2019年高考理科数学二轮专题复习讲义:专题一+第二讲 函数的图象与性质+Word版含答案
- 格式:docx
- 大小:426.45 KB
- 文档页数:14
专题一 ⎪⎪⎪函数的图象与性质[题组全练]1.(2018·长春质检)函数y =ln (1-x )x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)解析:选D由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1). 2.已知函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,则f (-2 018)=( )A .1B .e C.1eD .e 2解析:选D 由已知可得,当x >2时,f (x )=f (x -4),故f (x )在x >-2时的周期为4,则f (-2 018)=f (2 018)=f (2 016+2)=f (2)=e 2.3.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a ,∵f (a )=f (a +1),∴a =2a ,解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,∴f (a )=2(a -1),f (a +1)=2(a +1-1)=2a ,∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.4.已知函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <1,x 3+x ,x ≥1,则f (f (x ))<2的解集为________.解析:因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2).答案:(-∞,1-ln 2)5.(2018·成都模拟)设函数f :R→R满足f (0)=1,且对任意x,y∈R都有f (xy+1)=f (x)f (y)-f (y)-x+2,则f (2 018)=________.解析:令x=y=0,则f (1)=f (0)f (0)-f (0)-0+2=1×1-1-0+2=2.令y=0,则f (1)=f (x)f (0)-f (0)-x+2.将f (0)=1,f (1)=2代入,得f (x)=1+x,所以f (2 018)=2 019.答案:2 019[系统方法]1.函数定义域的求法求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的4种常见类型及解题策略[由题知法][典例](1)(2018·全国卷Ⅱ)函数f (x)=e x-e-xx2的图象大致为()(2)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 在t =0时与l 2相切于点A ,圆O 沿l 1以1 m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )(3)已知函数f (x )=⎩⎨⎧x +12,x ∈⎣⎡⎭⎫0,12,2x -1,x ∈⎣⎡⎭⎫12,2,若存在x 1,x 2,当0≤x 1<x 2<2时,f (x 1)=f(x 2),则x 1f (x 2)的取值范围是________.[解析] (1)∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e>1,排除C 选项.故选B.(2)如图,设∠MON =α,由弧长公式知x =α. 在Rt △AOM 中,|AO |=1-t , cos x 2=|OA ||OM |=1-t , ∴y =cos x =2cos 2x2-1=2(1-t )2-1.又0≤t ≤1,故选 B.(3)画出函数大致图象如图所示.由图象知,22-12≤x 1<12,12≤x 2<1,x 1+12=2x 2-1,于是x 1f (x 2)=x 12x 2-1=x 1⎝⎛⎭⎫x 1+12,22-12≤x 1<12,转化为关于x 1的二次函数在给定区间上的值域问题,易得x 1f (x 2)的取值范围是⎣⎢⎡⎭⎪⎫2-24,12.[答案] (1)B (2)B (3)⎣⎢⎡⎭⎪⎫2-24,12[类题通法]1.由函数解析式识别函数图象的策略2.根据动点变化过程确定其函数图象的策略(1)先根据已知条件求出函数解析式后再判断其对应的函数的图象.(2)采用“以静观动”,即将动点处于某些特殊的位置处考查图象的变化特征,从而作出选择.(3)根据动点中变量变化时,对因变量变化的影响,结合选项中图象的变化趋势作出判断.[应用通关]1.(2018·全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:选D 法一:令f (x )=-x 4+x 2+2, 则f ′(x )=-4x 3+2x ,令f ′(x )=0,得x =0或x =±22,则f ′(x )>0的解集为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫0,22,。
第二讲 小题考法——三角函数的图象与性质[典例] (1)(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2)(2019届高三·广西南宁模拟)如图,函数f (x )=A sin(2x +φ)⎝⎛⎭⎫A >0,|φ|<π2的图象过点(0,3),则f (x )的函数解析式为( )A .f (x )=2sin ⎝⎛⎭⎫2x -π3 B .f (x )=2sin ⎝⎛⎭⎫2x +π3 C .f (x )=2sin ⎝⎛⎭⎫2x +π6 D .f (x )=2sin ⎝⎛⎭⎫2x -π6 (3)(2018·石家庄模拟)若ω>0,函数y =cos ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx 的图象重合,则ω的最小值为( )A.112 B.52 C.12D.32[解析] (1)易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2. (2)由函数图象可知,A =2,又函数f (x )的图象过点(0,3),所以2sin φ=3,即sin φ=32,由于|φ|<π2,所以φ=π3,于是f (x )=2sin ⎝⎛⎭⎫2x +π3,故选B. (3)将函数y =cos ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度,得y =cos ⎝⎛⎭⎫ωx -ωπ3+π3的图象. 因为所得函数图象与y =sin ωx ,即y =cos ⎝⎛⎭⎫ωx +3π2的图象重合, 所以-ωπ3+π3=3π2+2k π(k ∈Z ),解得ω=-72-6k (k ∈Z ),因为ω>0,所以当k =-1时,ω取得最小值52,故选B.[答案] (1)D (2)B (3)B[方法技巧]1.函数表达式y =A sin(ωx +φ)+B 的确定方法2.三角函数图象平移问题处理的“三看”策略[演练冲关]1.(2018·陕西模拟)为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =sin 2x 的图象( )A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度解析:选D 函数y =sin 2x 的图象向右平移π6个单位长度,可得到函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π3的图象.故选D. 2.(2018·广州模拟)将函数y =2sin ⎝⎛⎭⎫x +π3sin ⎝⎛⎭⎫π6-x 的图象向左平移φ(φ>0)个单位长度,所得图象对应的函数恰为奇函数,则φ的最小值为( )A.π6 B.π12 C.π4D.π3解析:选A 由y =2sin ⎝⎛⎭⎫x +π3sin ⎝⎛⎭⎫π6-x 可得y =2sin ⎝⎛⎭⎫x +π3cos ⎝⎛⎭⎫x +π3=sin ⎝⎛⎭⎫2x +2π3,该函数的图象向左平移φ个单位长度后,所得图象对应的函数解析式为g (x )=sin ⎣⎡⎦⎤2(x +φ)+2π3=sin ⎝⎛⎭⎫2x +2φ+2π3,因为g (x )=sin ⎝⎛⎭⎫2x +2φ+2π3为奇函数,所以2φ+2π3=k π(k ∈Z ),φ=k π2-π3(k ∈Z ),又φ>0,故φ的最小值为π6,故选A.3.函数f (x )=-4sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,x ∈R 的部分图象如图所示,则f (16)的值为( )A .- 2 B. 2 C .-2 2D .2 2解析:选C 由图象得T 2=8,所以T =16,因为ω>0,所以ω=2πT =π8,当x =-2时,f (x )=0,则π8×(-2)+φ=k π,k ∈Z ,所以φ=k π+π4,k ∈Z .又|φ|<π2,所以φ=π4.