安徽省阜阳市第三中学2018_2019学年高二数学下学期第二次调研考试试题(竞培中心)文
- 格式:docx
- 大小:499.28 KB
- 文档页数:11
2018〜2019第二学期期末考试高二数学试题(理科)考生注意:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
2.请将各题答案填写在答题卡上。
3.本试卷主要考试内容:高考必考内容。
第I 卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2)(3)1i i i++=+( )A. 5B. 5iC. 6D. 6i【答案】A 【解析】 【分析】由题,先根据复数的四则运算直接求出结果即可 【详解】由题()()()2351 5.11i i i ii+++==++故选A【点睛】本题考查了复数的运算,属于基础题.2.已知集合{}2|45,{2}A x x x B x =-<=,则下列判断正确的是( )A. 1.2A -∈B. BC. B A ⊆D. {|54}A B x x =-<<U【答案】C 【解析】 【分析】先分别求出集合A 与集合B ,再判别集合A 与B 的关系,得出结果. 【详解】{}{}15,04A x x B x x =-<<=≤<Q , .B A ∴⊆【点睛】本题考查了集合之间的关系,属于基础题.3.某校有高一学生n 名,其中男生数与女生数之比为6:5,为了解学生的视力情况,现要求按分层抽样的方法抽取一个样本容量为10n的样本,若样本中男生比女生多12人,则n =( ) A. 990 B. 1320C. 1430D. 1560【答案】B 【解析】 【分析】根据题意得出样本中男生和女生所占的比例分别为611和511,于是得出样本中男生与女生人数之差为65111110n⎛⎫-⨯ ⎪⎝⎭,于此可求出n 的值. 【详解】依题意可得6512111110n⎛⎫-⨯=⎪⎝⎭,解得1320n =,故选:B . 【点睛】本题考考查分层抽样的相关计算,解题时要利用分层抽样的特点列式求解,考查计算能力,属于基础题.4.设向量a v 与向量b v 垂直,且(2,)a k =v,(6,4)b =v,则下列向量与向量a b +v v共线的是( ) A. (1,8) B. (16,2)--C. (1,8)-D. (16,2)-【答案】B 【解析】 【分析】先根据向量a b ⊥r r计算出k 的值,然后写出a b +r r 的坐标表示,最后判断选项中的向量哪一个与其共线.【详解】因为向量a r 与向量b r垂直,所以2640k ⨯+=,解得3k =-,所以()8,1a b +=r r ,则向量()16,2--与向量a b +r r共线, 故选:B.【点睛】本题考查向量的垂直与共线问题,难度较易.当()()1122,,,a x y b x y ==r r ,若a b ⊥r r,则12120x x y y +=,若a b r rP ,则12210x y x y -=.5.某几何体的三视图如图所示,则该几何体的体积为( )A. 3πB. 4πC. 6πD. 8π【答案】A 【解析】 【分析】由三视图得出该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,在利用体积公式求解,即可得到答案.【详解】由三视图可知,该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,故该几何体的体积为12232πππ⨯+⨯⨯=,故选A. 【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.6.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A. ()5,∞-+ B. [)5,∞-+ C. (),5∞-- D. (],5∞-- 【答案】B 【解析】 【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解.【详解】由题()xf x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-.故选B.【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.7.设x,y满足约束条件2020210yxx y+⎧⎪-⎨⎪-+⎩,,,…„…则z x y=+的最大值与最小值的比值为()A. 2- B.32- C.1- D.52-【答案】A【解析】【分析】作出不等式组所表示的可行域,平移直线z x y=+,观察直线在x轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出z最大值和最小值,于此可得出答案.【详解】如图,作出约束条件表示的可行域.由图可知,当直线z x y=+经过点()25A,时.z取得最大值;当直线z x y=+经过点3,22B⎛⎫--⎪⎝⎭时,z取得最小值.故maxmin7272zz==--,故选A.【点睛】本题考查简单的线性规划问题,一般利用平移直线利用直线在坐标轴上的截距得出最优解,考查计算能力,属于中等题.8.已知函数()3cos(2)2f x xπ=+,若对于任意的x∈R,都有12()()()f x f x f x剟成立,则12x x-的最小值为()A. 4B. 1C.12D. 2【答案】D【解析】【分析】由题意得出()f x的一个最大值为()2f x,一个最小值为()1f x,于此得出12x x-的最小值为函数()y f x=的半个周期,于此得出答案.【详解】对任意的x ∈R ,()()()12f x f x f x 剟成立. 所以()()2min 3f x f x ==-,()()2max 3f x f x ==,所以12min22Tx x -==,故选D . 【点睛】本题考查正余弦型函数的周期性,根据题中条件得出函数的最值是解题的关键,另外就是灵活利用正余弦型函数的周期公式,考查分析问题的能力,属于中等题. 9.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A. 10 B. 20 C. 20或-10 D. -20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求.【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B .【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用 10.设01p <<,随机变量X ,Y 的分布列分别为( )当X 的数学期望取得最大值时,Y 的数学期望为( ) A. 2 B.3316C.5527D.6532【答案】D【解析】 【分析】先利用数学期望公式结合二次函数的性质得出EX 的最小值,并求出相应的p ,最后利用数学期望公式得出EY 的值.【详解】∵()()222211721322248EX p p p pp p p ⎛⎫=+-+-=-++=--+ ⎪⎝⎭,∴当14p =时,EX 取得最大值.此时32652232EY p p =-++=,故选D . 【点睛】本题考查数学期望的计算,考查二次函数的最值,解题的关键就是数学期望公式的应用,考查计算能力,属于中等题.11.若实轴长为2的双曲线2222:1(0,0)y x C a b a b-=>>上恰有4个不同的点(1,2,3,4)i P i =满足2i iPB PA =,其中(1,0)A -,(1,0)B ,则双曲线C 的虚轴长的取值范围为( )A. )+∞B. (C. )+∞D. ( 【答案】C 【解析】 【分析】设点(),P x y ,由2PB PA =结合两点间的距离公式得出点P 的轨迹方程,将问题转化为双曲线C 与点P 的轨迹有4个公共点,并将双曲线C 的方程与动点P 的轨迹方程联立,由>0∆得出b 的取值范围,可得出答案.【详解】依题意可得1a =,设(),P x y ,则由2PB PA =,=2251639x y ⎛⎫++=⎪⎝⎭. 由222221516,39x y b x y ⎧-=⎪⎪⎨⎛⎫⎪++= ⎪⎪⎝⎭⎩,得221101203x x b ⎛⎫+++= ⎪⎝⎭, 依题意可知210018109b ⎛⎫∆=-+> ⎪⎝⎭,解得2187b >,则双曲线C 的虚轴长27b >=. 12.已知函数3()2f x x ax a =++.过点(1,0)M -引曲线:()C y f x =的两条切线,这两条切线与y 轴分别交于A ,B 两点,若||||MA MB =,则()f x 的极大值点为( )A. B.C. D.【答案】A 【解析】 【分析】设切点的横坐标为t ,利用切点与点M 连线的斜率等于曲线C 在切点处切线的斜率,利用导数建立有关t 的方程,得出t 的值,再由MA MB =得出两切线的斜率之和为零,于此得出a 的值,再利用导数求出函数()y f x =的极大值点.【详解】设切点坐标()3,2t t at a ++,∵26y x a '=+,∴32261t at at a t +++=+,即32460t t +=,解得0t =或32t =-.∵MA MB =,∴3020x x y y ==-''+=,即232602a ⎛⎫+⨯-= ⎪⎝⎭,则274a =-,()22764f x x -'=.当4x <-或4x >时,()0f x '>;当44x -<<时,()0f x '<.故()f x 的极大值点为4-.【点睛】本题考查导数的几何意义,考查利用导数求函数的极值点,在处理过点作函数的切线时,一般要设切点坐标,利用切线与点连线的斜率等于切线的斜率,考查计算能力,属于中等题.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.71()7x x -的展开式的第3项为______. 【答案】337x【解析】 【分析】利用二项式定理展开式7717rr rC xx -⎛⎫⋅⋅- ⎪⎝⎭,令2r =可得出答案. 【详解】717x x ⎛⎫- ⎪⎝⎭的展开式的第3项为225371377C x x x ⎛⎫-= ⎪⎝⎭,故答案为337x . 【点睛】本题考查二项式指定项,解题时充分利用二项式定理展开式,考查计算能力,属于基础题. 14.已知tan()1αβ+=,tan()5αβ-=,则tan 2β=______. 