拥堵现象。
现有历史数据表明,交通流量与时间、地点等因素有关。
请建立一个数学模型,预测未来某一时间段内的交通流量,并针对实际情况提出合理的调控策略。
”二、题目D详细解析1.题目要求题目D主要分为两部分:一是建立数学模型预测交通流量,二是提出合理的调控策略。
这就要求选手具备较强的数据分析能力和数学建模技能。
2.题目特点题目D的特点在于数据的真实性和复杂性。
选手需要处理大量的实时数据,考虑多种因素对交通流量的影響,如时间、地点、天气等。
此外,调控策略的提出需要结合实际交通状况,具有一定的挑战性。
3.解题思路针对题目D,我们可以采取以下步骤:(1)数据收集与处理:收集历史时间段内的交通数据,包括时间、地点、交通流量等信息。
对数据进行清洗、预处理,以便后续分析。
23年华为杯数学建模d题1、Matlab使用三维[R G B]来表示一种颜色,则黑色为()? [单选题] *A、[1 0 1]B、 [1 1 1]C、 [0 0 1]D、 [0 0 0](正确答案)2、下列属于物理模型的是:()? [单选题] *A、水箱中的舰艇(正确答案)B、分子结构图C、火箭模型D、电路图3、Matlab软件中,把二维矩阵按一维方式寻址时的寻址访问是按()?优先的。
[单选题] *A、行B、列(正确答案)C、对角线D、左上角4、下面哪个变量是正无穷大变量?()? [单选题] *A、 Inf(正确答案)B、 NaNC、 realmaxD、 Realmin5、下列不属于最优化理论的三大非经典算法的是:()? [单选题] *A、模拟退火法B、神经网络C、随机算法(正确答案)D、遗传算法6、矩阵(或向量)的范数是用来衡量矩阵(或向量)的()?的一个量。
[单选题] *A、维数大小(正确答案)B、元素的值的绝对值大小C、元素的值的整体差异程度D、所有元素的和7、关于Matlab的矩阵命令与数组命令,下列说法正确的是()? [单选题] *A、矩阵乘A*B是指对应位置元素相乘B、矩阵乘A、*B是指对应位置元素相乘(正确答案)C、数组乘A、*B是指对应位置元素相乘D、数组乘A*B是指对应位置元素相乘8、下列有关变量的命名不正确的是()? [单选题] *A、变量名区分大小写B、变量名必须是不含空格的单个词C、变量名最多不超过19个字符D、变量名必须以数字打头(正确答案)9、计算非齐次线性方程组AX=b的解可转化为计算矩阵X=A-1b,可以用Matlab 的命令()? [单选题] *A、左除命令x=A\b(正确答案)B、左除命令x=A/bC、右除命令x=A\bD、右除命令x=A/b10、Matlab命令a=[65 72 85 93 87 79 62 73 66 75 70];find(a>=70 & a<80)得到的结果为()? [单选题] *A、[72 79 73 75]B、[72 79 73 75 70]C、[2 6 8 10 11](正确答案)D、[0 1 0 0 0 1 0 1 0 1 1]11、生成5行4列,并在区间[1:10]内服从均分布的随机矩阵的命令是()? [单选题] *A、rand(5,4)*10B、rand(5,4,1,10)C、rand(5,D、+10 D、rand(5,4)*9+1(正确答案)12、关于矩阵上下拼接和左右拼接的方式中,下列描述是正确的是()? [单选题] *A、上下拼接的命令为C=[A, B],要求矩阵A, B的列数相同;B、左右拼接的命令为C=[A; B],要求矩阵A, B的行数相同;C、上下拼接的命令为C=[A; B],要求矩阵A, B的行数相同;D、左右拼接的命令为C=[A, B],要求矩阵A, B的行数相同。
2003高教社杯全国大学生数学建模竞赛(大专组)D 题(抢渡长江)参考答案注意:以下答案是命题人给出的,仅供参考。
各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
设竞渡在平面区域进行, 且参赛者可看成质点沿游泳路线 (x (t ), y (t )) 以速度 ()(cos ()sin ())u t u t u t θθ=,前进,其中游速大小u 不变。
要求参赛者在流速 )0,()(v t v =给定的情况下控制 θ (t ) 找到适当的路线以最短的时间 T 从起点 (0,0) 游到终点 (L, H ),如图1。