所以函数f (x )的解析式为f (x )=-4sin ⎝⎛⎭⎫π8x +π4.所以f (16)=-4sin ⎝⎛⎭⎫π8×16+π4=-4sin π4=-2 2.故选C.4.(2018·山东日照一模)函数f (x )=A cos(ωx +φ)(A >0,ω>0,-π<φ<0)的部分图象如图所示,为了得到函数g (x )=A sin ωx 的图象,只需将函数y =f (x )的图象( )A .向左平移π6个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向右平移π12个单位长度解析:选B 由图可得函数的最大值为2,即A =2.函数的周期T =2⎣⎡⎦⎤π3-⎝⎛⎭⎫-π6=π,所以2πω=π,解得ω=2,所以f (x )=2cos(2x +φ).又f ⎝⎛⎭⎫π3=2cos ⎝⎛⎭⎫2×π3+φ=2,即cos ⎝⎛⎭⎫2π3+φ=1,所以2π3+φ=2k π(k ∈Z ),解得φ=2k π-2π3(k ∈Z ).又-π<φ<0,故k =0,φ=-2π3.所以f (x )=2cos ⎝⎛⎭⎫2x -2π3=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3,而g (x )=2sin 2x =2cos ⎝⎛⎭⎫2x -π2=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4=2cos 2⎣⎡⎦⎤⎝⎛⎫x +π12-π3,所以g (x )=f ⎝⎛⎭⎫x +π12.因此把函数y =f (x )的图象向左平移π12个单位长度才能得到函数y =g (x )的图象.[典例感悟][典例] (1)(2017·全国卷Ⅲ)设函数f (x )=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝⎛⎭⎫π2,π单调递减(2)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4 B.π2 C.3π4D .π(3)(2018·惠州模拟)函数f (x )=A sin(2x +θ)⎝⎛⎭⎫|θ|≤π2,A >0的部分图象如图所示,且f (a )=f (b )=0,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝⎛⎭⎫-5π12,π12上是减函数 B .f (x )在⎝⎛⎭⎫-5π12,π12上是增函数 C .f (x )在⎝⎛⎭⎫π3,5π6上是减函数 D .f (x )在⎝⎛⎭⎫π3,5π6上是增函数[解析] (1)根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;当x =8π3时,x +π3=3π,所以cos ⎝⎛⎭⎫x +π3=-1,所以B 正确; f (x +π)=cos ⎝⎛⎭⎫x +π+π3=cos ⎝⎛⎭⎫x +4π3, 当x =π6时,x +4π3=3π2,所以f (x +π)=0,所以C 正确;函数f (x )=cos ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫π2,2π3上单调递减,在⎝⎛⎭⎫2π3,π上单调递增,故D 不正确. (2)法一:f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4,当x ∈⎣⎡⎦⎤-π4,3π4,即x -π4∈⎣⎡⎦⎤-π2,π2时,y =sin ⎝⎛⎭⎫x -π4单调递增,则f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减. ∵函数f (x )在[-a ,a ]是减函数, ∴[-a ,a ]⊆⎣⎡⎦⎤-π4,3π4,∴0<a ≤π4, ∴a 的最大值为π4.法二:因为f (x )=cos x -sin x , 所以f ′(x )=-sin x -cos x ,则由题意,知f ′(x )=-sin x -cos x ≤0在[-a ,a ]上恒成立, 即sin x +cos x =2sin ⎝⎛⎭⎫x +π4≥0在[-a ,a ]上恒成立, 结合函数y =2sin ⎝⎛⎭⎫x +π4的图象可知有⎩⎨⎧-a +π4≥0,a +π4≤π,解得a ≤π4,所以0<a ≤π4,所以a 的最大值为π4.(3)由题图知A =2,设m ∈[a ,b ],且f (0)=f (m ),则f (0+m )=f (m )=f (0)=3,∴2sin θ=3,sin θ=32, 又|θ|≤π2,∴θ=π3,∴f (x )=2sin ⎝⎛⎭⎫2x +π3. 令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,此时f (x )单调递增;令π2+2k π≤2x +π3≤3π2+2k π,k ∈Z , 解得π12+k π≤x ≤7π12+k π,k ∈Z ,此时f (x )单调递减.所以选项B 正确.[答案] (1)D (2)A (3)B[方法技巧]1.求函数单调区间的2种方法(1)代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,得y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)图象法:画出三角函数的图象,结合图象求其单调区间. 2.判断对称中心与对称轴的方法利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.3.求三角函数周期的常用结论(1)y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan ()ωx +φ的最小正周期为π|ω|. (2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期;正切曲线相邻两对称中心之间的距离是12个周期.[演练冲关]1.(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4解析:选B ∵f (x )=2cos 2x -sin 2x +2=1+cos 2x -1-cos 2x 2+2=32cos 2x +52,∴f (x )的最小正周期为π,最大值为4.故选B.2.(2018·西安八校联考)已知函数f (x )=cos(x +θ)(0<θ<π)在x =π3时取得最小值,则f (x )在[0,π]上的单调递增区间是( )A.⎣⎡⎦⎤π3,πB.⎣⎡⎦⎤π3,2π3 C.⎣⎡⎦⎤0,2π3 D.⎣⎡⎦⎤2π3,π解析:选A 因为0<θ<π,所以π3<π3+θ<4π3,又f (x )=cos(x +θ)在x =π3时取得最小值,所以π3+θ=π,θ=2π3,所以f (x )=cos ⎝⎛⎭⎫x +2π3.由0≤x ≤π,得2π3≤x +2π3≤5π3.由π≤x +2π3≤5π3,得π3≤x ≤π,所以f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤π3,π,故选A.3.(2018·四川宜宾二诊)先将函数y =2sin ⎝⎛⎭⎫23x +3π4图象上所有点的横坐标缩短为原来的13,纵坐标不变,再向右平移π8个单位长度,得到函数y =g (x )的图象,则下列说法正确的是( )A .函数g (x )图象的一条对称轴是x =π4B .函数g (x )图象的一个对称中心是⎝⎛⎭⎫π2,0 C .函数g (x )图象的一条对称轴是x =π2D .函数g (x )图象的一个对称中心是⎝⎛⎭⎫π8,0解析:选C 先将函数y =2sin ⎝⎛⎭⎫23x +3π4图象上所有点的横坐标缩短为原来的13,纵坐标不变,可得函数y =2sin ⎝⎛⎭⎫2x +3π4的图象,再向右平移π8个单位长度,得到函数g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π8+3π4=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象.令2x =k π,k ∈Z ,得x =k π2,k ∈Z .所以函数g (x )图象的对称轴方程为x =k π2,k ∈Z .当k =1时,对称轴方程为x =π2.显然k π2=π4没有整数解,所以x =π4不是函数g (x )的对称轴.排除A.令2x =k π+π2,k ∈Z ,得x =k π2+π4,k ∈Z ,故函数g (x )图象的对称中心为⎝⎛⎭⎫k π2+π4,0,k ∈Z .显然k π2+π4=π8和k π2+π4=π2没有整数解,所以⎝⎛⎭⎫π8,0和⎝⎛⎭⎫π2,0不是函数g (x )的对称中心.排除B ,D.故选C.4.(2018·开封模拟)已知函数f (x )=2sin(π+x )sin ⎝⎛⎭⎫x +π3+φ的图象关于原点对称,其中φ∈(0,π),则φ=________.解析:因为f (x )=2sin(π+x )sin ⎝⎛⎭⎫x +π3+φ的图象关于原点对称,所以函数f (x )=2sin(π+x )sin ⎝⎛⎭⎫x +π3+φ为奇函数,则y =sin ⎝⎛⎭⎫x +π3+φ为偶函数,则π3+φ=π2+k π,k ∈Z ,又φ∈(0,π),所以φ=π6.答案:π6。