【答案】23- 【解析】 【分析】利用两角差的正切公式()()tan 2tan βαβαβ=+--⎡⎤⎣⎦展开,代入相应值可计算出tan 2β的值.【详解】()()()()()()tan tan 152tan2tan 1tan tan 1153αβαββαβαβαβαβ+---⎡⎤=+--===-⎣⎦++-+⨯. 【点睛】本题考查两角差的正切公式的应用,解题时,首先应利用已知角去配凑所求角,然后在利用两角差的公式展开进行计算,考查运算求解能力,属于中等题.15.阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的对称轴为坐标轴,焦点在y 轴上,且椭圆C 的离心率为35,面积为20π,则椭圆C 的标准方程为______. 【答案】2212516y x +=【解析】 【分析】设椭圆的方程为22221(0)y x a b a b +=>>,由面积公式以及离心率公式,求出a ,b ,即可得到答案.【详解】设椭圆C 的方程为22221(0)y x a b a b +=>>,椭圆C 的面积为20S ab ππ==,则20ab = ,又35e ==,解得225a =,216b =.则C 的方程为2212516y x +=【点睛】本题考查椭圆及其标准方程,注意运用离心率公式和a ,b ,c 的关系,考查学生基本的运算能力,属于基础题.16.已知高为H 的正三棱锥P ABC -的每个顶点都在半径为R 的球O 的球面上,若二面角P AB C --的正切值为4,则HR=______. 【答案】85【解析】 【分析】取线段AB 的中点D ,点P 在平面ABC 的射影点M ,利用二面角的定义得出PDC ∠为二面角P AB C --的平面角,于此得出4PMDM=,并在Rt OMC ∆中,由勾股定理2OM +22CM OC =,经过计算可得出R 与H 的比值.【详解】取线段AB 的中点D ,设P 在底面ABC 的射影为M ,则H PM =,连接CD ,PD (图略). 设4PM k =,易证PD AB ⊥,CD AB ⊥,则PDC ∠为二面角P AB C --的平面角, 从而4tan 4PM kPDC DM DM∠===,则DM k =,2CM k =. 在Rt OMC ∆中,222OM CM OC +=,即()()22242k R k R -+=,解得52k R =,故85H R =. 故答案为85. 【点睛】本题考查二面角的定义,考查多面体的外接球,在处理多面体的外接球时,要确定球心的位置,同时在求解时可引入一些参数去表示相关边长,可简化计算,考查逻辑推理能力,属于中等题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21n a n =-,且22n n n S T n +=+.(1)求数列11{}n n a a +的前n 项和n R ; (2)求{}n b 的通项公式.【答案】(1)21nn +(2)12,12, 2.n n n b n -=⎧=⎨⎩,…【解析】 【分析】 (1)先将11n n a a +表示为1111122121n n a a n n +⎛⎫=- ⎪-+⎝⎭,然后利用裂项求和法可求出n R ;(2)先求出数列{}n a 的前n 项和2n S n =,于是得出2nn T =,然后利用作差法11,1,2n n n T n b T T n -=⎧=⎨-≥⎩可求出数列{}n b 的通项公式.【详解】(1)因为()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭,所以11111111112335212122121n n R n n n n ⎛⎫⎛⎫=-+-+⋯+-=-= ⎪ ⎪-+++⎝⎭⎝⎭; (2)因为()21212n n n S n +-==,所以222n nn n T n S =+-=.当1n =时.112b T ==;当2n …时,112n n n n b T T --=-=. 故12,12, 2.n n n b n -=⎧=⎨⎩,…【点睛】本题考查裂项法求和以及作差法求数列通项公式,求通项要结合递推式的结构选择合适的方法求数列通项,求和则需考查数列通项的结构合理选择合适的求和方法进行计算,属于常考题.18.2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如下表格:(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立. (i )若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率; (ii )若从全国所有观众中随机选取16名,记评价为五星的人数为X ,求X 的方差.【答案】(1)81100(2)(i )27320 (ii )3 【解析】 【分析】(1)从表格中找出评价为四星和五星的人数之和,再除以总数可得出所求频率;(2)(i )记事件:A 恰有2名评价为五星1名评价为一星,然后利用独立重复试验的概率可求出事件A 的概率;(ii )由题意得出3~16,4X B ⎛⎫⎪⎝⎭,然后利用二项分布的方差公式可得出DX 的值. 【详解】(1)由给出的数据可得,评价为四星的人数为6,评价为五星的人数是75, 故评价在四星以上(包括四星)的人数为67581+=,故可估计观众对《流浪地球》的评价在四星以上(包括四星)的频率为0.81(或81100); (2)(i )记“恰有2名评价为五星1名评价为一星”为事件A ,则()21357527100100320P A C ⎛⎫=⨯⨯= ⎪⎝⎭; (ii )由题可知3~16,4X B ⎛⎫ ⎪⎝⎭,故33161344DX ⎛⎫=⨯⨯-= ⎪⎝⎭. 【点睛】本题第(1)考查频率计算,第(2)文考查独立重复试验的概率以及二项分布方差的计算,解题前要弄清事件的基本类型以及随机变量所服从的分布列类型,再利用相关公式求解,考查计算能力,属于中等题.19.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin cos sin cos cos b A C a C B A += . (1)求tan A 的值;(2)若1b =,2c =,AD BC ⊥,D 为垂足,求AD 的长. 【答案】(1)tan A =2)1AD = 【解析】 【分析】(1)根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(2)先根据余弦定理求a ,再利用三角形面积公式求AD.【详解】(1)因为sin cos sin cos cos b A C a C B A ==, 所以sin sin cos sin sin cos cos B A C A C B A A +=因为sin 0A ≠,所以sin cos sin cos B C C B A +=,即()sin B C A +=.因为A B C π++=,所以()sin sin B C A +=,所以sin A A =.则tan A =(2)因为tan A =sin A =1cos 2A =.在ABC ∆中,由余弦定理可得2222cos a b c bc A =+- ,即a =由11sin 22bc A a AD =⋅,得111222AD ⨯⨯=. 所以1AD =.【点睛】本题考查正弦定理、余弦定理以及三角形面积公式,考查基本分析求解能力,属中档题. 20.已知()1,2B 是抛物线()2:20M y px p =>上一点,F 为M 的焦点.(1)若1,2A a ⎛⎫⎪⎝⎭,5,3C b ⎛⎫⎪⎝⎭是M 上的两点,证明:FA ,FB ,FC 依次成等比数列. (2)若直线()30y kx k =-≠与M 交于()11,P x y ,()22,Q x y 两点,且12124y y y y ++=-,求线段PQ 的垂直平分线在x 轴上的截距. 【答案】(1)见解析;(2)4 【解析】 【分析】(1)由B 在抛物线上,求出抛物线方程;根据抛物线焦半径公式可得FA ,FB ,FC 的长度,从而证得依次成等比数列;(2)将直线代入抛物线方程,消去x ,根据韦达定理求解出k ,从而可得PQ 中点坐标和垂直平分线斜率,从而求得PQ 垂直平分线所在直线方程,代入0y =求得结果. 【详解】(1)()1,2B Q 是抛物线()2:20M y px p =>上一点42p ∴= 2p ⇒=24y x ∴=根据题意可得:13122FA =+=,112FB =+=,58133FC =+= 2382423=⨯=QFA ∴,FB ,FC 依次成等比数列(2)由234y kx y x=-⎧⎨=⎩,消x 可得24120ky y --= 124y y k∴+=,1212y y k =-12124y y y y ++=-Q 4124k k ∴-=- 2k ⇒=设PQ 的中点()00,x y()0121212y y y k ∴=+==,()001322x y =+= ∴线段PQ 的垂直平分线的斜率为12-故其直线方程为()1122y x -=--当0y =时,4x =【点睛】本题考查抛物线的几何性质、直线与抛物线综合问题,关键在于能够通过直线与抛物线方程联立,得到韦达定理的形式,从而准确求解出斜率.21.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,60ABC ∠=︒,PB PC =,E 为线段BC 的中点,F 为线段PA 上的一点.(1)证明:平面PAE ⊥平面BCP . (2)若22PA AB PB ==,二面角A BD F --的余弦值为35,求PD 与平面BDF 所成角的正弦值.【答案】(1)见解析;(2)210【解析】 【分析】(1)由PE BC BC AE ⊥⊥,得BC ⊥平面PAE ,进而可得证;(2)先证得PA ⊥平面ABCD ,设AC BD O ⋂=,以O 为坐标原点,OB uuu v的方向为x 轴正方向,建立空间直角坐标系O xyz -,分别计算平面BDF 的法向量为n v 和PD u u u v,设PD 与平面BDF 所成角为θ,则sin n PDn PDθ⋅=u u uv v u u u v v ,代入计算即可得解.【详解】(1)证明:连接AC ,因为PB PC =,E 为线段BC 的中点, 所以PE BC ⊥.又AB BC =,60ABC ∠=︒,所以ABC ∆为等边三角形,BC AE ⊥. 因为AE PE E ⋂=,所以BC ⊥平面PAE , 又BC ⊂平面BCP ,所以平面PAE ⊥平面BCP . (2)解:设AB PA a ==,则PB PC ==,因为222PA AB PB +=,所以PA AB ⊥,同理可证PA AC ⊥,所以PA ⊥平面ABCD .