这是一个最优控制问题: HT y y t u dtdy L T x x v t u dt dx t s T Min =====+=)(,0)0(),(sin )(,0)0(,)(cos ..θθ可以证明,若 θ (t ) 为连续函数, 则 θ (t ) 等于常数时上述问题有最优解。
证明见: George Leitmann, The Calculus of Variations and Optimal Control , Plenum Press, 1981. pp. 130 – 135, p. 263, Exercise 15.13. (注:根据题意,该内容不要求同学知道。
)1. 设游泳者的速度大小和方向均不随时间变化,即令 )sin cos ()(θθu u t u ,=,而流速)0,()(v t v =, 其中 u 和 v 为常数, θ 为游泳者和x 轴正向间的夹角。
于是游泳者的路线 (x (t ), y (t )) 满足 cos ,(0)0,()sin ,(0)0,()dxu v x x T Ldt dy u y y T Hdtθθ⎧=+==⎪⎪⎨⎪===⎪⎩ (1)T 是到达终点的时刻。
令θcos =z ,如果 (1) 有解, 则⎪⎩⎪⎨⎧-=-=+=+=221,1)()(,)()(zTu H t z u t y v uz T L t v uz t x (2) 即游泳者的路径一定是连接起、终点的直线,且 L T uz v===+ (3)若已知L, H, v, T , 由(3)可得 zTvT L u vT L HvTL z -=-+-=,)(22(4)图1由(3)消去 T 得到)(12v uz H z Lu +=- (5) 给定L, H, u , v 的值,z 满足二次方程02)222222222=-+++u L v H uvz H z u L H( (6)(6)的解为12()z z H L u==+, (7)方程有实根的条件为22LH Hvu +≥ (8)为使(3)表示的T 最小,由于当L, u, v 给定时, 0<dzdT , 所以(7) 中z 取较大的根,即取正号。
题目:CUMCM 2023数学建模竞赛题目分析与解答一、引言1.1 竞赛背景我国大学生数学建模竞赛(CUMCM)是由我国工程院大学教育专业委员会主办,旨在提高大学生的数学建模能力,促进大学生综合素质的全面提高。
每年都会发布一系列的数学建模题目供参赛选手进行分析和解答。
1.2 选题目的意义本文旨在分析CUMCM 2023数学建模竞赛题目,探讨其中的数学问题,并给出解答方法,帮助读者更好地理解和应对数学建模竞赛。
二、题目分析2.1 题目一:XXX问题分析与解答这个问题主要涉及XXX,需要分析XXX并提出解决方案。
2.2 题目二:XXX问题分析与解答这个问题主要涉及XXX,需要分析XXX并提出解决方案。
2.3 题目三:XXX问题分析与解答这个问题主要涉及XXX,需要分析XXX并提出解决方案。
三、解答方法3.1 题目一的解答方法针对题目一的XXX问题,我们采用了XXX方法进行分析,得出了XXX结论。
3.2 题目二的解答方法针对题目二的XXX问题,我们采用了XXX方法进行分析,得出了XXX结论。
3.3 题目三的解答方法针对题目三的XXX问题,我们采用了XXX方法进行分析,得出了XXX结论。
四、结论与讨论4.1 题目一的结论与讨论综合所得的XXX结论,我们发现XXX。
4.2 题目二的结论与讨论综合所得的XXX结论,我们发现XXX。
4.3 题目三的结论与讨论综合所得的XXX结论,我们发现XXX。
五、总结本文通过对CUMCM 2023数学建模竞赛题目的深入分析和解答,展现了XXX解答方法的应用,希望能够对读者有所启发,促进数学建模能力的提升,为参赛选手提供一定的参考价值。
六、参考文献[1] 《CUMCM竞赛全球信息湾》,[2] XXX等,《XXXX》,《XXX》,20XX年。
题目一:XXX问题分析与解答题目一要求我们分析XXX并提出解决方案。
在这个问题中,我们需要首先清晰地理解XXX是什么,它的背后有哪些数学模型可以应用。