第二讲 函数(二)一、函数的图象1,图象的变换 (1)平移变换①函数(),y f x a =+的图象是把函数()y f x =的图象沿x 轴向右(0a >)或向右(0a <)平移||a 个单位得到的;②函数)0(,)(<+=a a x f y 的图象是把函数轴的图象沿y x f y )(=向上(0a >)或向下(0a <)平个单位得到的移a 。
(2)对称变换①函数)(x f y =与函数)(x f y -=的图象关于直线x=0对称;函数)(x f y =与函数)(x f y -=的图象关于直线y=0对称;函数)(x f y =与函数)(x f y --=的图象关于坐标原点对称; ②函数)(x a f y +=与函数)(x a f y -=的图象关于直线a x =对称。
③如果函数)(x f y =对于一切,R x ∈都有=+)(a x f )(a x f -,那么)(x f y = 的图象关于直线a x =对称。
④设函数y=f(x)的定义域为R ,满足条件f(a+x)=f(b -x),则函数y=f(x)的图像关于直线x=2ba +对称。
(3)伸缩变换①)0(),(>=a x af y 的图象,可将)(x f y =的图象上的每一点的纵坐标伸长)1(>a 或缩短)10(<<a 到原来的a 倍。
②)0(),(>=a ax f y 的图象,可将)(x f y =的图象上的每一点的横坐标伸长)10(<<a 或缩短)1(>a 到原来的a1倍。
例1.将下列变换的结果填在横线上: (1)将函数xy -=3的图象向右平移2个单位,得到函数 的图象;(2)将函数)13(log 2-=x y 的图象向左平移2个单位,得到函数 的图象;(3)将函数3)2(-=x y 的图象各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数 的图象. 解析:(1)关键是答案为23--=x y ,还是)2(3--=x y ,可以取一个点检验,将函数xy -=3的图象向右平移2个单位后点(-1,3)变为(1,3),故答案为)2(3--=x y ,即xy -=23(2)关键是答案为)213(log 2+-=x y ,还是]1)2(3[log 2-+=x y ,注意到)13(log 2-=x y 的图象向左平移2个单位后(1,1)变为点(-1,1),所以后者正确,故答案为)53(log 2+=x y ;(3)函数3)2(-=x y 的图象经过变换后,点(3,0)变为(9,1),故答案为3)131(-=x y .评析:总结上述解答,应该明白一个函数)(x f 的图象的各种变换都是针对基本变量x (或y )进行的,所以变换后发生的变化都应该紧随着变量x (或y )的后面,应认真总结这些经验.注意,函数图象变换的规律也可以应用到曲线方程表示的图形的变换. 例2.已知函数,1-=x xy 给出下列三个命题中正确命题的序号是 ①函数的图象关于点(1,1)对称; ②函数的图象关于直线x y -=2对称; ③将函数图象向左平移一个单位,再向下平移一个单位后与函数xy 1=重合. .答案:①、②、③.(提示:111y x =+-) 例3.将奇函数)(x f y =的图象沿着x 轴的正方向平移2个单位得到图象C ,图象D 与C 关于原点对称,则D对应的函数是( )A .)2(--=x f yB .)2(-=x f yC .)2(+-=x f yD .)2(+=x f y答案D .(提示:)2()2()(---=⇒-=⇒=x f y x f y x f y ,即).2(+=x f y例4.已知f(x+199)=4x 2+4x+3(x ∈R),那么函数f(x)的最小值为____.分析:由f(x +199)的解析式求f(x)的解析式运算量较大,但这里我们注意到,y=f(x +100)与y=f(x),其图象仅是左右平移关系,它们取得的最大值和最小值是相同的,由2214434()22y x x x =++=++,立即求得f(x)的最小值即f(x +199)的最小值是2. 2.利用图象解决函数问题熟练掌握函数图象的有关知识是学习函数以及解决函数问题的重要基本技能,在学习时要抓住下面两个要点:(1)学习函数图象的最基本的能力是熟练掌握所学过的基本初等函数(如正、反比例函数,二次函数,指数、对数函数,三角函数)的图象;(2)“数形结合”是一种很重要的数学方法,在解决许多函数、方程、不等式及其它与函数有关的问题时,常常运用“数形结合”的方法解答问题或帮助分析问题,运用“数形结合”解答问题需要有下述能力与经验:1)必须有能力准确把握问题呈现的全部图象特征;2)必须能够列出等价的数学式子表达问题的图象特征。
重点增分专题四 三角函数的图象与性质[全国卷3年考情分析]函数的单调性、奇偶性、周期性、对称性及最值,并常与三角恒等变换交汇命题.(2)高考对此部分内容主要以选择题、填空题的形式考查,难度为中等偏下,大多出现在第6~12或14~16题位置上.考点一 三角函数的定义、诱导公式及基本关系 保分考点练后讲评[大稳定——常规角度考双基]1.[三角函数的定义及应用]在平面直角坐标系中,以x 轴的非负半轴为角的始边,角α,β的终边分别与单位圆交于点⎝⎛⎭⎫1213,513和⎝⎛⎭⎫-35,45,则sin(α+β)=( )A .-3665 B.4865 C .-313D.3365解析:选D 因为角α,β的终边分别与单位圆交于点⎝⎛⎭⎫1213,513和⎝⎛⎭⎫-35,45,所以sin α=513,cos α=1213,sin β=45,cos β=-35,所以sin(α+β)=sin αcos β+cos αsin β=513×⎝⎛⎭⎫-35+1213×45=3365. 2.[同角三角函数的关系式及应用]若tan α=12,则sin 4α-cos 4α的值为( )A .-15B .-35C.15D.35解析:选B ∵tan α=12,∴sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α) =sin 2α-cos 2α=sin 2α-cos 2αsin 2α+cos 2α=tan 2α-1tan 2α+1=-35.3.[诱导公式及应用]设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12 B.32C .0D .-12解析:选A 由已知,得f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6 =f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎫5π6+sin 5π6+sin 11π6+sin 17π6 =f ⎝⎛⎭⎫5π6+sin π6+sin ⎝⎛⎭⎫-π6+sin π6 =0+12+⎝⎛⎭⎫-12+12=12. [解题方略]1.同角三角函数基本关系式的应用技巧利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐.特别注意函数名称和符号的确定.(注意“奇变偶不变,符号看象限”)[小创新——变换角度考迁移]1.[与数列交汇]设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解析:选D 当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值;当51≤n ≤74时,a n >0;当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值.故当1≤n ≤100时,均有S n >0.2.[与算法交汇]某一算法程序框图如图所示,则输出的S 的值为( )A.32B .-32C. 3D .0解析:选A 由已知程序框图可知,该程序的功能是计算S =sin π3+sin 2π3+sin 3π3+…+sin 2 017π3的值.因为sin π3=32,sin 2π3=sin ⎝⎛⎭⎫π-π3=sin π3=32,sin 3π3=sin π=0, sin 4π3=sin ⎝⎛⎭⎫π+π3=-sin π3=-32, sin 5π3=sin ⎝⎛⎭⎫2π-π3=-sin π3=-32, sin 6π3=sin 2π=0,而sin 7π3=sin ⎝⎛⎭⎫2π+π3=sin π3, sin8π3=sin ⎝⎛⎭⎫2π+2π3=sin 2π3,sin 9π3=sin(2π+π)=sin π,所以函数值呈周期性变化,周期为6,且sin π3+sin 2π3+sin 3π3+sin 4π3+sin 5π3+sin 6π3=0.而2 017=6×336+1,所以输出的S =336×0+sin π3=32.故选A.3.