如图,设AC BD O ⋂=,以O 为坐标原点,OB uuu v的方向为x 轴正方向,建立空间直角坐标系O xyz -. 易知FOA ∠为二面角A BD F --的平面角,所以3cos 5FOA ∠=,从而4tan 3FOA ∠=. 由432AF a =,得23AF a =.又由20,,23a a F ⎛⎫- ⎪⎝⎭,,0,0B ⎫⎪⎪⎝⎭,知2,23a a BF ⎛⎫=- ⎪ ⎪⎝⎭u u u v ,20,,23a a OF ⎛⎫=- ⎪⎝⎭u u u v . 设平面BDF 的法向量为(),,n x y z =v,由n BF ⊥u u u v v ,n OF u u u v v ⊥,得20232023a ax y z a a y z ⎧-+=⎪⎪⎨⎪-+=⎪⎩,不妨设3z =,得()0,4,3n =v .又0,,2a P a ⎛⎫- ⎪⎝⎭,,0,0D ⎛⎫ ⎪ ⎪⎝⎭,所以,2a PD a ⎛⎫=- ⎪ ⎪⎝⎭u u u v . 设PD 与平面BDF 所成角为θ,则sin 10n PDn PDθ⋅===u u uv v u u u v v .所以PD 与平面BDF所成角的正弦值为10.【点睛】用向量法求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.22.已知函数()()()xf x x a e a R =-∈.(1)讨论()f x 的单调性;(2)当2a =时,()()ln F x f x x x =-+,记函数()y F x =在(1,14)上的最大值为m ,证明:43m -<<-. 【答案】(1)单调递减区间为(),1a -∞-,单调递增区间为()1,a -+∞;(2)见解析. 【解析】 【分析】(1)利用导数求函数的单调性即可; (2)对()F x 求导,得()()11xF x x e x ⎛⎫=--⎝'⎪⎭,因为114x <<,所以10x -<,令()1xg x e x=-,求导得()g x 在1,14⎛⎫⎪⎝⎭上单调递增,∃ 01,12x ⎛⎫∈ ⎪⎝⎭,使得()00g x =,进而得()F x 在01,4x ⎛⎫ ⎪⎝⎭上单调递增,在()0,1x 上单调递减;所以()()00max 0212m F x F x x x ===--,令()212G x x x=-- ,求导得()G x 在1,12x ⎛⎫∈ ⎪⎝⎭上单调递增,进而求得m 的范围.【详解】(1)因为()()x f x x a e =-,所以()()1xf x x a e =-+',当(),1x a ∈-∞-时,()0f x '<;当()1,x a ∈-+∞时,()0f x '>,故()f x 的单调递减区间为(),1a -∞-,单调递增区间为()1,a -+∞.(2)当2a =时,()()2ln xF x x e x x =--+,则()()()11111xx F x x e x e x x ⎛⎫=--+=-- ⎝'⎪⎭, 当114x <<时,10x -<,令()1x g x e x=-, 则()210xg x e x =+>',所以()g x 在1,14⎛⎫⎪⎝⎭上单调递增, 因为121202g e ⎛⎫=-< ⎪⎝⎭,()110g e =->,所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00g x =,即001x e x =,即00ln x x =-. 故当01,4x x ⎛⎫∈⎪⎝⎭时,()0g x <,此时()0F x '>; 当()0,1x x ∈时,()0g x >,此时()0F x '<.即()F x 在01,4x ⎛⎫ ⎪⎝⎭上单调递增,在()0,1x 上单调递减.则()()()00000max 2ln xm F x F x x e x x ===--+ ()00000012212x x x x x x =-⨯--=--. 令()212G x x x =--,1,12x ⎛⎫∈ ⎪⎝⎭,则()()22221220x G x x x-=-=>'. 所以()G x 在1,12x ⎛⎫∈⎪⎝⎭上单调递增,所以()142G x G ⎛⎫>=- ⎪⎝⎭,()()13G x G <=-. 故43m -<<-成立.【点睛】本题考查了利用导数求函数的单调性和取值范围,也考查了构造新函数,转化思想,属于中档题.。
2018-2019学年高二下学期期末考试一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合4{|0}2x A x Z x -=∈≥+,1{|24}4x B x =≤≤,则A B I =() A .{|12}x x -≤≤ B .{1,0,1,2}-C .{2,1,0,1,2}--D .{0,1,2}2.已知i 为虚数单位,若复数11tiz i-=+在复平面内对应的点在第四象限,则t 的取值范围为() A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞3.若命题“∃x 0∈R ,使x 20+(a -1)x 0+1<0”是假命题,则实数a 的取值范围为( ) A .1≤a ≤3 B .-1≤a ≤3 C .-3≤a ≤3D .-1≤a ≤14.已知双曲线1C :2212x y -=与双曲线2C :2212x y -=-,给出下列说法,其中错误的是()A.它们的焦距相等B .它们的焦点在同一个圆上C.它们的渐近线方程相同D .它们的离心率相等5.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的() A .充分不必要条件 B .必要不充分条件 C.充要条件D .既不充分也不必要条件6.已知直线l 过点P (1,0,-1),平行于向量a =(2,1,1),平面α过直线l 与点M (1,2,3),则平面α的法向量不可能是( ) A.(1,-4,2)B.⎝⎛⎭⎫14,-1,12 C.⎝⎛⎭⎫-14,1,-12 D.(0,-1,1)7.在极坐标系中,由三条直线θ=0,θ=π3,ρcos θ+ρsin θ=1围成的图形的面积为( )A.14 B.3-34 C.2-34 D.138.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种 9.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 10.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050110由K 2=n ad -bc 2a +bc +d a +c b +d算得,K 2=110×40×30-20×20260×50×60×50≈7.8.附表:P (K 2≥k ) 0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”11.焦点为F 的抛物线C :28y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当||||MA MF 取得最大值时,直线MA 的方程为() A .2y x =+或2y x =-- B .2y x =+ C.22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当[2,4]x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩()1g x ax =+,对1[2,0]x ∀∈-,2[2,1]x ∃∈-,使得21()()g x f x =,则实数a 的取值范围为()A .11(,)[,)88-∞-+∞UB .11[,0)(0,]48-U C.(0,8]D .11(,][,)48-∞-+∞U二、填空题:本大题共4小题,每小题5分.13.已知(1,)a λ=r ,(2,1)b =r,若向量2a b +r r 与(8,6)c =r 共线,则a r 和b r 方向上的投影为.14.将参数方程⎩⎨⎧x =a2⎝⎛⎭⎫t +1t ,y =b 2⎝⎛⎭⎫t -1t (t 为参数)转化成普通方程为________.15.已知随机变量X 服从正态分布N (0,σ2),且P (-2≤X ≤0)=0.4,则P (X >2)=________. 16.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,23AB =,点E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l 的参数方程为24,222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值18.(12分)设函数()1f x x x =+-的最大值为m .(1)求m 的值;(2)若正实数a ,b 满足a b m +=,求2211a b b a +++的最小值.19.(12分)点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心. (1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.20.(12分)2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?21. (12分)已知椭圆x 2b 2+y 2a 2=1 (a >b >0)的离心率为22,且a 2=2b .(1)求椭圆的方程;(2)是否存在实数m ,使直线l :x -y +m =0与椭圆交于A ,B 两点,且线段AB 的中点在圆 x 2+y 2=5上?若存在,求出m 的值;若不存在,请说明理由.22. (12分)已知函数f(x)=ln(1+x)-x+k2x2(k≥0).(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)的单调区间.参考答案一、选择题1-5:BBBDA 6-10:DBDBC 11-12:AD 二、填空题13.35514:x 2a 2-y 2b 2=1 . 15.0.1 16.[2,4]ππ三、解答题17.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得2220t t +=,解得10t =,222t =-.