2003高教社杯全国大学生数学建模竞赛(大专组)D题(抢渡长江)参考答案参考答案2003高教社杯全国大学生数学建模竞赛(大专组)D题(抢渡长江)参考答案本题考查的是大学生数学建模竞赛中的抢渡长江问题。
该问题描述了在抢渡长江时,船只的数量和速度等参数,要求求解最短的渡河时间。
本文将针对该问题进行详细的分析和解答。
问题描述:抢渡长江问题中,有n艘船需要运送k辆汽车和m名乘客,航速分为上行速度和下行速度,求解最短的渡河时间。
解题思路:1. 确定问题的数学模型。
2. 利用已知条件和问题要求,建立数学模型。
3. 分析模型并求解。
数学模型:设n艘船分别为船1、船2、...、船n,上行速度分别为a1、a2、...、an,下行速度分别为b1、b2、...、bn,每艘船的运力分别为ci(载重量或人数)。
k辆汽车的载重量分别为w1、w2、...、wk,m名乘客的人数分别为p1、p2、...、pm。
设渡河的最短时间为T。
建立模型求解:首先,考虑乘客和汽车分开运输的情况。
由于每艘船的运力不同,可以将n艘船进行组合,使每组船的总运力等于或略大于汽车和乘客的总重量。
然后计算每组船来回渡河的总时间,最后选择时间最短的组合作为答案。
具体步骤如下:Step 1:将m名乘客和k辆汽车分别按照降序排列。
Step 2:遍历所有可能的船的组合方式。
每种组合方式都计算来回渡河的总时间。
Step 3:选择时间最短的组合方式作为答案。
实例分析:假设有5艘船,船的速度分别为[15, 20, 22, 25, 30],每艘船的运力分别为[50, 60, 70, 80, 90],有3辆汽车,汽车的载重量依次为[25, 35, 45],有5名乘客,乘客的人数依次为[50, 45, 40, 35, 30]。
Step 1:乘客和汽车按照降序排列得到:[50, 45, 40, 35, 30]和[45, 35, 25]。
Step 2:遍历所有可能的船的组合方式:船1, 船2运送乘客和汽车,船3运送乘客和汽车,船4运送乘客,船5运送乘客和汽车。
2022年数学建模竞赛D题CUMCM-2022-problem-D
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
D题巡检线路的排班
某化工厂有26个点需要进行巡检以保证正常生产,各个点的巡检周期、巡检耗时、两点之间的连通关系及行走所需时间在附件中给出。
每个点每次巡检需要一名工人,巡检工人的巡检起始地点在巡检调度
中心(某J0022),工人可以按固定时间上班,也可以错时上班,在调度
中心得到巡检任务后开始巡检。
现需要建立模型来安排巡检人数和巡检路线,使得所有点都能按要求完成巡检,并且耗费的人力资源尽可能少,同
时还应考虑每名工人在一时间段内(如一周或一月等)的工作量尽量平衡。
问题1.如果采用固定上班时间,不考虑巡检人员的休息时间,采用
每天三班倒,每班工作8小时左右,每班需要多少人,巡检线路如何安排,并给出巡检人员的巡检线路和巡检的时间表。
问题2.如果巡检人员每巡检2小时左右需要休息一次,休息时间大
约是5到10分钟,在中午12时和下午6时左右需要进餐一次,每次进餐
时间为30分钟,仍采用每天三班倒,每班需要多少人,巡检线路如何安排,并给出巡检人员的巡检线路和巡检的时间表。
问题3.如果采用错时上班,重新讨论问题1和问题2,试分析错时上
班是否更节省人力。
2011高教社杯全国大学生数学建模竞赛题目D题天然肠衣搭配问题摘要该题主要研究生产天然肠衣及其搭配问题,并且要求在一定的原料情况下,生产的成品捆数越多越好,该问题属于线性规划并且为取整线性规划来求最优解问题。
根据每种规格的规定,在解题的过程中,我们建立线性方程组作为第一层优化,然后将建立的模型带入到lingo软件中,得到第一层优化最优方案,之后又根据实际进行了第二层优化,得到规格一成品捆数的上限为15捆;规格二成品的捆数的上限为37捆;规格三成品的捆数的上限为137捆;总捆数为188捆。
在一定的误差允许范围内,该方案较符合题目所属要求和实际生产情况。
并且生产后的剩余废弃原料少,做到了在限定原料内创造最大利润的好处。
问题简述:原料按长度分档,通常以0.5米为一档,如:3-3.4米按3米计算,3.5米-3.9米按3.5米计算,其余的依此类推。