[借助数学文化考查]《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径等于4 m 的弧田,按照上述经验公式计算所得弧田面积约是( )A .6 m 2B .9 m 2C .12 m 2D .15 m 2解析:选B 如图,由题意可得∠AOB =2π3,OA =4,在Rt △AOD 中,可得∠AOD =π3,∠DAO =π6,OD =12AO =12×4=2,于是矢=4-2=2.由AD =AO ·sin π3=4×32=23,可得弦长AB =2AD =2×23=4 3.所以弧田面积=12(弦×矢+矢2)=12×(43×2+22)=43+2≈9(m 2).故选B.考点二 三角函数的图象与解析式 增分考点广度拓展题型一 由“图”定“式”[例1] (1)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫12x +π4B .f (x )=2sin ⎝⎛⎭⎫12x +3π4 C .f (x )=2sin ⎝⎛⎭⎫14x +3π4 D .f (x )=2sin ⎝⎛⎭⎫2x +π4 (2)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的图象与x 轴的一个交点⎝⎛⎭⎫-π12,0到其相邻的一条对称轴的距离为π4,若f ⎝⎛⎭⎫π12=32,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A.12 B .-3 C .-32D .-12[解析] (1)由题图可知,函数图象上两个相邻的最值点分别为最高点⎝⎛⎭⎫-π2,2,最低点⎝⎛⎭⎫3π2,-2,所以函数的最大值为2,即A =2.由图象可得,x =-π2,x =3π2为相邻的两条对称轴,所以函数的周期T =2×⎣⎡⎦⎤3π2-⎝⎛⎭⎫-π2=4π, 故2πω=4π,解得ω=12. 所以f (x )=2sin ⎝⎛⎭⎫12x +φ.把点⎝⎛⎭⎫-π2,2代入可得2sin ⎣⎡⎦⎤12×⎝⎛⎭⎫-π2+φ=2, 即sin ⎝⎛⎭⎫φ-π4=1, 所以φ-π4=2k π+π2(k ∈Z ),解得φ=2k π+3π4(k ∈Z ). 又0<φ<π,所以φ=3π4.所以f (x )=2sin ⎝⎛⎭⎫12x +3π4,故选B.(2)由题意得,函数f (x )的最小正周期T =4×π4=π=2πω,解得ω=2.因为点⎝⎛⎭⎫-π12,0在函数f (x )的图象上, 所以A sin ⎣⎡⎦⎤2×⎝⎛⎭⎫-π12+φ=0, 解得φ=k π+π6,k ∈Z ,由0<φ<π,可得φ=π6.因为f ⎝⎛⎭⎫π12=32,所以A sin ⎝⎛⎭⎫2×π12+π6=32, 解得A =3,所以f (x )=3sin ⎝⎛⎭⎫2x +π6. 当x ∈⎣⎡⎦⎤0,π2时,2x +π6∈⎣⎡⎦⎤π6,7π6, ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴f (x )的最小值为-32. [答案] (1)B (2)C[解题方略] 由“图”定“式”找“对应”的方法由三角函数的图象求解析式y =A sin(ωx +φ)+B (A >0,ω>0)中参数的值,关键是把握函数图象的特征与参数之间的对应关系,其基本依据就是“五点法”作图.(1)最值定A ,B :根据给定的函数图象确定最值,设最大值为M ,最小值为m ,则M =A +B ,m =-A +B ,解得B =M +m 2,A =M -m2. (2)T 定ω:由周期的求解公式T =2πω,可得ω=2πT .(3)点坐标定φ:一般运用代入法求解φ值,注意在确定φ值时,往往以寻找“五点法”中的某一个点为突破口,即“峰点”“谷点”与三个“中心点”.题型二 三角函数的图象变换[例2] (1)(2019届高三·湘东五校联考)将函数f (x )=sin ⎝⎛⎭⎫x +π6的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,所得图象的一条对称轴的方程可能是( )A .x =-π12B .x =π12C .x =π3D .x =2π3(2)(2018·郑州第一次质量测试)若将函数f (x )=3sin(2x +φ)(0<φ<π)图象上的每一个点都向左平移π3个单位长度,得到g (x )的图象,若函数g (x )是奇函数,则函数g (x )的单调递增区间为( )A.⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ) B.⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z )C.⎣⎡⎦⎤k π-2π3,k π-π6(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) [解析] (1)依题意知,将函数f (x )=sin ⎝⎛⎭⎫x +π6的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得函数g (x )=sin ⎝⎛⎭⎫12x +π6的图象.令12x +π6=π2+k π,k ∈Z ,得x =2k π+2π3, k ∈Z ,当k =0时,所得函数图象的一条对称轴的方程为x =2π3,故选D.(2)由题意知g (x )=3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3+φ=3sin ⎝⎛⎭⎫2x +2π3+φ,因为g (x )是奇函数,所以2π3+φ=k π(k ∈Z ),即φ=-2π3+k π(k ∈Z ),又0<φ<π,所以φ=π3,所以g (x )=3sin(2x +π)= -3sin 2x ,由π2+2k π≤2x ≤3π2+2k π(k ∈Z ),解得k π+π4≤x ≤k π+3π4(k ∈Z ),所以函数g (x )的单调递增区间为⎣⎡⎦⎤k π+π4,k π+3π4(k ∈Z ).故选A. [答案] (1)D (2)A[解题方略] 关于三角函数的图象变换的方法考点三 三角函数的性质 增分考点·讲练冲关 [典例] (1)(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4(2)设函数f (x )=cos(3x +φ)(-π<φ<0).若f (x )+f ′(x )是偶函数,则φ等于( ) A.π3 B .-π3C.π6D .-π6(3)(2018·昆明调研)已知函数f (x )=sin ωx 的图象关于点⎝⎛⎭⎫2π3,0对称,且f (x )在⎣⎡⎦⎤0,π4上为增函数,则ω=( )A.32 B .3 C.92D .6(4)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( ) A.π4 B.π2C.3π4D .π[解析] (1)∵f (x )=2cos 2x -sin 2x +2=1+cos 2x -1-cos 2x 2+2=32cos 2x +52,∴f (x )的最小正周期为π,最大值为4.故选B.(2)f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ)=2cos ⎝⎛⎭⎫3x +φ+π3.根据诱导公式,要使f (x )+f ′(x )为偶函数,则φ+π3=k π(k ∈Z ),所以k =0时,φ=-π3,故选B.(3)因为函数f (x )=sin ωx 的图象关于⎝⎛⎭⎫2π3,0对称, 所以2ω3π=k π(k ∈Z ),即ω=32k (k ∈Z ).①又函数f (x )=sin ωx 在区间⎣⎡⎦⎤0,π4上是增函数, 所以π4≤π2ω且ω>0,所以0<ω≤2.②由①②得ω=32,故选A.(4)法一:∵f (x )=cos x -sin x =-2sin x -π4,∴当x -π4∈⎣⎡⎦⎤-π2,π2,即x ∈⎣⎡⎦⎤-π4,3π4时, y =sin ⎝⎛⎭⎫x -π4单调递增, f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减,∴⎣⎡⎦⎤-π4,3π4是f (x )在原点附近的单调减区间, 结合条件得[0,a ]⊆⎣⎡⎦⎤-π4,3π4, ∴a ≤3π4,即a max =3π4.故选C.法二:f ′(x )=-sin x -cos x =-2sin ⎝⎛⎭⎫x +π4. 于是,由题设得f ′(x )≤0,即sin ⎝⎛⎭⎫x +π4≥0在区间[0,a ]上恒成立. 当x ∈[0,a ]时,x +π4∈⎣⎡⎦⎤π4,a +π4, 所以a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.[答案] (1)B (2)B (3)A (4)C [解题方略]1.求三角函数单调区间的方法(1)代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,得y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)图象法:画出三角函数的图象,结合图象求其单调区间. 2.判断对称中心与对称轴的方法利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.3.