所以直线l 被圆C 截得的弦长为12||22t t -=. (2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数),可设曲线C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l 的距离|22cos 2sin 4|2d θθ+--=|2cos()2|4πθ=+-,当cos()14πθ+=-时,d 取最大值,且d 的最大值为22+. 所以122(22)2222ABP S ∆≤⨯⨯+=+, 即ABP ∆的面积的最大值为22+.18.解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1, x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1.所以m =1.(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1=13(a 2b +1+b 2a +1)[(b +1)+(a +1)] =13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1]≥13(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13.当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为13. 19.解:(1)延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点. 因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥. 因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥. 又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A =I , 所以OM ⊥平面PAC .即OG ⊥平面PAC ,又OG ⊂平面OPG , 所以平面OPG ⊥平面PAC .(2)以点C 为原点,CB u u u r ,CA u u u r ,AP u u u r方向分别为x ,y ,z 轴正方向建立空间直角坐标系C xyz -,则(0,0,0)C ,(0,1,0)A ,(3,0,0)B ,31(,,0)22O ,(0,1,2)P ,1(0,,0)2M ,则3(,0,0)2OM =-u u u u r ,31(,,2)22OP =-u u u r .平面OPG 即为平面OPM ,设平面OPM 的一个法向量为(,,)n x y z =r ,则30,23120,22n OM x n OP x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩r u u u u r r u u u r 令1z =,得(0,4,1)n =-r . 过点C 作CH AB ⊥于点H ,由PA ⊥平面ABC ,易得CH PA ⊥,又PA AB A =I ,所以CH ⊥平面PAB ,即CH u u u r为平面PAO 的一个法向量.在Rt ABC ∆中,由2AB AC =,得30ABC ∠=︒,则60HCB ∠=︒,1322CH CB ==. 所以3cos 4H x CH HCB =∠=,3sin 4H y CH HCB =∠=. 所以33(,,0)44CH =u u u r .设二面角A OP G --的大小为θ,则||cos ||||CH n CH n θ⋅==⋅u u u r r u u ur r 2233|0410|251441739411616⨯-⨯+⨯=+⨯+. 20.解:(1)选择方案一若享受到免单优惠,则需要摸出三个红球,设顾客享受到免单优惠为事件A ,则333101()120C P A C ==,所以两位顾客均享受到免单的概率为1()()14400P P A P A =⋅=.(2)若选择方案一,设付款金额为X 元,则X 可能的取值为0,600,700,1000.333101(0)120C P X C ===,21373107(600)40C C P X C ===, 123731021(700)40C C P X C ===,373107(1000)24C P X C ===, 故X 的分布列为,所以17217()06007001000120404024E X =⨯+⨯+⨯+⨯17646=(元). 若选择方案二,设摸到红球的个数为Y ,付款金额为Z ,则1000200Z Y =-,由已知可得3~(3,)10Y B ,故39()31010E Y =⨯=, 所以()(1000200)E Z E Y =-=1000200()820E Y -=(元).因为()()E X E Z <,所以该顾客选择第一种抽奖方案更合算.21.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,a 2=2b ,b 2=a 2-c 2,解得⎩⎨⎧a =2,c =1,b =1,故椭圆的方程为x 2+y22=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0). 联立直线与椭圆的方程得⎩⎪⎨⎪⎧x 2+y 22=1,x -y +m =0,即3x 2+2mx +m 2-2=0,所以Δ=(2m )2-4×3×(m 2-2)>0,即m 2<3, 且x 0=x 1+x 22=-m 3,y 0=x 0+m =2m3, 即M ⎝ ⎛⎭⎪⎫-m 3,2m 3,又因为M 点在圆x 2+y 2=5上,所以⎝ ⎛⎭⎪⎫-m 32+⎝ ⎛⎭⎪⎫2m 32=5,解得m =±3,与m 2<3矛盾.故实数m 不存在.22. 解: (1)当k =2时,f (x )=ln(1+x )-x +x 2, f ′(x )=11+x-1+2x .由于f (1)=ln 2,f ′(1)=32,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -ln 2=32(x -1),即3x -2y +2ln 2-3=0.(2)f ′(x )=x (kx +k -1)1+x,x ∈(-1,+∞).当k =0时,f ′(x )=-x1+x .所以,在区间(-1,0)上,f ′(x )>0; 在区间(0,+∞)上,f ′(x )<0. 故f (x )的单调递增区间是(-1,0), 单调递减区间是(0,+∞).当0<k <1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=0,x 2=1-kk>0.所以,在区间(-1,0)和(1-kk,+∞)上,f ′(x )>0;在区间(0,1-kk)上,f ′(x )<0.故f (x )的单调递增区间是(-1,0)和(1-kk,+∞),单调递减区间是(0,1-kk ).当k =1时,f ′(x )=x 21+x .故f (x )的单调递增区间是(-1,+∞).当k >1时,由f ′(x )=x (kx +k -1)1+x=0,得x 1=1-kk∈(-1,0),x 2=0.所以,在区间(-1,1-kk)和(0,+∞)上,f ′(x )>0;在区间(1-kk,0)上,f ′(x )<0.故f (x )的单调递增区间是(-1,1-kk)和(0,+∞),单调递减区间是(1-kk ,0).。
阜阳三中2018-2019学年第一学期高二年级第二次调研考试数学(文)试卷命题人:注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填在答题卡上.3.本试卷主要考试内容:人教A 版必修5全册,选修1-1第一章、第二章第一节(到2.1椭圆)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{430}A x x x =-+<, {230}B x x =->,则A B ⋂=( )A.3(3,)2--B. 3(3,)2-C. 3(1,)2 D. 3(,3)22.已知{}n a 为等差数列,且7a -24a =-1, 3a =0, 则公差d =( )A.-2B .-12C .12D .23.设,a b R ∈,则“2()0a b a -<” 是“a b <”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.如果点(,)M x y 在运动过程中,2=,那么点M 的轨迹是( )A .线段B .两条射线C .圆D .椭圆5.设x ,y 满足约束条件3310x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则z x y =+的最大值为( )A .0B .1C .2D .3 6.已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ( ) A .2 B .1 C .21 D .817. 设△ABC 的内角A , B , C 所对的边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定8.已知正实数,m n 满足111m n+=,则m n + 的最小值为 A .4 B. 3 C .2 D. 19.已知数列{}n a 的前n 项和为n S ,对任意的正整数n 满足13n n a S +=,则下列关于数列{}n a 的说法正确的是( )A .一定是等差数列B .一定是等比数列C .可能是等差数列,但不会是等比数列 D.可能是等比数列,但不会是等差数列 10.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于( )A .1)mB .1)mC .1)mD .1)m11.已知函数211()()1x ax f x a R x ++=∈+,若对于任意的x ∈N *,()3f x ≥恒成立,则a 的取值范围是( )A . 8[,)3-+∞B .[3)-+∞C . [3,)-+∞D .7[,)3-+∞ 12.已知函数2017,2019()3(1)2020,20192018x m x f x m x x -⎧≥⎪=⎨+-<⎪⎩,数列{}n a 满足(),n a f n n N =∈*,且数列{}n a 是单调递增数列,则实数m 的取值范围是( )A . (1,2]B .