成品规格和原料描述如图所示:表1 成品规格表表2 原料描述表本题要求建立数学模型设计一个原料搭配方案,按题中所给规格完成原料搭配方案,并(1) 对于给定的一批原料,装出的成品捆数越多越好;(2) 对于成品捆数相同的方案,最短长度最长的成品越多,方案越好;(3) 为提高原料使用率,总长度允许有± 0.5米的误差,总根数允许比标准少1根;(4) 某种规格对应原料如果出现剩余,可以降级使用。
如长度为14米的原料可以和长度介于7-13.5米的进行捆扎,成品属于7-13.5米的规格;(5) 为了食品保鲜,要求在30分钟内产生方案。
模型的假设:1、肠衣经过清洗整理后被分割成长度不等的小段(原料),原料在组装过程中长度不发生变化;2、原料按长度分档,分档后原料不可再被分割;3、将原料长度视为离散变量;4、为提高原料使用率,每捆总长度允许有±0.5米的误差,每规格的成品总根数允许比标准少一根。
问题分析:天然肠衣由于规定的档次(长度)不同,规格也不一样,所以每个规格的每捆肠衣成品长度不同,考虑到要在相同的成品捆数方案里找出最短长度最长的方案,我们想到了整数规划问题[1]的解决办法。
综合题目参考答案1. 赛程安排(2002年全国大学生数学建模竞赛D 题)(1)用多种方法都能给出一个达到要求的赛程。
(2)用多种方法可以证明支球队“各队每两场比赛最小相隔场次的上界”n r (如=5时上界为1)是,如:n ⎦⎤⎢⎣⎡-23n 设赛程中某场比赛是,两队, 队参加的下一场比赛是,两队(≠i j i i k k ),要使各队每两场比赛最小相隔场次为,则上述两场比赛之间必须有除,j r i ,以外的2支球队参赛,于是,注意到为整数即得。
j k r 32+≥r n r ⎥⎦⎤⎢⎣⎡-≤23n r (3)用构造性的办法可以证明这个上界是可以达到的,即对任意的编排出n 达到该上界的赛程。
如对于=8, =9可以得到:n n 1A 2A 3A 4A 5A 6A 7A 8A 每两场比赛相隔场次数相隔场次总数1A ×159131721253,3,3,3,3,3182A 1×206231126164,4,4,3,2,2193A 520×2410271522,4,4,4,3,2194A 9624×28243192,2,4,4,4,3195A 13231028×41872,2,2,4,4,4186A 171127144×8223,2,2,2,4,4177A 2126153188×124,3,2,2,2,4178A 251621972212×4,4,3,2,2,2171A 2A 3A 4A 5A 6A 7A 8A 9A 每两场比赛相隔场次数相隔场次总数1A ×366311126162114,4,4,4,4,4,4,282A 36×2277221217324,4,4,4,4,4,3273A 62×3515302025103,3,4,4,4,4,4264A 312735×318813234,4,4,4,3,3,3255A 117153×342429193,3,3,3,4,4,4246A 2622301834×49144,4,3,3,3,3237A 1612208244×33283,3,3,3,3,3,4228A 2117251329933×53,3,3,3,3,3,3,219A 13210231914285×3,4,3,4,3,4,324可以看到,=8时每两场比赛相隔场次数只有2,3,4,=9时每两场比n n 赛相隔场次数只有3,4,以上结果可以推广,即为偶数时每两场比赛相隔场n 次数只有,,,为奇数时只有,。
为杯数学建模d 题一、单选题1.已知函数()11f x x x =-,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭B .12 ,1⎛⎫ ⎪⎝⎭C .(1,2)D .(2,3)9.已知集合{}3,1,0,2,3,4A =--,{|0R B x x =≤或3}x >,则A B =( )A.∅B.{}3,1,0,4--C.{}2,3D.{}0,2,32.下列函数中,既是偶函数又在区间(0),-∞上单调递增的是( )A .2(1)f x x =B .()21f x x =+C .()2f x x =D .()2x f x -=3.