求三角函数周期的常用结论(1)y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小 正周期为π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期;正切曲线相邻两对称中心之间的距离是12个周期.[多练强化]1.若函数f (x )=3sin(2x +θ)+cos(2x +θ)(0<θ<π)的图象关于⎝⎛⎭⎫π2,0中心对称,则函数f (x )在⎣⎡⎦⎤-π4,π6上的最小值是( ) A .-1 B .- 3 C .-12D .-32解析:选B f (x )=2sin ⎝⎛⎭⎫2x +θ+π6,又图象关于⎝⎛⎭⎫π2,0中心对称, 所以2×π2+θ+π6=k π(k ∈Z ),所以θ=k π-7π6(k ∈Z ),又0<θ<π,所以θ=5π6,所以f (x )=-2sin 2x ,因为x ∈⎣⎡⎦⎤-π4,π6, 所以2x ∈⎣⎡⎦⎤-π2,π3,f (x )∈[-3,2], 所以f (x )的最小值是- 3.2.(2018·济南模拟)已知函数f (x )=sin(ωx +φ)+3cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f ⎝⎛⎭⎫π3-x =f (x ),则( )A .f (x )在⎝⎛⎭⎫0,π2上单调递减B .f (x )在⎝⎛⎭⎫π6,2π3上单调递增 C .f (x )在⎝⎛⎭⎫0,π2上单调递增 D .f (x )在⎝⎛⎭⎫π6,2π3上单调递减解析:选D 因为f (x )=sin(ωx +φ)+3cos(ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ+π3的最小正周期为π,所以2πω=π,所以ω=2.因为f ⎝⎛⎭⎫π3-x =f (x ),所以直线x =π6是f (x )图象的一条对称轴,所以2×π6+φ+π3=π2+k π,k ∈Z ,所以φ=-π6+k π,k ∈Z ,因为|φ|<π2,所以φ=-π6,所以f (x )=2sin ⎝⎛⎭⎫2x +π6.当x ∈⎝⎛⎭⎫0,π2时,2x +π6∈⎝⎛⎭⎫π6,7π6,f (x )先增后减,当x ∈⎝⎛⎭⎫π6,2π3时,2x +π6∈⎝⎛⎭⎫π2,3π2,f (x )单调递减.故选D.3.(2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x . (1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值. 解:(1)f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为T =2π2=π. (2)由(1)知f (x )=sin ⎝⎛⎭⎫2x -π6+12. 由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6.要使f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32, 即sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3.考点四 三角函数图象与性质的综合应用 增分考点讲练冲关[典例] 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位长度,再向上平移1个单位长度,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.[解] (1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝⎛⎭⎫2ωx -π3. 由最小正周期为π,得ω=1,所以f (x )=2sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z , 所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象,所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.[解题方略]解决三角函数图象与性质综合问题的思路(1)先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B (一角一函数)的形式;(2)把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性、奇偶性、最值、对称性等问题.[多练强化](2017·山东高考)设函数f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3.已知f ⎝⎛⎭⎫π6=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤-π4,3π4上的最小值.解:(1)因为f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2, 所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎝⎛⎭⎫12sin ωx -32cos ωx=3sin ⎝⎛⎭⎫ωx -π3. 因为f ⎝⎛⎭⎫π6=0, 所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z . 又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝⎛⎭⎫2x -π3, 所以g (x )=3sin ⎝⎛⎭⎫x +π4-π3=3sin ⎝⎛⎭⎫x -π12. 因为x ∈⎣⎡⎦⎤-π4,3π4,所以x -π12∈⎣⎡⎦⎤-π3,2π3, 当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.直观想象——数形结合法在三角函数图象问题中的应用[典例] 函数f (x )=sin(ωx +φ)ω>0,|φ|<π2的图象如图所示,为了得到g (x )=cos ⎝⎛⎭⎫ωx +π3的图象,则只需将f (x )的图象( ) A .向左平移π4个单位长度B .向右平移π4个单位长度C .向左平移π12个单位长度D .向右平移π12个单位长度[解析] 根据函数f (x )=sin(ωx +φ)的部分图象知,T 4=7π12-π3=π4,∴T =π,即2πω=π,解得ω=2.根据“五点作图法”并结合|φ|<π2,可知2×π3+φ=π,解得φ=π3,∴f (x )=sin ⎝⎛⎭⎫2x +π3.∴g (x )=cos ⎝⎛⎭⎫2x +π3=sin ⎝⎛⎭⎫2x +π3+π2=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3.故为了得到g (x )的图象,只需将f (x )的图象向左平移π4个单位长度即可.[答案] A [素养通路]本题利用图形描述数学问题,通过对图形的理解,由图象建立形与数的联系,确定函数的周期,根据“五点作图法”代入数据求参数.考查了直观想象这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.(2018·全国卷Ⅲ)函数f (x )=tan x1+tan 2x 的最小正周期为( )A.π4 B.π2C .πD .2π解析:选C 由已知得f (x )=tan x 1+tan 2x =sin x cos x 1+⎝⎛⎭⎫sin x cos x 2=sin x cos x cos 2x +sin 2xcos 2x =sin x ·cos x =12sin2x ,所以f (x )的最小正周期为T =2π2=π.2.(2018·贵阳第一学期检测)已知函数f (x )=A sin(ωx +φ)ω>0,-π2<φ<π2的部分图象如图所示,则φ的值为( ) A .-π3B.π3C .-π6D.π6解析:选B 由题意,得T 2=π3+π6=π2,所以T =π,由T =2πω,得ω=2,由图可知A=1,所以f (x )=sin(2x +φ).又f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=0,-π2<φ<π2,所以φ=π3.3.(2019届高三·西安八校联考)已知函数f (x )=cos(x +θ)(0<θ<π)在x =π3时取得最小值,则f (x )在[0,π]上的单调递增区间是( )A.⎣⎡⎦⎤π3,πB.⎣⎡⎦⎤π3,2π3 C.⎣⎡⎦⎤0,2π3 D.⎣⎡⎦⎤2π3,π解析:选A 因为0<θ<π,所以π3<π3+θ<4π3,又f (x )=cos(x +θ)在x =π3时取得最小值,所以π3+θ=π,θ=2π3,所以f (x )=cos ⎝⎛⎭⎫x +2π3. 由0≤x ≤π,得2π3≤x +2π3≤5π3.由π≤x +2π3≤5π3,得π3≤x ≤π, 所以f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤π3,π,故选A. 4.