(1,2)C . (2,)+∞D .(1,)+∞第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共计20分.13.设数列{}n a 的前n 项和22020n S n =+,则3a 的值为______.14.不等式122x >-的解集是______. 15.在锐角ABC ∆中,已知内角A 、B 、C 的对边分别为a 、b 、c,且3,a b ==sin A B +=则ABC ∆的面积______.16.已知函数22,0()(1)1,0x x x f x f x x ⎧+≤=⎨-+>⎩,当[0,100]x ∈时,关于x 的方程1()5f x x =-的所有解的和为______.三、解答题:共计70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知等差数列{}n a 的前n 项和为n S ,且满足11a =,981S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求123201811111232018S S S S +++++++L 的值.18.(本题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且4cos().cos c a A B b B-+= (Ⅰ)求cos B 的值;(Ⅱ)若ABC ∆2a c =+,求b 的值.19.(本题满分12分)已知R m ∈,命题p :对[]0,1x ∀∈,不等式2223x m m -≥-恒成立;命题q :[]1,1x ∃∈-,使得m ax ≤成立. (Ⅰ)若p 为真命题,求m 的取值范围;(Ⅱ)当1a =时,若p q ∧假,p q ∨为真,求m 的取值范围.20.(本题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,,F F 设点(0,)B b ,在12BF F ∆中,1223F BF π∠=,周长为4+. (Ⅰ)求12BF F ∆的面积;(Ⅱ)若点12(,0),(,0)A a A a -,且点M 是椭圆上异于12,A A 的任意一点,直线12,MA MA 的斜率12,k k 分别记为,求12k k g 的值.21.(本题满分12分)设矩形()ABCD AB AD >的周长为24,把ABC ∆沿AC 向ADC ∆折叠,AB 折过去后交DC 于点P ,设,AB x =ADP ∆的面积记为()f x (Ⅰ)求()f x 的表达式;(Ⅱ)求()f x 的最大值及相应x 的值.22.(本题满分12分)已知在数列{}n a 中,11a =,1.3nn n a a a +=+ (Ⅰ) 证明:数列11{}2n a +是等比数列; (Ⅱ)设数列{}n b 满足(31)2nn n n nb a =-⨯⨯,其前n 项和为n T ,若不等式1(1)2n n n nT λ--<+对一切n N *∈恒成立,求实数λ的取值范围.数学(文)参考答案一、 选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共计20分.13. 5 14.5{2}2x x <<10000 三、解答题:共计70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(Ⅰ)设等差数列{}n a 的公差为d ,由981S =,得5981a =, 则有59a =,所以51912514a a d --===-,故()12121n a n n =+-=-(*n N ∈). (Ⅱ)由(Ⅰ)知,()213521n S n n =++++-=L ,则()111111n S n n n n n ==-+++所以122018*********S S S ++++++L 11111122320182019⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L 112019=-20182019= 18.19.(1)设22y x =-,则22y x =-在[0,1]上单调递增,∴min 2y =-. ∵对任意1[]0,x ∈,不等式2223x m m ≥--恒成立,∴232m m -≤-, 即2320m m -+≤,解得12m ≤≤.∴m 的取值范围为[]1,2 (2)1a =时,y x =区间[]1,1-上单调递增,∴max 1y =. ∵存在,1[]1x ∈-,使得m x ≤成立,∴1m ≤. ∵p q ∧假,p q ∨为真,∴p 与q 一真一假, ①当p 真q 假时,可得121m m ≤≤>⎧⎨⎩,解得12m <≤; ②当p 假q 真时,可得211m m m <>⎧⎨≤⎩或,解得1m <. 综上可得12m <≤或1m <.∴实数m 的取值范围是(),1,]2(1-∞.20.(1)122,1,BF F a b c S ====(2) 1214k k =- 21.(1)由题意可知,矩形ABCD(AB>AD)的周长为24,AB=x,222,,,,727212(),12,12,1172(12)(12)224321086432()1086(612)ABC AB x PC a DP x a AP a ADP x x a a a x DP x xS AD DP x xxx f x x x x ∆===-=∴-+-=∴=+-=-∴=⨯⨯=⨯-⨯-=--∴=--<<设则而三角形是直角三角形,()432(2).()1086108108432=6=12108f x x x x x AD AB AD xx ABC =--≤-=-=->=∆-当且仅当时,即此时满足即取最大面积 22.解:(Ⅰ)证明:由()1*3nn n a a n N a +=∈+, 得13131n n n n a a a a ++==+,11111322n n a a +⎛⎫∴+=+ ⎪⎝⎭所以数列112n a ⎧⎫+⎨⎬⎩⎭是以3为公比,以111322a ⎛⎫+= ⎪⎝⎭为首项的等比数列,从而1113232231n n n n a a -+=⨯⇒=-; (Ⅱ)12n n nb -=()0122111111123122222n n n T n n --=⨯+⨯+⨯++-⨯+⨯L()121111112122222n n n T n n -=⨯+⨯++-⨯+⨯L , 两式相减得 012111111222222222n n n n T n n -+=++++-⨯=-L 1242n n n T -+∴=- ()12142nn λ-∴-<-若n 为偶数,则124,32n λλ-<-∴<;若n 为奇数, 则124,2,22n λλλ--<-∴-<∴>-23λ∴-<<。
人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
2018—2019学年度阜阳三中第二学期第二次调研考试高二年级文科数学试题考试时间:120分钟 满分:150分第Ⅰ卷(60分)一. 选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合(){}211P x x =-<,{}11Q x x =-<<,则P Q =( )A .()1,2-B .()0,1C .()1,2D .()1,0-2.已知函数⎩⎨⎧>≤-=1,ln 1,1)(x x x e x f x ,那么)(e f 的值是( )A .1B .0C .1-e eD .2 3. 已知 1.2352,log 6,log 10a b c -===,则a ,b ,c 的大小关系是( )A. c b a <<B.c a b <<C. a b c <<D.a c b <<4.设P 为等边ABC ∆所在平面内一点,满足CP CB CA =+,若1AB =,则P A P B ⋅的值为( )12 D. 15.已知函数2()sin()f x x x π=-,则其在区间[,]ππ-上的大致图象是( )A. B. C. D.6.如图,在正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E 为1CC 的中点,那么异面直线OE 与1AD 所成角的余弦值等于( )7. 直线sin 20x y α⋅++=的倾斜角的取值范围是( )A .[)0,π B .30,,44πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ C .0,4π⎡⎤⎢⎥⎣⎦ D .0,,42πππ⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭8.某几何体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积不可能是( )A .πB .4C .6D .29.由12sin(6)6y x π=-的图象向左平移3π个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后, 所得图象对应的函数解析式为( )A .12sin(3)6y x π=-B .12sin(3)6y x π=+C .12sin(3)12y x π=-D .12sin(12)6y x π=- 10.设函数()sin()cos()4f x a x b x παπβ=++++(其中,,,a b αβ为非零实数),若(2001)5f =,则(2020)f 的值是( )A. 5B. 6C. 8D. 311.三棱锥P ﹣ABC 中,PA ,PB ,PC 两两垂直,AB =2,BC AC ,则该三棱锥外接球的表面积为( )A .4πB .8πC .16πD π12.已知圆22:210250M x y x y +--+=,圆22:146540N x y x y +--+=,点P ,Q 分别在圆M 和圆N 上,点S 在x 轴上,则SP SQ +的最小值为( )A .7B .8C .9D .10第II 卷(90分)二.填空题:本大题共4小题.每小题5分,满分20分. 13.函数()3sin 2sin xf x x-=+的值域为___________14.已知函数log (1)2(0a y x a =+->且1)a ≠的图象恒过点P ,则经过点P 且与直线2x +y ﹣1=0垂直的直线方程为 .15. 已知圆22220x y x y a ++-+=截直线20x y ++=所得的弦的长度为4,则实数a 的值是16.