命题:00x ∃≤,20010x x -->的否定是( ) A .0x ∀>,210x x --≤ B .00x ∃>,20010x x --> C .00x ∃≤,20010x x --≤ D .0x ∀≤,210x x --≤4.要得到函数2sin x y e =的图像,只需将函数cos2x y e =的图像( )A .向右平移4π个单位B .向右平移2π个单位C .向左平移4π个单位D .向左平移2π个单位5.“1<x <2”是“x <2”成立的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.307.设集合{}{}234345M N ==,,,,,, 那么M N ⋃=( )A.{} 2345,,,B.{}234,,C.{}345,,D.{}34,8.已知函数()f x 的定义域为[0,2],则(2)()1f x g x x =-的定义域为( ) A.[)(]0,11,2 B.[)(]0,11,4 C.[0,1) D.(1,4]9.2020年,一场突如其来的“肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[9,11)的学生人数为25,则n 的值为( )A .40B .50C .80D .10010.某学校党支部评选了5份优秀学习报告心得体会(其中教师2份,学生3份),现从中随机抽选2份参展,则参展的优秀学习报告心得体会中,学生、教师各一份的概率是( )A .120B .35C .310D .91011.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .3 D .6二、填空题12.定义在(1,1)-上的函数()f x 满足()()()1f x g x g x =--+,对任意的1212,(1,1),x x x x ∈-≠,恒有()()()12120f x f x x x -->⎡⎤⎣⎦,则关于x 的不等式(21)()2f x f x ++>的解集为( )。
2010高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)D题对学生宿舍设计方案的评价学生宿舍事关学生在校期间的生活品质, 直接或间接地影响到学生的生活、学习和健康成长。
学生宿舍的使用面积、布局和设施配置等的设计既要让学生生活舒适,也要方便管理, 同时要考虑成本和收费的平衡, 这些还与所在城市的地域、区位、文化习俗和经济发展水平有关。
因此,学生宿舍的设计必须考虑经济性、舒适性和安全性等问题。
经济性:建设成本、运行成本和收费标准等。
舒适性:人均面积、使用方便、互不干扰、采光和通风等。
安全性:人员疏散和防盗等。
附件是四种比较典型的学生宿舍的设计方案。
请你们用数学建模的方法就它们的经济性、舒适性和安全性作出综合量化评价和比较。
对学生宿舍设计方案的评价摘要本文主要从经济性、舒适性、安全性三个方面对四种学生宿舍的设计方案做出综合量化和比较。
在评价过程中,主要运用了模糊决策和层次分析法,并利用MATLAB 软件进行求解。
由于本问题的许多条件比较模糊,具有隐藏性,我们先对附件中的数据进行预处理,从中提取与评价相关的因素,然后利用层次分析法确定各准则对目标的权重,从而建立学生宿舍设计方案的评价模型。
具体结果为:(1)经济性方面:得出四种学生宿舍设计方案在此方面的的组合权向量为: )1668.0,2265.0,5627.0,0440.0(,根据指标越小,优先选择程度越大的准则得出:方案1是经济性最优的,其次为方案4、方案3,最后为方案2。
(2)舒适性方面:得到组合权向量为:)1999.0,1576.0,5301.0,1124.0(,根据指标越大,优先选择程度越大的准则得出:方案2是舒适度最高的,其次为方案4、方案3,最后为方案1。
(3)安全性方面:得到组合权向量为:)2223.0,2684.0,4158.0,0935.0(,利用和(2)同样的准则,得出了方案2是安全性最强的,其次为方案3、方案4,最后为方案1。
(4)综合分析方面:得到组合权向量为:)1813.0,2111.0,5398.0,0678.0(,由此得出方案2是综合指标最高的,其次为方案3、方案4、最后为方案1。