函数f (x )=sin ⎝⎛⎭⎫2x -π2的图象与函数g (x )的图象关于x =π8对称,则g (x )具有的性质是( )A .最大值为1,图象关于直线x =π2对称B .在⎝⎛⎭⎫0,π4上单调递减,为奇函数 C .在⎝⎛⎭⎫-3π8,π8上单调递增,为偶函数 D .周期为π,图象关于点⎝⎛⎭⎫3π8,0对称解析:选B 由题意得,g (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4-x -π2=sin(-2x )=-sin 2x ,最大值为1,而g ⎝⎛⎭⎫π2=0,图象不关于直线x =π2对称,故A 错误;当x ∈⎝⎛⎭⎫0,π4时,2x ∈⎝⎛⎭⎫0,π2,满足单调递减,显然g (x )也是奇函数,故B 正确,C 错误;周期T =2π2=π,g ⎝⎛⎭⎫3π8=-22,故图象不关于点⎝⎛⎭⎫3π8,0对称,故D 错误.5.(2019届高三·安徽知名示范高中联考)先将函数y =2sin ⎝⎛⎭⎫2x -π3+1的图象向左平移512个最小正周期的单位长度,再向下平移1个单位长度后,所得图象对应的函数是( ) A .奇函数 B .偶函数 C .非奇非偶函数D .不能确定解析:选B 因为函数y =2sin ⎝⎛⎭⎫2x -π3+1,所以其最小正周期T =π,所以将函数图象向左平移5π12个单位长度,所得的图象对应的函数解析式为y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +5π12-π3+1=2sin ⎝⎛⎭⎫2x +5π6-π3+1=2sin ⎝⎛⎭⎫2x +π2+1=2cos 2x +1,再将图象向下平移1个单位长度后所得的图象对应的函数解析式为y =2cos 2x ,该函数为偶函数,故选B.6.(2018·广州高中综合测试)已知函数f (x )=sin ωx +π6(ω>0)在区间⎣⎡⎦⎤-π4,2π3上单调递增,则ω的取值范围为( )A.⎝⎛⎦⎤0,83 B.⎝⎛⎦⎤0,12 C.⎣⎡⎦⎤12,83D.⎣⎡⎦⎤38,2解析:选B 法一:因为x ∈⎣⎡⎦⎤-π4,2π3,所以ωx +π6∈⎣⎡⎦⎤-π4ω+π6,2π3ω+π6, 因为函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)在区间⎣⎡⎦⎤-π4,2π3上单调递增, 所以⎩⎨⎧-π4ω+π6≥2k π-π2,k ∈Z ,2π3ω+π6≤2k π+π2,k ∈Z ,即⎩⎨⎧ω≤-8k +83,k ∈Z ,ω≤3k +12,k ∈Z.又ω>0,所以0<ω≤12,选B.法二:取ω=1,f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π6=-sin π12<0,f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫π3+π6=sin π2=1,f ⎝⎛⎭⎫2π3=sin ⎝⎛⎭⎫2π3+π6=sin 5π6=12,不满足题意,排除A 、C 、D ,选B. 二、填空题7.(2018·惠州调研)已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=____________.解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-558.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫|φ|<π2,ω>0的图象在y 轴右侧的第一个最高点为P ⎝⎛⎭⎫π6,1,在原点右侧与x 轴的第一个交点为Q ⎝⎛⎭⎫5π12,0,则f ⎝⎛⎭⎫π2的值为______. 解析:由题意得T 4=5π12-π6=π4,所以T =π,所以ω=2,将点P ⎝⎛⎭⎫π6,1代入f (x )=sin(2x +φ), 得sin ⎝⎛⎭⎫2×π6+φ=1,所以φ=π6+2k π(k ∈Z ). 又|φ|<π2,所以φ=π6,即f (x )=sin ⎝⎛⎭⎫2x +π6(x ∈R),所以f ⎝⎛⎭⎫π2=sin ⎝⎛⎭⎫2×π2+π6=-12. 答案:-129.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈π6,m ⎝⎛⎭⎫m ∈R 且m >π6,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的最大值是________.解析:由x ∈⎣⎡⎦⎤π6,m ,可知5π6≤3x +π3≤3m +π3, ∵f ⎝⎛⎭⎫π6=cos 5π6=-32,且f ⎝⎛⎭⎫2π9=cos π=-1, ∴要使f (x )的值域是⎣⎡⎦⎤-1,-32, 需要π≤3m +π3≤7π6,即2π9≤m ≤5π18,即m 的最大值是5π18.答案:5π18三、解答题10.(2018·石家庄模拟)函数f (x )=A sin ωx -π6+1(A >0,ω>0)的最小值为-1,其图象相邻两个最高点之间的距离为π.(1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,f ⎝⎛⎭⎫α2=2,求α的值. 解:(1)∵函数f (x )的最小值为-1, ∴-A +1=-1,即A =2.∵函数f (x )的图象的相邻两个最高点之间的距离为π, ∴函数f (x )的最小正周期T =π, ∴ω=2,故函数f (x )的解析式为 f (x )=2sin ⎝⎛⎭⎫2x -π6+1. (2)∵f ⎝⎛⎭⎫α2=2sin ⎝⎛⎭⎫α-π6+1=2, ∴sin ⎝⎛⎭⎫α-π6=12. ∵0<α<π2,∴-π6<α-π6<π3,∴α-π6=π6,得α=π3.11.已知m =⎝⎛⎭⎫sin ⎝⎛⎭⎫x -π6,1,n =(cos x,1). (1)若m ∥n ,求tan x 的值;(2)若函数f (x )=m ·n ,x ∈[0,π],求f (x )的单调递增区间.解:(1)由m ∥n 得,sin ⎝⎛⎭⎫x -π6-cos x =0,展开变形可得,sin x =3cos x ,即tan x = 3. (2)f (x )=m ·n =sin ⎝⎛⎭⎫x -π6cos x +1 =32sin x cos x -12cos 2x +1 =34sin 2x -cos 2x +14+1=12⎝⎛⎭⎫sin 2x cos π6-cos 2x sin π6+34 =12sin ⎝⎛⎭⎫2x -π6+34, 由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z .又x ∈[0,π],所以当x ∈[0,π]时,f (x )的单调递增区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. 12.已知函数f (x )=cos x (23sin x +cos x )-sin 2x . (1)求函数f (x )的最小正周期;(2)若当x ∈⎣⎡⎦⎤0,π2时,不等式f (x )≥m 有解,求实数m 的取值范围. 解:(1)f (x )=23sin x cos x +cos 2x -sin 2x =3sin 2x +cos 2x =2⎝⎛⎭⎫32sin 2x +12cos 2x =2sin ⎝⎛⎭⎫2x +π6, 所以函数f (x )的最小正周期T =π. (2)由题意可知,不等式f (x )≥m 有解, 即m ≤f (x )max ,因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6, 故当2x +π6=π2,即x =π6时,f (x )取得最大值,且最大值为f ⎝⎛⎭⎫π6=2.从而可得m ≤2. 所以实数m 的取值范围为(-∞,2].B 组——大题专攻补短练1.已知向量m =(2sin ωx ,sin ωx ),n =(cos ωx ,-23sin ωx )(ω>0),函数f (x )=m ·n +3,直线x =x 1,x =x 2是函数y =f (x )的图象的任意两条对称轴,且|x 1-x 2|的最小值为π2.(1)求ω的值;(2)求函数f (x )的单调递增区间.解:(1)因为向量m =(2sin ωx ,sin ωx ),n =(cos ωx ,-23sin ωx )(ω>0),所以函数f (x )=m ·n +3=2sin ωx cos ωx +sin ωx (-23sin ωx )+3=sin 2ωx -23sin 2ωx +3=sin 2ωx +3cos 2ωx =2sin ⎝⎛⎭⎫2ωx +π3. 因为直线x =x 1,x =x 2是函数y =f (x )的图象的任意两条对称轴,且|x 1-x 2|的最小值为π2,所以函数f (x )的最小正周期为π2×2=π,即2π2ω=π,得ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π3, 令2k π-π2≤2x +π3≤2k π+π2(k ∈Z ),解得k π-5π12≤x ≤k π+π12(k ∈Z ),所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ).2.