对于函数()(),f x g x ,设(){}(){}|0,|0m x f x n x g x ∈=∈=,若存在,m n 使得1m n -≤,则称()f x 与()g x 互为“零点关联函数”,若函数()()12log 1x f x x e -=+-与()23g x x a =-+互为“零点关联函数”,则实数a 的取值范围是三.解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.( 本题满分10分) 求下列各式的值(1)1103437()()826-⨯-+(2)26666(1log 3)log 2log 18log 4-+⋅18.(本题满分12分)已知函数2()2cos1cos sin (01),f x x x x ωωωω=-+<<直线3x π=是()f x 图像的一条对称轴. (1)试求ω的值;(2)已知函数()y g x =的图像是由()y f x =图像上的各个点的横坐标伸长到原来的2倍,然后再向左平移23π个单位长度得到,若6(2),(0,)352g ππαα+=∈,求s i nα的值.19.(本题满分12分)如图,直三棱柱ABC -A 1B 1C 1的所有棱长都是2,D ,E 分别是AC ,CC 1的中点.(1)求证:AE ⊥平面A 1BD ; (2)求三棱锥11B A BD -的体积.20.(本题满分12分)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+ (万元).当年产量不小于80千件时,10000()51 1 450C x x x=+- (万元).每件..商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件..)的函数解析式; (2)年产量为多少千件..时,该厂在这一商品的生产中所获利润最大?(说明:经研究发现函数()0ay x a x=+>在(上单调递减,在)+∞上单调递增)21.(本题满分12分) 已知函数1()()31x f x a a R =-∈+. (1)用定义证明函数()f x 在R 上是增函数;(2)探究是否存在实数a ,使得函数()f x 为奇函数?若存在,求出a 的值;若不存在,请说明理由;(3)在(2)的条件下,解不等式2(1)(24)0f t f t ++-≤.22.在平面直角坐标系xoy 中,点A (0,3),直线:24l y x =-,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使2M A M O =(O 为坐标原点),求圆心C 的横坐标a 的取值范围.2018—2019学年度阜阳三中第二学期第二次调研考试高二年级 文科数学参考答案一、选择题二、填空题 13.14.15. 16.17.(1) 原式=×1+×-=2 ……(5分)(2)原式=()()log64·log66×3=()()log641-2log63+log632+1-log632=()2log6221-log63=log62log66-log63=log62log62=1……(10分)18.19.【答案】证明:(1)∵AB =BC =CA ,D 是AC 的中点,∴BD ⊥AC ,……(2分)∵直三棱柱ABC -A1B 1C 1中AA 1⊥平面ABC , ∴平面AA 1C 1C ⊥平面ABC ,∴BD ⊥平面AA 1C 1C ,∴BD ⊥AE .……(4分)又∵在正方形AA 1C 1C 中,D ,E 分别是AC ,CC 1的中点,易证A 1D ⊥AE .…(6分)又A 1D ∩BD =D ,∴AE ⊥平面A 1BD .……(6分) (2)连结AB 1交A 1B 于O , ∵O 为AB 1的中点,∴点B 1到平面A 1BD 的距离等于点A 到平面A 1BD 的距离.……(8分) ∴三棱锥B 1-A 1BD 的体积:=……(12分)20.【解】(1)因为每件..商品售价为0.05万元,则x 千件..商品销售额为0.05×1 000x 万元, 依题意得:当0<x<80时,L (x )=(0.05×1 000x )-31x 2-10x -250=-31x 2+40x -250; 当x ≥80时,L (x )=(0.05×1 000x )-51x -x 10 000+1 450-250=1 200-x 10 000.所以L (x )=(x ≥80).10 000…………6分 (2)当0<x<80时,L (x )=-31(x -60)2+950.此时,当x =60时,L (x )取得最大值L (60)=950万元. 当x ≥80时,L (x )=1 200-x 10 000在80≤x ≤100时单调递增,在x ≥100时单调增减所以x =100时L (x )取得最大值1 000万元.∵950<1 000,所以当产量为100千件时,该厂在这一商品中所获利润最大,最大利润为1 000万元.…………12分 21.【答案】解:(1)任取x 1,x 2∈R 且x 1<x 2, 则,∵y =3x 在R 上是增函数,且x 1<x 2,,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )在R 上是增函数.(2)是奇函数,则f (-x )=-f(x ), 即,,故a =,∴当a =时,f (x )是奇函数. (3)在(2)的条件下,f (x )是奇函数, 则由f (t 2+1)+f (2t -4)≤0,可得:f (t 2+1)≤-f (2t -4)=f (4-2t ),又f (x )在R 上是增函数,则得t 2+1≤4-2t ,-3≤t ≤1, 故原不等式的解集为:{t |-3≤t ≤1}.22解:(1)因为圆心在直线l :y =2x -4上,也在直线y =x -1上, 所以解方程组y =x -1,y =2x -4,得圆心C (3,2), 又因为圆的半径为1,所以圆的方程为(x -3)2+(y -2)2=1,又因为点A (0,3),显然过点A ,圆C 的切线的斜率存在, 设所求的切线方程为y =kx +3,即kx -y +3=0,所以k2+12|3k -2+3|=1,解得k =0或k =-43, 所以所求切线方程为y =3或y =-43x +3, 即y -3=0或3x +4y -12=0.(2)因为圆C 的圆心在直线l :y =2x -4上, 所以设圆心C 为(a,2a -4), 又因为圆C 的半径为1,则圆C 的方程为(x -a )2+(y -2a +4)2=1. 设M (x ,y ),又因为|MA |=2|MO |,则有 =2,整理得x 2+(y +1)2=4,其表示圆心为(0,-1),半径为2的圆,设为圆D , 所以点M 既在圆C 上,又在圆D 上,即圆C 与圆D 有交点, 所以2-1≤ ≤2+1, 解得0≤a ≤512,所以圆心C 的横坐标a 的取值范围为512.。
安徽省皖东县中联盟2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}2|,{0,1,2}A x ax x B ===,若A B ⊆,则实数a的值为( )A. 1或2B. 0或1C. 0或2D. 0或1或2 【答案】D 【解析】 【分析】就0a =和0a ≠分类讨论即可. 【详解】因为当0a =时,{}2|0{0}A x x===,满足A B ⊆;当0a ≠时,{0,}A a =,若A B ⊆,所以1a =或2.综上,a 的值为0或1或2.故选D.【点睛】本题考查集合的包含关系,属于基础题,解题时注意利用集合中元素的性质(如互异性、确定性、无序性)合理分类讨论.2.已知,a b 均为实数,若111a b i i+=-+(i 为虚数单位),则a b +=( ) A. 0 B. 1C. 2D. -1【答案】C 【解析】 【分析】将已知等式整理为()()2a b a b i ++-=,根据复数相等可求得结果. 【详解】由题意得:()()112i a i b ++-=,即:()()2a b a b i ++-=则:20a b a b +=⎧⎨-=⎩2a b ∴+=本题正确选项:C【点睛】本题考查复数相等的定义,涉及简单的复数运算,属于基础题.3.“3a =,b =22222(0,0)x y a b a b -=->>”的( )A. 充要条件B. 必要不充分条件C. 既不充分也不必要条件D. 充分不必要条件 【答案】D 【解析】 【分析】当3,a b ==,时,我们只能得到a b =,故可得两者之间的条件关系.【详解】当3,a b ==22222x y a b -=-化为标准方程是2212418y x -=,其离心率是2e ==;但当双曲线22222(0,0)x y a b a b -=->>的离心率为2时,即22221(0,0)22y x a b b a -=>>的离心率为22=,得a b =,所以不一定非要3,a b ==故“3,a b ==22222x y a b -=-(0,0)a b >>的离心率为2”的充分不必要条件.故选D.【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.4.某市某校在秋季运动会中,安排了篮球投篮比赛.现有20名同学参加篮球投篮比赛,已知每名同学投进的概率均为0.4,每名同学有2次投篮机会,且各同学投篮之间没有影响.现规定:投进两个得4分,投进一个得2分,一个未进得0分,则其中一名同学得2分的概率为( ) A. 0.5B. 0.48C. 0.4D. 0.32【答案】B 【解析】 【分析】事件“第一次投进球”和“第二次投进球”是相互独立的,利用对立事件和相互独立事件可求“其中一名同学得2分”的概率.【详解】设“第一次投进球”为事件A ,“第二次投进球”为事件B ,则得2分的概率为()()0.4p P AB P AB =+=⨯0.60.60.40.48+⨯=.故选B.【点睛】本题考查对立事件、相互独立事件,注意互斥事件、对立事件和独立事件三者之间的区别,互斥事件指不同时发生的事件,对立事件指不同时发生的事件且必有一个发生的两个事件,而独立事件指一个事件的发生与否与另一个事件没有关系.5.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(176两),问玉、石重各几何?”其意思:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝玉和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的x ,y 分别为( )A. 96,80B. 100,76C. 98,78D. 94,82【答案】C 【解析】 【分析】流程图的作用是求出112776x y +=的一个解,其中90,86x y ≥≤且x 为偶数,逐个计算可得输出值. 【详解】执行程序:90,86,27;92,84,27;94,82,27;96x y s x y s x y s x ==≠==≠==≠=,80,27;98y s x =≠=,78,27y s ==,故输出的,x y 分别为98,78.故选C.【点睛】本题考查算法中的循环结构、选择结构,读懂流程图的作用是关键,此类题是基础题.6.在26(1)(2)x x --的展开式中,含3x 的项的系数是( ) A. -832 B. -672 C. -512 D. -192【答案】A 【解析】 【分析】求出6(2)x -展开式中3x 的系数减2倍2x 的系数加x 的系数即可.【详解】含3x 的项的系数即求6(2)x -展开式中3x 的系数减2倍2x 的系数加x 的系数即含3x 的项的系数是5544336662222832C C C --⨯-=-.故选A.【点睛】本题考查二项式定理,属于中档题。