最后,对以上建立的模型进行合理化的评价和深入的探讨,分析了模型的优缺点,并提出了进一步的改进方向。
关键词:评价模型 层次分析法 权重 MATLAB1.问题重述现如今的学生宿舍的使用面积、布局和设施配置等的设计既要让学生生活舒适,也要方便管理, 同时要考虑成本和收费的平衡, 这些还与所在城市的地域、区位、文化习俗和经济发展水平有关。
因此,学生宿舍的设计必须考虑经济性、舒适性和安全性等问题。
请用数学建模的方法,从经济性、舒适性、安全性方面对附件中给出的四种学生宿舍的设计方案作出综合量化和比较。
2.问题分析本问题要解决的问题是对四种典型的学生宿舍设计方案进行评价与比较。
题目中的数据比较模糊,具有隐藏性,而且是用图表的方式展示给我们的,因而解决这一问题的关键点有两个:(1)如何把附件中四个平面设计图中所隐藏的数据量化;(2)在建立评价比较模型时如何确定各个因素之间的权重与影响。
因而我们采用模糊决策和层次分析法相结合的方法构架评价模型,来评判各个宿舍设计方案的优劣。
3.模型假设1) 我们以附件中的四个图片作为研究的对象;2) Design1、Design2、Design3和Design4分别对应层次结构中的方案层P;3) 假设收集到的数据与理论根据是准确合理的;4) 不考虑宿舍未住满、设施损毁等情形;5) 单位面积内的建设成本我们假设为定值。
4.符号说明5.模型的建立与求解经济性方面在这个层面上,把经济性设为目标层,把建设成本、运行成本、收费标准设为准则层,四种方案设为决策层,层次结构图如图2所示。
在这里我们的评价准则为:指标越小,优先选择程度越大,也就是说,所需的经费越少。
目标层1A 准则层1B得到其相对应的成对比较矩阵如下面所示: 第二层对第一层的成对比较矩阵为:1B =⎪⎪⎪⎭⎫ ⎝⎛1464/1126/12/11 求得其最大特征根为0092.3max =λ,经一致性检验: =--=1)(n nA CI λ00458.0查找相应的平均随机一致性指标(见上表3)RI ,计算一致性比率为:=CR 1.00079.058.000458.0<==RI CI CR 说明矩阵1B 的不一致程度是可以接受的,矩阵1B 的权向量为:T W )7010.0,1929.0,1061.0(1=第三层对第二层的成对比较矩阵为:1C =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛15/15/15512/1752195/17/19/11 2C =⎪⎪⎪⎪⎪⎭⎫⎝⎛13/15/15313/1753195/17/19/113C =⎪⎪⎪⎪⎪⎭⎫⎝⎛114/15113/1543195/15/19/11 通过MATLAB 编程计算可得两两判断矩阵在单一准则下的权向量1W 、最大特征根λ与一致性指标CR ,具体求解结果见下表4:上述一致性比率CR 均小于,可以判断矩阵具有满意的一致性。
于是得出,单在经济性方面上四种设计方案的组合权向量为:T W )1668.0,2265.0,5627.0,0440.0(1=作出综合评价结论为:方案1在经济性上的权重占,方案2占,方案3占,方案4占。
因而方案1是经济性最优的,其次为方案4、方案3,最后是方案2。
舒适性方面同上面的方法,建立了舒适性方面如图3所示的层次结构图。
在这里我们的评价准则为:指标越大,优先选择程度越大,也就是说,舒适性就越好。
目标层2A 准则层2B 决策层2P 图3从而得到其相对应的成对比较矩阵如下所示: 第二层对第一层的成对比较矩阵为:2B =⎪⎪⎪⎪⎪⎭⎫⎝⎛114/15/1113/13/14312/15321第三层对第二层的成对比较矩阵为:4C =⎪⎪⎪⎪⎪⎭⎫⎝⎛12/53/12/95/214/1534179/25/17/11 5C =⎪⎪⎪⎪⎪⎭⎫⎝⎛124/152/115/1345175/13/17/11 6C =⎪⎪⎪⎪⎪⎭⎫⎝⎛15/13/16/1513/52/135/314/16241 7C =⎪⎪⎪⎪⎪⎭⎫⎝⎛13/17/13/1315/17751937/19/11 通过MATLAB 编程计算可得两两判断矩阵在单一准则下的权向量2W 、最大特征根λ与一致性指标CR ,具体结果见下表:上述一致性比率CR 均小于,可以判断矩阵具有满意的一致性。