已知函数f (x )=3sin 2ωx +cos 4ωx -sin 4ωx +1(0<ω<1),若点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心. (1)求f (x )的解析式,并求距y 轴最近的一条对称轴的方程; (2)先列表,再作出函数f (x )在区间[-π,π]上的图象. 解:(1)f (x )=3sin 2ωx +(cos 2ωx -sin 2ωx )·(cos 2ωx +sin 2ωx )+1 =3sin 2ωx +cos 2ωx +1 =2sin ⎝⎛⎭⎫2ωx +π6+1. ∵点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心, ∴-ωπ3+π6=k π,k ∈Z ,∴ω=-3k +12,k ∈Z .∵0<ω<1,∴k =0,ω=12,∴f (x )=2sin ⎝⎛⎭⎫x +π6+1. 由x +π6=k π+π2,k ∈Z ,得x =k π+π3,k ∈Z ,令k =0,得距y 轴最近的一条对称轴方程为x =π3.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫x +π6+1,当x ∈[-π,π]时,列表如下:则函数f (x )在区间[-π,π]上的图象如图所示.3.(2018·山东师大附中模拟)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)说明函数y =f (x )的图象可由函数y =3sin 2x -cos 2x 的图象经过怎样的平移变换得到;(3)若方程f (x )=m 在⎣⎡⎦⎤-π2,0上有两个不相等的实数根,求m 的取值范围. 解:(1)由题图可知,A =2,T =4⎝⎛⎭⎫π3-π12=π,∴2πω=π,ω=2,∴f (x )=2sin(2x +φ),∵f ⎝⎛⎭⎫π3=0, ∴sin ⎝⎛⎭⎫2π3+φ=0,∴φ+2π3=k π,k ∈Z , 即φ=-2π3+k π,k ∈Z . ∵|φ|<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫2x +π3. (2)y =3sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π6=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π3, 故将函数y =3sin 2x -cos 2x 的图象向左平移π4个单位长度就得到函数y =f (x )的图象.(3)当-π2≤x ≤0时,-2π3≤2x +π3≤π3,故-2≤f (x )≤3,若方程f (x )=m 在⎣⎡⎦⎤-π2,0上有两个不相等的实数根,则曲线y =f (x )与直线y =m 在⎣⎡⎦⎤-π2,0上有2个交点,结合图形,易知-2<m ≤- 3.故m 的取值范围为(-2,- 34.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0≤φ≤π2图象的相邻两对称轴之间的距离为π2,且在x =π8时取得最大值1. (1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤0,9π8时,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3,求x 1+x 2+x 3的取值范围.解:(1)由题意,T =2×π2=π,故ω=2ππ=2,所以sin ⎝⎛⎭⎫2×π8+φ=sin ⎝⎛⎭⎫π4+φ=1,所以π4+φ=2k π+π2,k ∈Z ,所以φ=2k π+π4,k ∈Z .因为0≤φ≤π2,所以φ=π4,所以f (x )=sin ⎝⎛⎭⎫2x +π4.(2)画出该函数的图象如图,当22≤a <1时,方程f (x )=a 恰好有三个根,且点(x 1,a )和(x 2,a )关于直线x =π8对称,点(x 2,a )和(x 3,a )关于直线x =5π8对称,所以x 1+x 2=π4,π≤x 3<9π8, 所以5π4≤x 1+x 2+x 3<11π8,故x 1+x 2+x 3的取值范围为⎣⎡⎭⎫5π4,11π8.。
第二讲函数的图象与性质函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是()A.y=x B.y=lg xC.y=2x D.y=1 x解析:函数y =10lg x 的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).故选D.答案:D2.(2018·浙江名校联考)已知函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,则f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<x <e.所以函数f (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x 的取值范围是⎝⎛⎭⎫-14,+∞.答案:⎝⎛⎭⎫-14,+∞1.函数定义域的求法求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin x x2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx 2是奇函数,其函数图象关于原点对称,所以函数y=1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin x x 2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,则ƒ′(x )>0的解集为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝⎛⎭⎫-22,0∪⎝⎛⎭⎫22,+∞,ƒ(x )单调递减.故选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项. 故选D. 答案:D2.函数f (x )=⎝⎛⎭⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎫21+e x -1cos x ,∴f (-x )=⎝⎛⎭⎫21+e -x -1cos(-x )=-⎝⎛⎭⎫21+e x -1cos x =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎫0,π2时,e x >e 0=1,21+e x-1<0,cos x >0,∴f (x )<0,可排除选项D ,故选B.答案:B3.(2018·惠州调研)已知函数f (x )的图象如图所示,则f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x 2-1D .f (x )=x -1x解析:由函数图象可知,函数f (x )为奇函数,排除B 、C.若函数为f (x )=x -1x ,则当x →+∞时,f (x )→+∞,排除D ,故选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,若能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 3.记住几个周期性结论(1)若函数f (x )满足f (x +a )=-f (x )(a >0),则f (x )为周期函数,且2a 是它的一个周期.(2)若函数f(x)满足f(x+a)=1f(x)(a>0),则f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞) D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是()A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)已知函数ƒ(x)=ln(1+x2-x)+1,ƒ(a)=4,则ƒ(-a)=________.解析:∵ƒ(x)+ƒ(-x)=ln(1+x2-x)+1+ln(1+x2+x)+1=ln(1+x2-x2)+2=2,∴ƒ(a)+ƒ(-a)=2,∴ƒ(-a)=-2.答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增”得增、“减+减”得减及复合函数的“同增异减”)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(3)对于偶函数而言,有f(-x)=f(x)=f(|x|).