人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。
安徽阜阳市第三中学2018-2019学年高二下学期第二次调研考试(文)一、单选题 1.已知,,则的元素个数为( )A .1B .2C .3D .42.若幂函数的图象过点,则函数的最大值为( )A .1B .C .2D .3.已知实数、满足约束条件,则目标函数的最小值为( ) A .B .C .D .4.在正方体中,E 、F 分别是AB 、的中点,则异面直线、FC 所成角的余弦值为( )A .B .C .D .5.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且BP =2PA ,则( )A .B .C .D .16.已知等差数列,,前项和为,,则( )A .0B .1C .2018D .20197.若)0,2(,41)sin(παπα-∈=+,则=-ααtan 12cos ( ) A .B .C .D .8.已知函数,若对任意的正数,满足,则的最小值为( )A .6B .8C .12D .249.函数f(X)=xxcos 2sin +的图像大致为( )A .B .C .D .10.如果满足,AB=8,AC=k 的三角形ABC 有两个,那么实数k 的取值范围是( ) A .B .C .D .11.如图F 1.F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1与C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A . 2B . 3C .32D . 6212.定义在上的函数满足,对任意,都有,非零实数,满足,则下列关系式中正确的是( )A .B .C .D .二、填空题 13.设向量,向量与向量方向相反,且,则向量的坐标为__________.14.定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________. 15.若圆上有且仅有三个点到直线的距离等于1,则半径的值为______. 16.已知正三棱锥的底面边长为3,外接球的表面积为,则正三棱锥的体积为________.三、解答题(第11题图)17.(本题10分)已知数列中,且(11++-n a n ).(Ⅰ)求,;并证明是等比数列; (Ⅱ)设n nn a b 2=,求数列的前项和.18.(本题12分)在中,角、、的对边分别为,,,,(1)若,求的值;(2)求的取值范围.19.(本题12分)已知四棱锥中,底面,,,,.(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;(2)若,求直线与平面所成角的正弦值.20.(本题12分)国家质量监督检验检疫局于2004年5月31日发布了新的车辆驾驶人员血液、呼气酒精含量阀值与检验国家标准新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克百毫升,小于80毫克百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克百毫升为醉酒驾车某高中研究性小组经过反复试验获得,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图:该函数近似模型如下:,又已知刚好过1小时时测得酒精含量值为毫克百毫升根据上述条件,回答以下问题:试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?试计算喝一瓶啤酒后多少小时后才可以驾车?时间以整小时计算参考数据:,,,21.(本题12分)已知动圆P恒过定点,且与直线相切.(Ⅰ)求动圆P圆心的轨迹M的方程;(Ⅱ)正方形ABCD中,一条边AB在直线y=x+4上,另外两点C、D在轨迹M上,求正方形的面积.22.已知函数.(1)若,求的单调区间;(2)证明:.参考答案一、单选题1-12、CBDDC ABCAB DD 二、填空题 13. 14(1)()2x x f x +=-15. 3 16.或三、解答题17.(本题10分)已知数列中,且(11++-na n).(Ⅰ)求,;并证明是等比数列; (Ⅱ)设,求数列的前项和.【答案】(Ⅰ),证明见解析;(Ⅱ).(Ⅰ)由题意,可知:,.①当时,,②当时,.数列是以为首项,为公比的等比数列.(如果没有求首相,就该说明不为零)(Ⅱ)由(Ⅰ),可知:,..., ③④③-④,可得:,分项求和也可以 18.(本题12分)在中,角、、的对边分别为,,,,(1)若,求的值;(2)求的取值范围.【答案】(1) (2)【详解】 (1)由则,,所以,则由且所以,则(2)由所以,故令,则,所以故而,,当时, 有最大值且所以的取值范围是19.(本题12分)已知四棱锥中,底面,,,,.(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由; (2)若,求直线与平面所成角的正弦值.【答案】(1)见解析;(2)【详解】 (1)由,,知,则,由面,面得,由,,面,则面,则点到平面的距离为一个定值,.(2)设直线与平面所成的角为,由,可知, 又面,面,故,,则面,则点到平面的距离为,由知点与点到平面的距离相等,则点到平面的距离为,由知,故.20.(本题12分)国家质量监督检验检疫局于2004年5月31日发布了新的车辆驾驶人员血液、呼气酒精含量阀值与检验国家标准新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克百毫升,小于80毫克百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克百毫升为醉酒驾车某高中研究性小组经过反复试验获得,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图:该函数近似模型如下:,又已知刚好过1小时时测得酒精含量值为毫克百毫升根据上述条件,回答以下问题:试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?试计算喝一瓶啤酒后多少小时后才可以驾车?时间以整小时计算参考数据:,,,【答案】(1)喝一瓶啤酒小时血液中的酒精含量达到最大值毫克百毫升;(2)需6个小时后才可以合法驾车。
阜阳三中2018-2019 学年第一学期高一年级第二次调研考试地理试卷(试卷总分100 分,考试时间90 分钟)一、选择题(单项选择25 个,共50 分)新华社北京 2016 年 4 月 22 日电:我国将于 2020 年前后发射火星探测器,计划一步实现环绕火星的探测和着陆巡视。
读图表 1,回答下面小题.图11.图 1 中表示火星的序号是A.①B.②C.③D.④2.科学家认为火星是除地球外最有可能存在生命的天体之一。
原因是火星与地球相比A.有相近的距日距离和自转周期B.有相近的大气成份和卫星数C.有相近的体积和质量D.有岩石、土壤和大量液态水3.下列四幅表示地球绕日公转的示意图,正确的是()A.①②B.②③C.①④D.②④4.在图 2 中 A、B、C、D、E、F 各点中,与 B 点自转线速度和角速度都相同的有几个( )A. 4 个B.3 个C.2 个 D.1 个图2读地球自转线速度随纬度变化图3(甲)和地球公转线速度变化图3(乙),回答下面小题。
图35.甲图M 点的纬度和乙图N点的月份分别是( )A.30°、1 月份B.60°、7 月份C.60°、1 月份D.30°、7 月份6.当公转线速度为N 时( )A.自转线速度变快B.自转线速度变慢 C.公转角速度较快 D.公转角速度较慢图4 是两幅大河河口示意图,读图回答问题。
图47.判断左图中河流的横截面剖面图为(下图中阴影部分为河流沉积物)A.B.C.D.8.若图中小岛因泥沙不断淤积而扩展,按一般规律,最终将分别与河流的哪一岸相连A.甲岸、丙岸B.乙岸、丙岸C.甲岸、丁岸D.乙岸、丁岸读图5“某同学演示地球公转的示意图(十字架代表太阳光线)”。
完成下列各题。
试卷第2页,总9页图59.该同学在进行地球公转演示的过程中,需要做到①使“太阳光线”对准地球仪的球心②保持地轴的空间指向不变③使地球仪按照顺时针方向移动④使“地球”公转的同时还在自转A.①②③B.①②④ C.①③④D.②③④10.该同学将地球仪沿图示轨道移动一周,可以观察到“太阳"直射点的移动范围是A.23°26′S〜23°26′NB.90°S〜90°NC.66°34′S〜66°34′N D.始终直射赤道11.图中地球所在位置的日期是A. 6 月22 日前后B.12 月22 日前后C.3 月21 日前后D.9 月23 日前后北京时间 2016 年 10 月 17 日 7 时 30 分,我国的“神州十一号”载人飞船成功发射,并与天宫二号自动交会对接成功,开始开展地球观测和空间地球系统科学、空间技术和航天医学等领域的应用和试验。
安徽省阜阳市第三中学2018-2019学年高二数学下学期第二次调研考
试试题(竞培中心)文
考试时间:120分钟 满分:150分
一、单选题 1.已知
,
,则
的元素个数为( )
A .1
B .2
C .3
D .4
2.若幂函数
的图象过点
,则函数
的最大值为( )
A .1
B .