于是得出,单在舒适性方面上四种设计方案的组合权向量为:T W )1999.0,1576.0,5301.0,1124.0(2=作出综合评价结论为:方案1在舒适性上的权重占,方案2占,方案3占,方案4占。
因而方案2是舒适度最高的,其次为方案4、方案3,最后是方案1。
安全性方面此方面仅考虑了人员的疏散与防盗,而不考虑其他的特殊情况。
用同中的方法建立了安全性方面的层次结构图,如图4所示。
在这里我们的评价准则为:指标越大,优先选择程度越大,也就是说,安全性就越高。
经过分析我们得到了如下的成对比较矩阵: 第二层对第一层的成对比较矩阵为:3B =⎪⎪⎭⎫ ⎝⎛15/151第三层对第二层的成对比较矩阵为:目标层3A 准则层3B 决策层3P 图48C =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛13/25/432/313/224/52/3143/12/14/119C =⎪⎪⎪⎪⎪⎭⎫⎝⎛16/17/11615/17751917/19/11 通过MATLAB 编程计算可得两两判断矩阵在单一准则下的权向量3W 、最大特征根λ与一致性指标CR ,具体结果见下表6:于是上述一致性比率CR 均小于,可以判断矩阵具有满意的一致性。
最后得出,单在安全性方面上四种设计方案的组合权向量为:T W )2223.0,2684.0,4158.0,0935.0(3=由此可见,作出综合评价结论为:方案1在安全性上的权重占,方案2占,方案3占,方案4占。
因而方案2是安全性最强的,其次为方案3、方案4,最后是方案1。
综合分析综合考虑经济性、舒适性、安全性三个方面之间的权重,层次分析结构图见图1,我们得到了如下的成对比较矩阵为:0A =⎪⎪⎪⎭⎫ ⎝⎛14/15/1413/1531通过MATLAB 计算可得两两判断矩阵在单一准则下的权向量为:T W )0936.0,2797.0,6267.0(0=最大特征根0858.3max =λ与一致性指标CR 1.00739.0<=,则说明矩阵不一致程度是可以接受的。
于是得到最终的组合权向量为:T.0,0678.0(5398W).0,18132111.0,各层的一致性检验及组合一致性检验全部通过;上面的组合权向量可以作为四个学生宿舍设计方案评价的依据。
由此得出最终的综合评价为:方案2是综合指标最高的,其次为方案3、方案4,最后是方案1。
6.模型的分析我们所建立的模型是评价模型,对四种典型宿舍设计方案作出了评价与比较。
近几年,随着我国经济的发展,人民生活水平的不断提高,学生可以根据自己的实际情况选择宿舍类型,对于不同层次的学生人群,可以根据我们的模型进行选择。
比如对于经济性要求比较高的学生来说,可以根据模型分解(经济性方面)进行评价选择;若对舒适性要求比较高的学生来说,可以根据模型分解(舒适性方面)进行择优选择。
综合三个指标,方案二是最优选择,它既在一定程度上满足学生对居住私密性的要求,又能创造一个优美舒适,富有文化气氛的学习、休息和交往的居住环境,并在一定程度上为学生对宿舍的选择提供了依据。
7.模型的评价与推广模型的评价本文主要运用模糊决策和层次分析法,对宿舍的经济性、舒适性、安全性作出科学合理的决策,克服了主观定性分析的弊端。
在建立模型时所考虑的影响因素全面且符合实际,并对各影响因素进行了合理的量化处理。
通过对已知数据的加工整合,巧妙的构建了成对比较矩阵,并用MATLAB软件求出模型的结果。
此外,模型运用大量的图表,使得到的结果非常直观,易于理解,让问题很明了,思路很清晰。
本模型的弊端是针对附件中的四个设计图之间的对比,由于受现有资料的限制,无法代表所有学生宿舍的构建情况,这样大大局限了模型的灵活性。
模型的推广本文构造的模型,能更准确的评价宿舍的优劣,该模型还可以应用到选拨决策中,在日常生活中经常会遇到各式各样的选拨,比如足球员的选拨,三好学生的选拨等等,都可以应用本模型。
在运用此模型时应结合各个有关部门的实际情况,尽量选取科学合理的指标及其权数。
参考文献:[1] 姜启源、谢金星、叶俊,数学建模(第三版),北京:高等教育出版社,2003年8月第3版。
[2] 刘卫国,MATLAB程序设计教程,北京:中国水利水电出版社,2005年。