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在已知区间上的问题,转化到已知区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·长春模拟)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x +e -xB .y =ln(|x |+1)C .y =sin x|x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x 在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·衡阳八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝⎛⎭⎫52<f ⎝⎛⎭⎫72B .f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52C .f ⎝⎛⎭⎫72<f ⎝⎛⎭⎫52<f (1)D .f ⎝⎛⎭⎫52<f (1)<f ⎝⎛⎭⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2),即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝⎛⎭⎫72<f (3)<f ⎝⎛⎭⎫52, 即f ⎝⎛⎭⎫72<f (1)<f ⎝⎛⎭⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.下列四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x (x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝⎛⎭⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x (x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,故选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )= (x +1),则f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32=-1.所以f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考天津卷)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 2 5.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<20.8<2,由g (x )在(0,+∞)上单调递增,得g (20.8)<g (log 2 5.1)<g (3),∴b <a <c ,故选C.答案:C5.(2018·太原模拟)函数f (x )=e x x的图象大致为( )解析:由f (x )=e xx ,可得f ′(x )=x e x -e x x 2=(x -1)e x x 2, 则当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,故选B.答案:B6.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·临沂模拟)已知函数f (x )=e x -1+4x -4,g (x )=ln x -1x ,若f (x 1)=g (x 2)=0,则( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2)解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x 在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e>ln1=0.又f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.已知函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =( )A .4B .2C .1D .0解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2, 令t =x -1,g (t)=(t 2-1)sin t +t , 则y =f (x )=g (t)+2,t ∈[-2,2]. 显然M =g (t)max +2,m =g (t)min +2. 又g (t)为奇函数,则g (t)max +g (t)min =0, 所以M +m =4,故选A. 答案:A9.已知g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (2-x 2)>f (x ),则x 的取值范围是( ) A .(-∞,-2)∪(1,+∞) B .(-∞,1)∪(2,+∞) C .(-2,1) D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),则函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增.因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,故选C.答案:C10.(2018·高考全国卷Ⅱ)已知ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).若ƒ(1)=2,则ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ), ∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ), ∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ), ∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ), ∴函数ƒ(x )是周期为4的周期函数. 由ƒ(x )为奇函数得ƒ(0)=0. 又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称, ∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0. 又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.故选C. 答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,若f (2)=2,则不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞)解析:由f (x 1)-f (x 2)x 1-x 2<1,可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,故选C.答案:C12.(2018·广西三市联考)已知函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),则m 的取值范围是( )A .(1,2+ln 2) B.⎝⎛⎭⎫2,72+ln 2 C .(ln 2,2]D.⎝⎛⎦⎤1,72+ln 2解析:作出函数y 1=e |x-2|和y =g (x )的图象,如图所示,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由e x -2≤4e 5-x,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D 二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=________. 解析:由题意得f ⎝⎛⎫-52=f ⎝⎛⎭⎫2-52=f ⎝⎛⎫-12=-f ⎝⎛⎭⎫12=-12. 答案:-1214.若函数f (x )=x (x -1)(x +a )为奇函数,则a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1, 解得0≤a <12.答案:⎣⎡⎭⎫0,1216.如图放置的边长为1的正方形P ABC 沿x 轴滚动,点B 恰好经过原点,设顶点P(x,y)的轨迹方程是y=f(x),则对函数y=f(x)有下列判断:①函数y=f(x)是偶函数;②对任意的x∈R,都有f(x+2)=f(x-2);③函数y=f(x)在区间[2,3]上单调递减;④函数y=f(x)在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y=f(x)的图象可以判断出,图象关于y轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。