C .2
D .
3.已知实数、满足约束条件,则目标函数的最小值为( )
A .
B .
C .
D .
4.在正方体
中,E 、F 分别是AB 、的中点,则异面直线
、FC 所成角
的余弦值为( )
A .
B .
C .
D .
5.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且BP =2PA ,则
( )
A .
B .
C .
D .1
6.已知等差数列
,
,前项和为,
,则( )
A .0
B .1
C .2018
D .2019
7.若)0,2(,41)sin(παπα-∈=
+,则=-α
αtan 1
2cos ( ) A .
B .
C .
D .
8.已知函数,若对任意的正数,满足,则
的最小值为( )
A .6
B .8
C .12
D .24
9.函数f(X)=
x
x
cos 2sin +的图像大致为( )
A .
B .
C .
D .
10.如果满足
,AB=8,AC=k 的三角形ABC 有两个,那么实数k 的取值范围是( ) A .
B .
C .
D .
11.如图F 1.F 2是椭圆C 1:x 2
4+y 2
=1与双曲线C 2的公共焦点,A 、B 分别是C 1与C 2在第二、四象限
的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )
A . 2
B . 3
C .32
D . 62
12.定义在上的函数满足,对任意
,都有
,非零实数,满
足
,则下列关系式中正确的是( ) A .
B .
C .
D .
二、填空题 13.设向量
,向量与向量方向相反,且,则向量的坐标为__________.
14.定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,
则当10x -≤≤时,()f x =________________. 15.若圆
上有且仅有三个点到直线
的距离等于1,则半径
(第11题图)
的值为______. 16.已知正三棱锥的底面边长为3,外接球的表面积为,则正三棱锥的体
积为________.
三、解答题
17.(本题10分)已知数列中,且
(11++-n a n )
.
(Ⅰ)求,;并证明
是等比数列; (Ⅱ)设n n
n a b 2=,求数列
的前项和.
18.(本题12分)在
中,角、、的对边分别为,,,
,
(1)若,求
的值;
(2)求的取值范围.
19.(本题12分)已知四棱锥
中,
底面
,
,
,
,
.
(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;
(2)若,求直线与平面所成角的正弦值.
20.(本题12分)国家质量监督检验检疫局于2004年5月31日发布了新的车辆驾驶人员血液、呼气酒精含量阀值与检验国家标准新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克百毫升,小于80毫克百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克百毫升为醉酒驾车某高中研究性小组经过反复试验获得,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图:
该函数近似模型如下:,又已知刚好过1小
时时测得酒精含量值为毫克百毫升根据上述条件,回答以下问题:
试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?
试计算喝一瓶啤酒后多少小时后才可以驾车?时间以整小时计算
参考数据:,,,
21.(本题12分)已知动圆P恒过定点,且与直线相切.
(Ⅰ)求动圆P圆心的轨迹M的方程;
(Ⅱ)正方形ABCD中,一条边AB在直线y=x+4上,另外两点C、D在轨迹M上,求正方形的面积.
22.已知函数.
(1)若,求的单调区间;
(2)证明:.
阜阳三中2018—2019学年第二学期竞培中心二调考试
数 学 试 卷
一、单选题 CBDDC ABCAB DD 二、填空题 13. 14(1)
()2
x x f x +=-
15.3 16.或
三、解答题
17.(本题10分)已知数列中,
且
(11++-n a n )
.
(Ⅰ)求,;并证明是等比数列; (Ⅱ)设,求数列
的前项和.
【答案】(Ⅰ)
,证明见解析;(Ⅱ)
.
(Ⅰ)由题意,可知:
,
.
①当时,,
②当
时,
.
数列
是以为首项,为公比的等比数列.(如果没有求首相,就该说明不为零)
(Ⅱ)由(Ⅰ),可知:
,
.
.
.
,③
④
③-④,可得:
,
分项求和也可以
18.(本题12分)在中,角、、的对边分别为,,,,
(1)若,求的值;
(2)求的取值范围.
【答案】(1) (2)
【详解】
(1)由
则
,,所以,则
由且
所以,
则
(2)由
所以,
故
令,则,所以
故而,,
当时,有最大值
且
所以的取值范围是
19.(本题12分)已知四棱锥中,底面,,,,.
(1)当变化时,点到平面的距离是否为定值?若是,请求出该定值;若不是,请说明理由;
(2)若,求直线与平面所成角的正弦值.
【答案】(1)见解析;(2)
【详解】
(1)由,,知,则,
由面,面得,
由,,面,
则面,则点到平面的距离为一个定值,.
(2)设直线与平面所成的角为,
由,可知,
又面,面,故,,
则面,
则点到平面的距离为,
由知点与点到平面的距离相等,
则点到平面的距离为,
由知,
故.
20.(本题12分)国家质量监督检验检疫局于2004年5月31日发布了新的车辆驾驶人员血液、呼气酒精含量阀值与检验国家标准新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克百毫升,小于80毫克百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克百毫升为醉酒驾车某高中研究性小组经过反复试验获得,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图:
该函数近似模型如下:,又已知刚好过1小时时测得酒精含量值为毫克百毫升根据上述条件,回答以下问题:
试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?
试计算喝一瓶啤酒后多少小时后才可以驾车?时间以整小时计算
参考数据:,,,
【答案】(1)喝一瓶啤酒小时血液中的酒精含量达到最大值毫克百毫升;(2)需6个小时后才可以合法驾车。
【详解】
解:由图可知,当函数取得最大值时,;
此时,
又,
所以,解得;
所以,由二次函数的性质可知,
当时,函数取得最大值为,
故喝一瓶啤酒小时血液中的酒精含量达到最大值毫克百毫升;
由题意知,当车辆驾驶人员血液中的酒精小于20毫克百毫升时可以驾车,此时;此处也可以求出函数在(0,2)上的值域再说明更好。
由,得,
两边取自然对数,得,
即,
所以;
故喝啤酒后需6个小时后才可以合法驾车
21.(本题12分)已知动圆P恒过定点,且与直线相切.
(Ⅰ)求动圆P圆心的轨迹M的方程;
(Ⅱ)正方形ABCD中,一条边AB在直线y=x+4上,另外两点C、D在轨迹M上,求正方形的面积.
【答案】(1);(2)或
【详解】
(1)由题意得动圆的圆心到点的距离与它到直线的距离相等,
所以圆心的轨迹是以为焦点,以为准线的抛物线,且,
所以圆心的轨迹方程为.
(2)由题意设边所在直线方程为,
由消去整理得,
∵直线和抛物线交于两点,
∴,解得.
设,,
则.
∴.
又直线与直线间的距离为,
∵,
∴,解得或,
经检验和都满足.
∴正方形边长或,
∴正方形的面积或.
22.已知函数.
(1)若,求的单调区间;
(2)证明:.
【答案】(1)增区间,减区间;(2)见解析
【详解】
(1)的定义域为,
若,则,,
令,则在上恒成立,
故在上单调递增,
又,
故当时,;当时,
即的增区间为,减区间为。
(2),
由(1)可知在上必有唯一零点,设为,则,
当时,,单调递减,
当时,,单调递增,
∴,
又∵,∴,另外,∴,
∴,得证.。